6二次曲面的标准方程

合集下载

常用的二次曲面方程及其图形

常用的二次曲面方程及其图形

这些交线都是椭圆。
3) 再看这个曲面平行于 xoy 的平面 z= z1 ( z1 c )的交线
x 2 y 2 z12 1 a2 b2 c2
a2 c2
x2 (c2
z
2 1
)
b2 c2
y2 (c2
z12 )
1
z= z 1
4) 如果 a=b,那么方程变为:
x2 a2
y2 a2
z2 c2
1
x2 y2 a2
4、 双曲面
方程为: 单叶双曲面
x2 a2
y2 b2
z2 c2
1
1) 当 z=0 时,为过原点的圆,圆点在原点上。
x2 y2 1 a2 b2
2) 当用平行与 z=0 的平面 z= z1 截双曲面时,
x2 y2 z2 1 a2 b2 c2
Z= z1
x 2 y 2 1 z12
a2 b2
c2
-------------椭圆
3) 当 y=0 时,在 xoz 平面上为一双曲线
x2 z2 1 a2 c2
4) 当用平行 y=0 的平面 y= y1( y1 ≠±b)截得曲面为中心在 y 轴上的双曲线
x2 a2
z2 c2
1
y12 b2
双曲线知识回顾:
双曲线定义 图形
m MF1 MF2 2a2a F1F2
常用的二次曲面方程及其图形
旋转曲面:L 是 XOZ 平面内的一个曲面
p0
P
f (x, z) 0
y0
其方程是:
得到旋转面的方程为: f ( x2 y2 , z) 0
柱面: 是空间的一个曲线,直线 L 沿着 平行移动 所形成的曲面,叫做柱面, 称作柱面的准线,L 称作柱面的母线。

二次曲面

二次曲面

u,v 为参数,且不全为0.
(1)对于单叶双曲面S上的每一点,两类直母线中各有一条直 母线经过它。 (2)单叶双曲面S上异族的两个直母线一定共面,同族的两个 直母线一定异面。
可以看出下面两直线在S上。
x z y x z y u v 1 0 u a c v 1 b 0, a c b I2 : I1 : v x z u 1 y 0 y x z v u 1 0 a c b a c b
当 | h | b时, 截线为双曲线 实轴//z轴 c 2 实半轴: b h 2 b 虚轴//x轴 a 2 虚半轴: b h 2 b
用平行与坐标面的平面y h来截割双曲面: x2 z 2 h2 2 2 1 2 截口方程为:a c b ; y h
当 | h | b时, 截线为两条直线 x z 0 a c y b x z 0 或a c y b
二次曲面
一个仿射坐标系中, x,y,z的一个二次方程的图 形成为二次曲面.
二次方程的一般形式:F ( x, y, z ) 0 F ( x, y, z ) a11 x a22 y a33 z 2a12 xy 2a23 yz 2a13 xz 2b1 x 2b2 y 2b3 z c
u,v 为参数,且不全为0.
三、性质: 1. 单叶双曲面上异族的任意两条直母 线必共面, 而双曲抛物面上异族的任意 两条直母线必相交. 2. 单叶双曲面或双曲抛物面上同族的 任意两条直母线总是异面直线, 而且双 曲抛物面同族的全体直母线平行于同一 平面. 3. 对于单叶双曲面和双曲抛物面上的 每一点, 两族直母线中各有一条通过这 一点.

高等代数与解析几何7.6

高等代数与解析几何7.6
但它没有对称中心. (2)范 围: x, y, z ∈ R.
(3)截口形状
(i)双曲抛物面与 xoy面的交线:
⎧⎪ ⎨
x a
±
y b
=
0
(两条相交直线)⎪⎩ z = 0
(xioi)z双面曲的抛交物线面:与⎧⎨ (抛物线) ⎩
x y
2 = 2a =0
2
z
z y
x o
(y(ioiiz抛)面双物的曲线交抛)线物:面与⎧⎨⎩
(II )
所定义的曲面叫做单叶双曲面,
方程(II)叫做单叶双曲面的标准方程。
2.性质和图形
(1)对称性:关于三个坐标平面,三个坐标轴及原点都对称。
(2)顶点与半轴: 两对顶点: (±a, 0, 0), (0, ±b, 0)
(3)范
围:
∵ x2 a2
+
y2 b2
=
1
+
z2 c2
≥1
故曲面在柱面
x2 a2
⎧⎪ ⎨
z c
2 2

x2 a2
=1
(双曲线) ⎪⎩ y = 0
oy
(iii)双叶双曲面与 yoz面的交线:
⎧⎪ z 2 ⎨ c2

y2 b2
=
1
x
(双曲线)
⎪⎩ x = 0
当 h ≥ c时,平面z = h与双叶双曲面的交线为
⎧ ⎪ ⎨
x2 a2
+
y2 b2
=
h2 c2
−1
(当 h = c时是一个点,当 h > c时是一个椭圆.)
⎧⎪ ⎨
x y
= =
a tanφ b tanφ
cosθ , sinθ ,

二次曲面的标准方程

二次曲面的标准方程

二次曲面的标准方程
二次曲面的标准方程是:x²+y²+z²=R²。

其中,R是球的半径,(x,y,z)表示空间中任意一点的位置。

如果二次曲面在三个坐标面上的截距都是圆,并且圆心都在原点,则它的方程为:x²+y²+z²=R²。

其中,R是球的半径。

如果二次曲面在xoy平面上的截距是一个圆,并且圆心在原点,则它的方程为:(x²+y²)=R²。

如果二次曲面在xoz平面上的截距是一个圆,并且圆心在原点,则它的方程为:(x²+z²)=R²。

如果二次曲面在yoz平面上的截距是一个圆,并且圆心在原点,则它的方程为:(y²+z²)=R²。

总之,二次曲面的标准方程可以根据不同的条件选择不同的形式,但它们都涉及到三个坐标轴和球心在原点的球面。

第五节常见的二次曲面及其方程

第五节常见的二次曲面及其方程

(2) y12 b2 , 实轴与 z 轴平行, 虚轴与 x 轴平行.
(3) y1 b, 截痕为一对相交于点 (0,b,0) 的直线.

x a

z c

0
,
y b

x a

z c

0
.
y b
(4) y1 b,
截痕为一对相交于点 (0,b,0) 的直线.

x a

z c

0
,

x a

z c

0
.
y b
y b
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得双曲线.
平面 x a 的截痕是两对相交直线.
单叶双曲面图形 z
o
y
x
x2 a2

y2 b2

z2 c2

1
双叶双曲面
o
y
x
二、小结

c
2
x2 (c2
z12
)

b2 c2
y2 (c2
z12
)

1
z z1
| z1 | c
同理与平面 x x1 和 y y1 的交线也是椭圆.
椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
(1) a b,
x2 a2

y2 a2

z2 c2

1
旋转椭球面
由椭圆
x2 a2

z2 c2
1绕
z 轴旋转而成.
方程可写为
x2 y2 a2

高等数学-几种常见的二次曲面

高等数学-几种常见的二次曲面

母线 平行于 z 轴;
准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
y x l1
x z l3
z l2 y
母线 平行于 y 轴;
x
准线 xoz 面上的曲线 l3.
y
9
注:柱面方程与坐标面上的曲线方程容易混淆,应该
例如 :
11
下面我们重点讨论母线在坐标面,旋转轴是坐标轴 的旋转曲面.
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
z
若点 M1(0, y1, z1) C, 则有 f ( y1, z1) 0
当绕 z 轴旋转时, 该点转到
求旋转曲面方程C时,平面
z oy
27
z
4. 椭圆锥面
z
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt

xx
o yy
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
绕 y 轴旋转时得旋转曲面方程:
o
f ( y, x2 z2 ) 0
y
例3. 旋转抛物面
x
特点:母线C为抛物线,旋转轴L为抛物线的对称轴。
例如:将yoz平面上的抛物线C: z2 2 py
绕 y 轴旋转一周所产生的抛物面为:

二次曲面方程的标准化及其图形实质

二次曲面方程的标准化及其图形实质

(b1′ , b2 ′ )=( B Tη 1,
2 2 ( BTη BTη 2) +( 3))
( 5)
根据定理 1 与定理 2 , 我们有以下结论 。 定理 3 : 空间中任意二次曲面方程经过 一次旋转变 换 和一次平移变换总可以化为标准方程 。 定理 4 : 已知曲面 ∑ 的方程 F (x , y , z )=0 先通过 一 次旋转变换 σ: X = PX 1 p 11 p 12 p 13 x x1 , X 1 = y1 z1 , 这里矩阵 P = p 21 p 22 p 23 , X = y
cos θ -sin θ =Λ
而 B PQ =B T ( η Q 1 η 2 η 3)
第 3 期 贡韶红 : 二次曲面方程的标准化及其图形实 质 的列向量 。 示什么曲面 ? 0 解: 这里矩阵 A = 1 1 1
· 51 ·
0 1 , 解特征方程 λ E -A
1 1 0 =0 , 得 λ 1 =2 , λ 2 =λ 3 =-1 同前 , 可求得矩 阵 A 对应 于 λ 1 =2 , λ 2 =λ 3 = -1 的 单位正交特征向量 1 1 1 T 1 1 , , , - ,0 ,η 2= 3 3 3 2 2 1 1 2 T , , η 3 =η 1 ×η 2= 6 6 6 1 1 1 3 2 6 η 1= 构造矩阵 P = 1 3 1 3 x 作旋转变换 y z 形
2 λ ′ x 1 +b 2 ″ y1 1 x 2 +b 1
其中 b′ = PE 0 下 , 曲面方程也变换为标准形 +c = 0 , 这里(b 1 ′ , b 2′ )=( B η 1,
T T 2 T 2
( B η B η 2) +( 3) ) 证明 : 显然这里 X = PX 1 是旋转变换 。 记矩阵 P = (η 1, η 2,η 3) , 1 0 则 P A P =P

高等数学6(6)曲面及其方程

高等数学6(6)曲面及其方程

用平面 z z1 ( z1 0)去截这曲面, 截痕为圆.
x y 2 pz1 z z1
2 2
当 z1 变动时,这种圆 的中心都在 z 轴上.
22
x y z( p 与 q 同号) 双曲抛物面 2 p 2q (马鞍面)
特点是: 有两个异号的平方项,另一变量
是一次项, 无常数项. 用截痕法讨论: 设 p 0, q 0 图形如下:
绕y轴旋转一周的 旋转曲面方程为
f ( y,
x z )0
2 2
4
例3 直线L绕另一条与L相交的直线旋转一周 所得旋转曲面称为圆锥面. 两直线的交点称为
圆锥面的顶点, 两直线的夹角 (0

2 圆锥面的半顶角. 试建立顶点在坐标原点O, 旋
) 称为
转轴为z轴, 半顶角为 的圆锥面的方程. 解 yOz面上直线方程为
2
2
y2 x2 z2 绕 y 轴旋转 2 1 2 a c x2 y2 z2 绕 z 轴旋转 2 1 2 a c
x 2 y 2 2 pz
旋 转 椭 球 面
(3) yOz坐标面上的抛物线 y 2 2 pz 绕z轴.
旋转抛物面
9
四、二次曲面
1. 二次曲面的定义
三元二次方程所表示的曲面称为 二次曲面.
2 2 y1 x 2 p z 2q y y 1
它的轴平行于 z 轴
2 y1 顶点 0, y1 , 2q
20
(3) 用坐标面 yOz ( x 0)及平面 x x1 去截这曲面, 截痕为抛物线. 同理当 p 0, q 0 时可类似讨论.
x
7
例4 将下列各曲线绕对应的轴旋转一周,求生成 的旋转曲面的方程.

二次曲面的形状

二次曲面的形状

二次曲面的形状二次曲面是一个重要的数学概念,在几何学以及数学分析中都有广泛的应用。

本文将介绍二次曲面的形状,并探讨其一些重要特性。

二次曲面是由二次方程定义的曲面,其一般方程可以表示为:Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0其中,A、B、C、D、E、F、G、H、I和J是常数,且不全为零。

通过这个方程,我们可以推断二次曲面的形状种类。

根据方程的系数,我们可以将二次曲面分为多种情况:1. 椭圆面:当A、B和C的符号都相同时,且AB和AC的比值小于1时,二次曲面呈现为一个椭圆形状。

2. 双曲面:当A、B和C的符号都相同时,且AB和AC的比值大于1时,二次曲面呈现为一个双曲线形状。

3. 抛物面:当A、B和C的符号有一个不同,且D、E和F等于零时,二次曲面呈现为一个抛物线形状。

4. 锥面:当A、B和C有一个为零时,且D、E和F等于零时,二次曲面呈现为一个尖锥形状。

除了以上情况,二次曲面还可能呈现其他特殊形态,如点、线和平面。

除了形状种类外,二次曲面还有一些重要的特性需要了解:1. 对称性:二次曲面通常具有一些特殊的对称性,如旋转对称性、对称轴等。

2. 曲率:二次曲面在不同点上具有不同的曲率,对于椭圆面和双曲面来说,曲率可以有正和负两种情况。

3. 焦点和直纹:对于椭圆面和双曲面来说,焦点和直纹是其重要特性,可以通过二次曲面的方程来确定。

了解二次曲面的形状和特性,对于解决几何问题、优化问题以及建模等领域都非常重要。

掌握了这些基础知识,我们可以更好地理解和运用二次曲面的相关概念。

总结起来,二次曲面的形状多种多样,可以根据方程的系数判断具体形态。

在研究二次曲面时,我们还需了解其特性,如对称性、曲率、焦点和直纹等。

掌握这些知识,对于深入理解数学和几何学都具有重要意义。

几种常见的曲面及其方程

几种常见的曲面及其方程

二、二次曲面 三元二次方程
Ax2 By2 Cz2 Dxy Eyx Fzx
Gx Hy Iz J 0
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准下方面程仅, 就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
(x 2)2 y2 (z 1)2 5.
对比(1)式知,它表示球心在点(2,0,-1), 半径5为的球面.
三、柱面
z
引例. 分析方 x2 y2 R2
表程示怎样的曲面 .
M
解:在 xoy 面上,x2 y2 R2 表示圆C, C o
y
在圆C上任取一M1 (x, y, 0) , 过此点 x M1
平点行z轴的直线l, 对任意z,点M作(x, y, z)
l
的坐标也满足方 x2 y2 R2
程沿曲线C平行于 z 轴的一切直线所形成的曲面
柱称面为.其圆上所有点的坐标都满足此 故在空
方程,x2 y2 R2 表示圆柱 间

机动 目录 上页 下页 返回 结束
定义3. 平行定直线并沿定曲线 C 移动的直线l
给定 yoz 面上曲线 C:f (y, z) 0
若点 M1(0, y1, z1) C, 则有
z
f ( y1, z1 ) 0
C
当绕 z 轴旋转 该点转到 时M,(x, y, z) , 则有
z z1, x2 y2 y1
M (x, y, z)
o
M1 (0, y1, z1 )
y
故旋转曲面方程为
母线平行于 y 轴;
x

二次曲线的基本性质及方程式

二次曲线的基本性质及方程式

二次曲线的基本性质及方程式二次曲线是一类具有特定形状和性质的曲线,它的方程可以通过一些特定的形式描述。

本文将介绍二次曲线的基本性质以及常见的方程式。

一、二次曲线的基本性质1. 二次曲线的定义:二次曲线是平面上所有满足二次方程的点的集合。

其一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为常数,且A和C不能同时为0。

2. 二次曲线的对称性:二次曲线通常具有关于x轴、y轴或者原点的对称性。

当A=C且B=0时,二次曲线关于x轴对称;当A=0且B=C时,二次曲线关于y轴对称;当A=C且B≠0时,二次曲线关于原点对称。

3. 二次曲线的类型:根据方程中各项的系数,可以确定二次曲线的类型。

当B^2-4AC>0时,二次曲线为双曲线;当B^2-4AC=0时,二次曲线为抛物线;当B^2-4AC<0时,二次曲线为椭圆。

4. 二次曲线的焦点和准线:对于双曲线和抛物线,它们都有焦点和准线。

焦点是曲线上所有点到两个定点(称为焦点)的距离之和相等的点;准线是与曲线中所有点到直线的距离相等的直线。

而对于椭圆来说,它也有两个焦点,但没有准线。

二、二次曲线的方程式1. 双曲线的方程式:双曲线的一般方程为Ax^2 - Cy^2 = 1,其中A和C为正常数。

在此一般方程的基础上,双曲线还有一些常见的特殊形式,如横轴为主轴、纵轴为主轴的双曲线方程。

2. 抛物线的方程式:抛物线的一般方程为y = ax^2 + bx + c,其中a、b、c为常数。

抛物线还可以表达为以顶点为中心的顶点式方程或焦点为中心的焦点式方程。

3. 椭圆的方程式:椭圆的一般方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中h、k分别为椭圆的中心在x轴和y轴上的坐标;a和b分别是椭圆的长半轴和短半轴。

椭圆的方程式还可以表达为标准方程或参数方程。

三、应用举例1. 双曲线的应用:双曲线在数学和物理中有广泛的应用。

几种常见的曲面及其方程()

几种常见的曲面及其方程()

2
z
2 y
1
o o
o x
2y
x
(3)
x z a
2
2
2
x2 y2 a2
z
a
o
a
y
x
P324 题2 (1)
y 5x 1 y x3 y x3
z
y 5x 1
o
y
z
x2 y2 1 4 9 y3
x
2
3
y
z
z
ay x
x 2 y 2 ax z0
M ( x, y, z )
C
M 1 (0, y1 , z1 )
z z1 ,
x y y1
2
2
o
y
故旋转曲面方程为
x
f ( x 2 y 2 , z) 0
思考:当曲线 C 绕 y 轴旋转时,方程如何?
z
C : f ( y, z ) 0
o x
y
f ( y, x z ) 0
2 2
例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为 的圆锥面方程. 解: 在yoz面上直线L 的方程为 绕z 轴旋转时,圆锥面的方程为
z
L

M (0, y, z )
y
两边平方
x
2
z a (x y )
2
2
2
例4. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
所围的立体在 xoy 面上的投影区域为: 二者交线在
xoy 面上的投影曲线所围之域 . 二者交线
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .

6二次曲面的标准方程

6二次曲面的标准方程

研究方法是采用平面截痕法.
2. 几种常见二次曲面. (1) 椭球面
x a
2 2
z
2 2

y b

z C
2 2
1
1 用平面z = 0去截割, 得椭圆
x2 y 1 2 2 a b z 0
2
O
x
o
y
2 用平面z = k去截割(要求 |k | c), 得椭圆
2 x2 y k 2 2 1 a b c z k 2 2
k | = c 时, 椭圆退缩成点.
3 类似地, 依次用平面x = 0,平面 y = 0截割, 得椭圆:
y2 z 2 b c x 0
2 2
1
,
x 2 z 2 c a y 0
2 2
1 .
c
b
双曲线 x
y y0 .
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y b
2 2

z c
2 2

x0 a
2 2
z y
0
1,
x x0 .
椭圆
作业
P47.1. 2. 3.画出 z=xy 的图象. 4.研究z=2x2+3y2与5-z=3x2+2y2的交线在xy平面上 的投影
x a
2 2

y b
2 2

z c
2 2
1
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
2 z0 x y 1 , 2 2 2 2 2
a
b
c
双曲线
z z0 .

二次曲面的方程和图形

二次曲面的方程和图形

3. 双曲面
z
(1)单叶双曲面
x2 a2
y2 b2
z c
2 2
1
( a,b,c 为正数)
x
O
y
平面 z z1 上的截痕为椭圆.
平面 y y1上的截痕情况:
1) y1 b 时, 截痕为双曲线:
x2 a2
z2 c2
1
y12 b2
y y1
(实轴平行于x 轴; 虚轴平行于z 轴)
x2 a2
y2 b2
z2 c2
1
( a,b,c 为正数)
2) y1 b 时, 截痕为相交直线:
z
x z 0 ac y b (或 b)
x Oy
3) y1 b时, 截痕为双曲线:
x2 a2
z2 c2
1
y12 b2
0
y y1
x
(实轴平行于z 轴; 虚轴平行于x 轴)
z Oy
(2) 双叶双曲面
x2 a2
y2 b2
z2 c2
二次曲面的方程与图形
1. 椭球面 2. 抛物面 3. 双曲面 4. 椭圆锥面
三元二次方程
Ax2 By2 Cz 2 Dxy Eyx Fzx Gx Hy Iz J 0
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 .
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2z
O yy xx
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换

几种常见的曲面及其方程二次曲面曲线

几种常见的曲面及其方程二次曲面曲线
O
x y z 2 2 1 2 a a b
y 2 x2 z 2 1 2 2 a b
222aFra biblioteka y
绕 y轴旋转而成的旋转曲面方程为 即
x
x2 y 2 z 2 2 2 1 2 b a b
例3 求
旋转所形成的旋转抛物面(图7-28)的方程。 解 方程 便得到旋转抛物线的方程为
就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
机动 目录 上页 下页 返回 结束
1. 椭球面 x2 y 2 z 2 2 2 1 ( a, b, c 为正数) 2 a b c
(1)范围: x a,
y b,
z c
(2)与坐标面的交线:椭圆
x2 y 2 2 2 1 , 黄a b z0
xoy 面上的抛物线 x ay 2 (a 0) 绕x轴
x ay 2 中的x 不变, 换成 y 2 z 2
x a( y z )
2 2
例4 求 yoz 面上的直线 z ky(k 0) 绕z轴 z 旋转一周而成的圆锥面的方程。
解 所求圆锥面的方程为

y
z k x2 y 2
x
l1
y
z
l2
y
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
方程 H ( z, x) 0 表示 柱面,
z
x
l3
x
母线 平行于 y 轴;
y
准线 xoz 面上的曲线 l3.
机动 目录 上页 下页 返回 结束
3.旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转

空间中的曲面和曲线及二次曲面

空间中的曲面和曲线及二次曲面
33

第六章 二次型与二次曲面
§6.3 二次曲面
例3. z = xy. 0 1/2 0 解: xy = (x, y, z) 1/2 0 0 0 0 0
x y , z
1 2 1 2 0 先求得正交矩阵Q = 1 2 1 2 0 , 1 0 0 0 1/2 0 1/2 0 0 使QT 1/2 0 0 Q = 0 1/2 0 , 0 0 0 0 0 0
x = acost y = asint z = vt z
(tR
aO x
y
O x
a y
15
a

第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
2. 维维安尼曲线 x = a (1+cost) 2 x 2 + y 2 + z2 = a 2 y = a sint (xa/2)2 + y2 = a2/4 2 t z = asin 2
第六章
§6.2
二次型与二次曲面
空间中的曲面和曲线
§6.3
二次曲面
2011. 12. 22
1
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
§6.2 空间中的曲面和曲线 曲面的一般方程: F(x, y, z) = 0 曲线的一般方程: F(x, y, z) = 0 G(x, y, z) = 0 曲线的参数方程: x = x(t) y = y(t) z = z(t)
b
y
x 2 z2 y = 0, 2 + 2 = 1 a c x2 y2 z = 0, 2 + 2 = 1 a b
当a, b, c中有两个相等时——旋转面 当a = b = c = R时——半径为R的球面
23

二次曲面

二次曲面

x2 a2
y2 a2
z2
x2 y2 a2 z2 圆锥面
二、小结 椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
思考题
方程
x2 4y2 z2
25
表示怎样的曲线?
x 3
思考题解答
x2 4y2 z2 x 3
25
4 y2 z2 x 3
16 .
表示平面 x = -3上的一条双曲线.
(2)
a b c,
x2 a2
y2 a2
z2 a2
1
球面
方程可写为 x2 y2 z2 a2.
(二)抛物面
1. 椭圆抛物面
x2 y2 z ( p 与 q 同号) 2 p 2q
椭圆抛物面
用截痕法讨论:设 p 0, q 0 (1)用坐标面 xoy (z 0) 与曲面相截
截得一点,即坐标原点 O(0,0,0)
截得抛物线
x2
2
pz
y 0
x2 y2 z ( p 与 q 同号)
2 p 2q
与平面 y y1 的交线为抛物线.
x
2
2
p
z
y12 2q
y y1
它的轴平行于z 轴
顶点
0,
y1 ,
y12 2q
(3)用坐标面 yoz ( x 0),x x1与曲面相截
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
z 0
z
x2 a2
z2 c2
1 ,
y
ቤተ መጻሕፍቲ ባይዱ
0
y2 b2
z2 c2
1.
x 0
x
o
y
x2 a2

二次曲面曲率

二次曲面曲率

二次曲面曲率
二次曲面曲率(Second order surface curvature)是指曲面上某一点处沿着法向量方向的曲率。

在三维空间中,一个二次曲面可以表示为:
f(x,y,z) = Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0
其中,A、B、C、D、E、F、G、H、I、J是常数。

二次曲面曲率的公式如下:
K = 2(A + B + C)
其中,K是曲面上某一点处的二次曲面曲率。

二次曲面曲率可以用来描述曲面的几何形状,例如,当K > 0时,曲面为椭圆形曲面,当K < 0时,曲面为双曲形曲面,当K = 0时,曲面为抛物形曲面。

需要注意的是,二次曲面曲率只考虑了曲面在某一点处的曲率,而没有考虑曲面在其他点处的曲率。

在实际应用中,需要对曲面的曲率进行整体分析,并综合考虑曲面的几何形状和物理特性。

二次曲面的标准方程化为参数方程的一种简便方法

二次曲面的标准方程化为参数方程的一种简便方法

二次曲面的标准方程化为参数方程的一种简
便方法
二次曲面标准方程可以通过多项式乘性因素化简,转化为参数方程。

这种方法可以将复杂的二次曲面标准方程变成较为简单的参数方程。

1、定义参数u、v,使u和v分别满足u在[a,b],v在[c,d]的条件。

2、将特征和系数从标准方程中分离,提取以u、v为参数的一般式:
F(u,v)=P(u)U+Q(v)V+R(u,v)
3、将u、v代入一般式,求偏导数,求得Fx(u, v)和Fy(u, v):
Fx = P'(u)U + Q(v)
Fy = P(u) + Q'(v)V
4、将若干点(u, v)代入一般式及上述的偏导数,写成系数矩阵形式:
a1Fx + a2Fy = a3
其中,a1, a2, a3为系数矩阵中由所求点(u,v)组成的行向量。

5、求解系数矩阵,也就是求解方程P'(u),Q(v),Q'(v),R(u,v)。

这样,就可以将二次曲面标准方程化成参数方程,从而简化二次曲面的表示。

经过上述步骤,我们可以把复杂的标准方程简化为参数方程,从而更容易处理不同的曲面问题。

几种常见的曲面及其方程(精)

几种常见的曲面及其方程(精)
方程 F(x, y) 0 表示柱面,
母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
母线 平行于 y 轴; 准线 xoz 面上的曲线 l3. 0表示母线平行 z 轴的柱面.
又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面
三元二次方程
• 椭球面
• 抛物面:
( p, q 同号)
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2

y2 b2
1
• 椭圆锥面:
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2

y2 b2

z2 c2
1
( a,b, c为正数)
(1)范围:
ay
ay
x
x2 z2 a2 (x 0, z 0) y0
作业
P32 3, 4,5,6, 7, 8, 9,10,11,12
y z l2
x z l3
x
y y
3、旋转曲面
一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c
b
双曲线 x
y y0 .
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y b
2 2

z c
2 2

x0 a
2 2
z y
0
1,
x x0 .
椭圆
作业
P47.1. 2. 3.画出 z=xy 的图象. 4.研究z=2x2+3y2与5-z=3x2+2y2的交线在xy平面上 的投影
高校理科通识教育平台数学课程
微积分学(二)
多元微积分学
空间解析几何

授课教师
孙学峰
向量代数与
空间解析几何
二次曲面的标准方程
§6 二次曲面的标准方程
1.定义
由x, y, z的二次方程:
ax2 + by2 + cz2 +dxy + exz + fyz + gx + hy + iz +j = 0 所表示的曲面, 称为二次曲面. 其中a, b, …, i, j 为常数且a, b, c, d,e, f 不全为零.
当 |k | c 时, |k |越大, 椭圆越小; 当 |k | = c 时, 椭圆退缩成点.
3 类似地, 依次用平面x = 0,平面 y = 0截割, 得椭圆:
y2 z 2 b c x 0
2 2
1
,
x 2 z 2 c a y 0
2 2
1 .
o x
y
k = 0时, 为一点O(0,0,0); 随着k增大, 椭圆也增大.
2 用平面 y = k去截割, 截线是抛物线
x2 k 2 b a y k
2 2
z ,
当k 0 时 , 为 z
x a
2 2
.
3 类似地,用平面 x = k 去截割, 截线是抛物线.
2 k 2 y 2 2 z a b x k
x a
2 2

y b
2 2

z c
2 2
1
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
2 z0 x y 1 , 2 2 2 2 2
a
b
c
双曲线
z z0 .
以平行于xz面的平面 y=y0截曲面, 所得截线方程为
a
2 y0 x z 1 , 2 2 2 2 2
特别: 当a=b=c时, 方程x2 + y2 + z2 = a2 , 表示
球心在原点o, 半径为a的球面.
(2) 椭圆抛物面:
x a
2 2
y b2 2zz1 平面 z = k ,(k 0)截割, 截线 是平面 z = k上的椭圆.
2 x2 y 2 2 k a b z k
,
椭圆
z z0 .
以平行于xz面的平面 y=y0截曲面, 所得截线方程为
x a
2 2

z c
2 2
1
y0 b
2
2
,
双曲线
y y0 .
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y b
2 2

z c
2 2
1
x0 a
2 2
,
双曲线
x x0 .
5. 双叶双曲面
研究方法是采用平面截痕法.
2. 几种常见二次曲面. (1) 椭球面
x a
2 2
z
2 2

y b

z C
2 2
1
1 用平面z = 0去截割, 得椭圆
x2 y 1 2 2 a b z 0
2
O
x
o
y
2 用平面z = k去截割(要求 |k | c), 得椭圆
2 x2 y k 2 2 1 a b c z k 2 2
当k 0 时 , 为 z
y b
2 2
.
3. 双曲抛物面
z
x a
2 2

y b
2 2
z y x
4. 单叶双曲面
x a
2 2

y b
2 2

z c
2 2
1
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
x a
2 2

y b
2 2
1
z0 c
2
2
相关文档
最新文档