高考数学等比数列
高考数学之等比数列及函数
十、两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan3a = tan a·tan(π/3+a)· tan(π/3-a)
九、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
Sn-qSn=(1-q)Sn=a1-a(n+1)
a(n+1)=a1qn
Sn=a1(1-qn)/(1-q)(q≠1)
三、倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A))
十四、诱导公式
sin(-α) = -sinα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
高考数学中的等比数列求和方法
高考数学中的等比数列求和方法数列是高中数学中比较基础的一章,而等比数列则是其中的重中之重。
在高考中,等比数列的考查频率很高,特别是等比数列的求和问题更是经典,直接牵涉到了数列求和的核心思路。
本文将重点探讨等比数列求和方法,并为考生提供一些实用技巧,帮助他们在考试中取得更好的成绩。
首先,我们需要对等比数列做一个简单的介绍。
等比数列是指数列中相邻两项之比相等的数列,常用的表示方法为{an}(n≥1),其中a1是首项,r是公比。
例如,{1,2,4,8,16,……}就是一个公比为2的等比数列。
接下来,我们将分别介绍等比数列求和公式的推导和应用。
一、等比数列求和公式的推导1. 等比数列各项的和假设等比数列的第一项为a1,公比为r,首先计算出数列的前n项和S(n):S(n) = a1 + a2 + a3 + … + an将该式乘以公比r得到:rS(n) = a2 + a3 + … + an + an+1然后,将原式S(n)中的各项全部减去等比数列中第一项a1,得到:S(n) - a1 = a2 + a3 + … + an(1)将(1)式代入前面的rS(n)中,得到:rS(n) = S(n) - a1 + an+1将等比数列中第n项与第一项的比值记为q,则:an+1 = a1q^n再将an+1代入上式,得到:rS(n) = S(n) - a1 + a1q^(n+1)移项并化简,得到:S(n) = a1(1 - q^n+1) / (1 - q)这个公式被称为等比数列求和公式,可以直接用来计算等比数列的和。
2. 等比数列各项的平方和现在我们来推导等比数列各项的平方和公式。
设等比数列的前n项平方和为T(n),则:T(n) = a1^2 + a2^2 + a3^2 + … + an^2利用等比数列的通项公式an = a1 * q^(n-1),将各项带入上式,得到:T(n) = a1^2 + a1^2 * q^2 + a1^2 * q^4 + … + a1^2 * q^(2n-2)将上式乘以公比q得到:qT(n) = a1^2 * q + a1^2 * q^3 + a1^2 * q^5 + … + a1^2 * q^(2n-1)将两式相减,得到:T(n) - qT(n) = a1^2 - a1^2 * q^(2n)化简后得到:T(n) = a1^2 * (1 - q^n) / (1 - q)这个公式被称为等比数列各项的平方和公式,与求和公式类似,也可以直接用来计算等比数列的各项平方之和。
高考数学复习 等比数列
高考数学复习 等比数列高考要求:1、 理解等比数列的概念,2、 掌握等比数列的通项公式与前n 项和公式,3、 并能解决简单的实际问题. 考点回顾:1.定义:从第二项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.2.通项公式11-=n n q a a ,推广形式:mn m n q a a -=,变式),,(*-∈>=N n m m n a a q mn mn3.前n 项和⎪⎩⎪⎨⎧≠≠--=--==)10(11)1()1(111q q q q a a qq a q na S n nn 且注:应用前n 项和公式时,一定要区分11≠=q q 与的两种不同情况,必要的时候要分类讨论. 4.等比中项:若a 、b 、c 成等比数列,则b 是a 、c 的等比中项,且ac b ±=5.在等比数列{}n a 中有如下性质: (1)若q p n m a a a a N q p n m q p n m ⋅=⋅∈+=+*则,,,, (2)下标成等差数列的项构成等比数列(3)连续若干项的和也构成等比数列. 6.证明数列为等比数列的方法: (1)定义法:若{}为等比数列数列n nn a N n q a a ⇔∈=*+)(1(2)等比中项法:若{}为等比数列数列且n n n n n n n a a a a N n a a a ⇔≠∈⋅=++*++)0(21221 (3)通项法:若{}为等比数列数列的常数均是不为n n n a N ,n q c cq a ⇔∈=*)0,( (4)前n 项和法:若{}为等比数列数列且为常数n nn a q q ,q A A Aq S ⇔≠≠-=)1,0,( 7.解决等比数列有关问题的常见思维方法(1)方程的思想(“知三求二”问题) (2)分类的思想①运用等比数列的求和公式时,需要对11≠=q q 和讨论 ②当{}为递增数列等比数列时或n a q a q a ,10,01,011<<<>>()1(111-=--+q q a a a n n n ){}为递减数列等比数列时或n a q a q a ,10,01,011<<>><考点解析:考点1、关于基本量的计算EG1.数列{}n a 为等比数列,求下列各值, (1)已知.,2118367463n a a a a a n 求==+=+ (2) .,15367382q a a a a 求公比已知=+= (3) .),21(15,218a S q 求已知-=-=思维分析:运用等比数列的基本公式和基本性质”知三求二”问题 解(1)21,36,18)(63636374=∴=+=+=+=+q a a a a q q a q a a a 9212)21(3232,36)1(833333333363=∴====∴=∴=+=+=+---n q a a a q a q a a a a n n n n (2) ,03615,,1536273738273两根是方程=+-∴=+==x x a a a a a a a a222414,3,1212,3447373±=±=∴==∴====∴q q q q a a a a 或或或 (3)1)21()21()21(1521)15(21])2(1[11818=+⋅--=∴-=+-=+--=a a a SB1-1.设一个等比数列的首项为a(a>0),公比为q(q>0),其前n 项和为80,而其中最大的一项为54,又其前2n 项和是6560,求a 和q.思维分析:运算等比数列的求和公式及整体代换思想和分类讨论思想, 解:若q=1,则na=80,∴2na=160矛盾,1≠∴q于是)3(541,081)1()2()2(65601)1()1(801)1(11211==∴>∴>=⎪⎪⎩⎪⎪⎨⎧=--=---n n n nn q a a q q q q q a qq a 又得 3,2548111)3)(1(81==∴=-=-=q a q a qaq n 及得代入 B1-2、设等比数列{}n a 的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q.答案:243-=q B1-2 已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .剖析:利用等比数列的基本量a 1,q ,根据条件求出a 1和q . 解:设{a n }的公比为q ,由题意知⎪⎩⎪⎨⎧=⋅⋅=++,8,721112111q a q a a q a q a a解得⎩⎨⎧==2,11q a 或⎪⎩⎪⎨⎧==.21,41q a ∴a n =2n -1或a n =23-n.评述:转化成基本量解方程是解决数列问题的基本方法.2.关于等比数列的证明EG2.已知数列{}n a ,S n 是它的前n 项和,且1),(2411=∈+=*+a N n a S n n (1)设)(21*+∈-=N n a a b n n n ,求证:数列{}n b 是等比数列(2)设nn na c 2=,,求证:数列{}n c 是等差数列思维分析:证明数列是等差数列还是等比数列.应紧扣定义式;而数列的前n 项和S n 已知可求a n 解:(1) n n n n n n n n n n n a a a a a S S a S a S 444424,2412112121-=-=-⇒+=+=++++++++即n n n n n n n n n b b a a b a a a a 22),2(2211112=∴-=-=-⇒+++++而,由此可得{}n b 是等比数列且首项112123,2,32-⋅=∴==-=n n b q a a b 公比(2)43223222,2111111=⋅==-=-∴=+-++++n n n n n n n n n n n n n b a a c c b c 可知{}n c 是首项43,21211===d a c 公差的等差数列,4143-=∴n c n B2-2、数列{}{}n n b a ,的通项公式分别是,23,2+==n b a n nn 它们公共项由小到大排列的数列是{}n c ,①写出{}n c 的前5项 ②证明{}n c 是等比数列思维分析:容易证明{}n c 是等比数列,由定义式,只需找出{}n c 中任意相邻两项关系即可. 解(1) {}n c 的前5项为:8、32、128、512、2048(2)设1)12(3)23(222,232,1++⋅=+=⋅=+==∴==+p p a p c c b a mm mn n p m 而{}{}中在又中不在bn a p p a b a m m m n m 221,2)24(3)23(424,+++∴++⋅=+⋅=⋅=∴{}{}是等比数列故项中的项即是n n n n n m c c c c c a ,4,112=∴∴+++B2-3 已知数列{a n }为等差数列,公差d ≠0,{a n }的部分项组成下列数列:a 1k ,a 2k ,…,a n k ,恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n .剖析:运用等差(比)数列的定义分别求得a n k ,然后列方程求得k n .解:设{a n }的首项为a 1,∵a 1k 、a 2k 、a 3k 成等比数列,∴(a 1+4d )2=a 1(a 1+16d ). 得a 1=2d ,q =12k k a a =3.∵a n k =a 1+(k n -1)d ,又a n k =a 1·3n -1,∴k n =2·3n -1-1.∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n=2×3131--n -n =3n-n -1.评述:运用等差(比)数列的定义转化为关于k n 的方程是解题的关键,转化时要注意:a nk 是等差数列中的第k n 项,而是等比数列中的第n 项.B2-4 设各项均为正数的数列{a n }和{b n }满足5n a ,5n b ,51+n a 成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .剖析:由等比中项、等差中项的性质得a n +1=1+⋅n n b b 递推出a n =n n b b ⋅-1(n ≥2). 解:∵5n a ,5n b ,51+n a 成等比数列, ∴(5n b )2=5n a ·51+n a ,即2b n =a n +a n +1.①又∵lg b n ,lg a n +1,lg b n +1成等差数列,∴2lg a n +1=lg b n +lg b n +1,即a n +12=b n ·b n +1.②由②及a i >0,b j >0(i 、j ∈N *)可得a n +1=1+⋅n nb b .③ ∴a n =n n b b 1-(n ≥2).④将③④代入①可得2b n =n n b b ⋅-1+1+⋅n n b b (n ≥2), ∴2n b =1-n b +1+n b (n ≥2). ∴数列{n b }为等差数列. ∵b 1=2,a 2=3,a 22=b 1·b 2,∴b 2=29. ∴n b =2+(n -1)(29-2) =21(n +1)(n =1也成立).∴b n =2)1(2+n . ∴a n =n n b b ⋅-1=2)1(222+⋅n n =2)1(+n n (n ≥2). 又当n =1时,a 1=1也成立.∴a n =2)1(+n n .评述:由S n 求a n 时要注意验证a 1与S 1是否一致.方法归纳:1.涉及等差比数列的基本概念的问题,常用基本量q a ,1来处理;2.使用等比数列前n 项和公式时,必须弄清公比q 是否可能等于1还是必不等于1,如果不能确定则需要讨论;3.若干个数个成等比数列且积为定值时,设元方法与等差数列类似.4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. 实战训练1.等比数列{a n }中,如果817643=⋅⋅⋅a a a a ,则a 1a 9的值为A .3B .9C .±3D .±92.在等比数列{a n }中,100992019109,),0(a a b a a a a a a +=+≠=+则等于( )A .89abB .9)(abC .910abD .10)(ab3.已知821,,,a a a 是各项均为正数的等比数列,且公比q ≠1,则A=与81a a +B=54a a + 的大小关系是 ( ) A .A>B B .A<BC .A=BD .不确定,由公比q 的取值而定4.无穷等比数列{a n }的前n 项的和S n =a -(21)n,则所有项的和是[ ] A .1 B .21 C .-21D .任意实数 5.一个直角三角形三内角的正弦值成等比数列,其最小内角是A.arccos215-B.arcsin215- C.arccos 251-D.arcsin251- 解析:设Rt △ABC 中,C =2π,则A 与B 互余且A 为最小内角.又由已知得sin 2B =sin A ,即cos 2A =sin A ,1-sin 2A =sin A ,解之得sin A =215-或sin A =215--(舍).答案:B6.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于A.210B.220C.216D.215解析:由等比数列的定义,a 1·a 2·a 3=(q a 3)3,故a 1·a 2·a 3·…·a 30=(1030963qa a a a ⋅⋅⋅⋅⋅⋅)3.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B7.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为A.5B.10C.14D.15解析:由题意列式(1-20%)n<5%,两边取对数得n >2lg 3112lg -+≈13.4.故n ≥14.答案:C8.(2004年全国,文14)已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.解析:由已知得q 7=aa 10=128=27,故q =2.∴a n =a 3·q n -3=3·2n -3. 答案:3·2n -39.如下图,在杨辉三角中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是___________________.1 1 1 12 1 13 3 1 14 6 4 1……解析:观察可知,第n (n ∈N *)行中有n 个数,从左向右依次是二项式系数C 01-n ,C 11-n ,C 21-n ,…,C 11--n n ,故当n ≥3时,除了1外,第n 行各数的和为a n =C 11-n +C 21-n +…+C 21--n n =2n -1-2.又前两行全部为数字1,故前n 行非1的数字之和为a 3+a 4+…+a n =21)21(42---n -2(n -2)=2n -2n .12、无穷等比数列{a n }的前项和S n ,公比1≠q ,已知1是221S 和331S 的等差中项,6是2 S 2和3 S 3的等比中项。
高考数学等比数列知识点-等比数列的所有公式
高考数学等比数列知识点|等比数列的所有公式(1)定义式:任意两项的关系为(5)等比中项:若为或者无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。
(7)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列1.若A=a1+a2+……+anB=an+1+……+a2nC=a2n+1+ (3)则,A、B、C构成新的等比数列,公比Q=q2.若A=a1+a4+a7+……+a3n-2B=a2+a5+a8+……+a3n-1C=a3+a6+a9+……+a3n则,A、B、C构成新的等比数列,公比Q=q性质(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G =ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1 ,q1 …{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
(7) 等比数列前n项之和Sn=A1(1-q在等比数列中,首项A1与公比q都不为零。
注意:上述公式中A表示A的n次方。
(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q,它的指数函数y=a有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
求通项方法(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an?构造等比数列a(n+1)+x=2(an+x)a(n+1)=2an+x,[标签:内容]感谢您的阅读!。
高考数学一轮复习 第5章第3节 等比数列课件 文 新课标
• (3)如果数列{an}和{bn}都是等比数列,那 么{anbn}是 等比数列.
• 7.等差数列与等比数列的比较:
• (1)相同点:
• ①强调的都是每一项与它前一项 系.
的关
• ②结果必须都是 常 数.
• ③数列都由公差、首项或公比、首项确定.
可以用aann≥ ≥aann- +11, 或aann≤ ≤aann- +11, , 也可以转化为函数最值
问题或利用数形结合法.
• 7.数列求和的方法有公式法、倒序相加 (乘)法、错位相减法、裂项相消法、分组 转化法、归纳法.
• 8.通项公式的求解方法有观察法、构造 等差或等比数列法、猜测归纳法、累加法、 累积法、待定系数法及公式法.
• 2.运用等比法是理解和掌握两类数列的定义、通项公 式及中项公式、前n项和公式的重要方法.判定一个数 列是等比数列,不能只验证数列的前几项,需根据定义 证明
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
高考数学中的等比数列与等差数列
高考数学中的等比数列与等差数列数列是数学中的重要概念,它是由一定规律排列的一串数所组成的序列。
当数列的规律是由一个公式或者一个固定的增量所决定时,就分别称为等比数列和等差数列。
在高考数学中,常常会涉及到等比数列和等差数列的题目。
本文将分别从概念、性质、公式和应用四个方面介绍这两种数列。
一、等比数列1. 概念等比数列是指一个数列中,每一项与它前一项的比相等的数列。
比值称为公比,通常用字母q表示,第一项通常用a1表示。
其通项公式为an=a1×q^(n-1)。
2. 性质a) 公比q为0或q为1的等比数列是特殊的等比数列。
b) 等比数列有无限项。
c) 等比数列的公比为正,且不等于1。
d) 等比数列可以借助画图工具画出图形,形状为不断递减的曲线。
3. 公式等比数列常用的公式有:a) 前n项和公式:Sn=a1(q^n-1)/(q-1)。
b) 通项公式:an=a1×q^(n-1)。
c) 通项公式与前一项的关系:an=aq^(n-1)。
4. 应用等比数列的应用非常广泛,可以在许多实际问题中发挥重要作用。
例如,在金融领域的利率计算和复利计算中,都需要用到等比数列的概念和公式。
此外,等比数列还可以用来分析种群数量的规律、电路电信号的衰减规律等等。
二、等差数列1. 概念等差数列又称为等差数列,它是指一个数列中,每相邻两项之差相等的数列。
差值称为公差,通常用字母d表示。
首项用a1表示,其通项公式为an=a1+(n-1)×d。
2. 性质a) 前n项和Sn=n[2a1+(n-1)d]/2。
b) 一个等差数列中的任意三项可以构成一个等差数列。
c) 等差数列的公差为正、负或零。
d) 等差数列可以借助画图工具画出图形,形状为一条直线。
3. 公式等差数列常用的公式有:a) 前n项和公式:Sn=n[2a1+(n-1)d]/2。
b) 第n项公式:an=a1+(n-1)d。
c) 前一项与通项的关系:a(n-1)+d=an。
高中数学等比数列公式是什么
高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。
如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
高考数学《等差等比数列综合问题》基础知识与练习题(含答案)
高考数学《等差等比数列综合问题》基础知识与练习题(含答案)一、基础知识:1、等差数列性质与等比数列性质:(1)若{}n a 为等差数列,0,1c c >≠,则{}na c成等比数列证明:设{}n a 的公差为d ,则11n n n na a a da c c c c ++−==为一个常数所以{}na c成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++−==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1−或2 C. 2 D. 1−思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =−,经检验均符合条件 答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d=−,所以135d a =−,则211305a d a =−<,且()2141646025a dS d a d =+=−<,所以B 符合要求答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅==答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________ 思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q −−,所以有:()816282q q ⎛⎫=−+− ⎪⎝⎭,即22252520q q q q+=⇒−+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。
2024年高考数学一轮复习课件(新高考版) 第6章 §6.3 等比数列
2024年高考数学一轮复习课件(新高考版)第六章 数 列§6.3 等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母q (q ≠0)表示.(2)等比中项:如果在a 与b 中间插入一个数G ,使 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2= .2同一个公比a ,G ,b ab2.等比数列的通项公式及前n项和公式a1q n-1(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=.(2)等比数列通项公式的推广:a n=a m q n-m.(3)等比数列的前n项和公式:当q=1时,S n=na1;当q≠1时,S n=________= .3.等比数列性质(1)若m +n =p +q ,则,其中m ,n ,p ,q ∈N *.特别地,若2w =m +n ,则 ,其中m ,n ,w ∈N *.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 (k ,m ∈N *).a m a n =a p a q q mS2n-S n S3n-S2n(4)等比数列{a n}的前n项和为S n,则S n,,仍成等比数列,其公比为q n.(n为偶数且q=-1除外)增减常用结论1.等比数列{a n}的通项公式可以写成a n=cq n,这里c≠0,q≠0.2.等比数列{a n}的前n项和S n可以写成S n=Aq n-A(A≠0,q≠1,0).3.数列{a n}是等比数列,S n是其前n项和.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(2)当公比q >1时,等比数列{a n }为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )√×××1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于√A.31B.32C.63D.64根据题意知,等比数列{a n}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数1,3,9或9,3,1为____________.∴这三个数为1,3,9或9,3,1.第二部分例1 (1)(2022·全国乙卷)已知等比数列{a n}的前3项和为168,a2-a5=42,则a6等于√A.14B.12C.6D.3方法一 设等比数列{a n}的公比为q,易知q≠1.所以a6=a1q5=3,故选D.方法二 设等比数列{a n}的公比为q,所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一√设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 13=2a =aq 12,即q = ,1122思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于√A.2B.3C.4D.5∵S2=3,S4=15,∴q≠1,(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3√D.N<7设该等比数列为{a n},公比为q,则a1=1,a13=2,插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,112112-要证M >3,即证-1- >3,112112-112121-即证 >4,1122N =M +3.1122112121 所以 >5,所以-1- >4,即M >4,112112 所以N =M +3>7,故D 错误.例2 已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等比数列;②数列{S n+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.选①②作为条件证明③:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{a n}是等比数列,所以公比q=2,选②③作为条件证明①:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,a n=S n-S n-1=Aq n-2(q-1)=A·2n-2=a1·2n-1,所以{a n}为等比数列.思维升华(3)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.跟踪训练2 在数列{a n}中,+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n+1}是等比数列;所以(a n+1+1)2=(a n+1)(a n+2+1),因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以数列{a n+1}是以3为首项,2为公比的等比数列.(2)求数列{a n}的前n项和S n.由(1)知,a n+1=3·2n-1,所以a n=3·2n-1-1,√∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,又数列{a n}为等比数列,等比数列奇数项符号相同,可得a7=3,(2)已知正项等比数列{a n}的前n项和为S n且S8-2S4=6,则a9+a10+a1124+a12的最小值为______.由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.思维升华(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{a n}中,若a1+a2=16,a3+a4=24,则a7+a8等于√A.40B.36C.54D.81在等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,(2)等比数列{a n}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于√A.1B.2C.3D.4∵a n=192,√∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,第三部分1.(2023·岳阳模拟)已知等比数列{a n}满足a5-a3=8,a6-a4=24,则a3等于√A.1B.-1C.3D.-3设a n=a1q n-1,∵a5-a3=8,a6-a4=24,2.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k等于√A.2B.3C.4D.5令m=1,则由a m+n=a m a n,得a n+1=a1a n,所以a n=2n,所以a k+1+a k+2+…+a k+10=2k (a1+a2+…+a10)=215-25=25×(210-1),解得k=4.3.若等比数列{a n}中的a5,a2 019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2 023等于√。
如何通过等比数列解决高考数学中的问题
如何通过等比数列解决高考数学中的问题在高中数学中,等比数列是一个重要的概念。
它不仅出现在数学中的各种题型中,而且在实际生活中也有广泛的应用。
本文将主要介绍如何通过等比数列解决高考数学中的问题。
1. 等比数列的概念和通项公式等比数列是指一个数列中,每一项与前一项的比都相等的数列。
具体地说,如果一个数列的第一项为a1,公比为q,则它的第n项为an=a1*q^(n-1)。
这个公式就是等比数列的通项公式。
2. 等比数列的性质等比数列有很多重要的性质。
其中最重要的是比值相等的性质。
也就是说,如果一个数列的相邻两项的比相等,那么这个数列就是等比数列。
此外,等比数列还有一些其他的性质。
例如,对于一个等比数列,如果它的公比q>1,那么它的项数为n时,前n项的和Sn有以下不等式:a1*(q^n-1)/(q-1) < Sn < a1*q^n/(q-1)如果q<1,则有类似的不等式。
这些不等式在解决实际问题中非常有用。
3. 等比数列的应用在高考数学中,等比数列出现在多项式和函数的题型中。
例如,如果题目给出了一个多项式的某几项的系数,且这些系数是等比数列,那么就可以根据等比数列的公式求出每一项的系数,从而推出整个多项式。
另外,等比数列还有很多实际的应用。
例如,生活中经常遇到的存款问题。
假设某人每年将存款增加10%(即q=1.1),那么他在第n年的存款为an=a1*1.1^(n-1)。
如果知道他在第5年的存款是5000元,在第10年的存款是多少,就可以根据等比数列的通项公式求出来。
4. 解题思路和技巧在解决等比数列的题型时,有几个解题思路和技巧是很有用的。
首先要仔细分析题目,确定出数列的首项和公比。
其次,根据题目中给出的条件,列出方程求解。
有时候,多个等比数列的和也会出现在题目中。
此时可以采用分项求和的方法,将每个数列的和分别计算出来,然后将它们相加得到总和。
此外,有一些特殊的等比数列也需要注意。
高考数学等比数列
解:由 3S1,2S2,S3 成等差数列,得 4S2=3S1+S3, 即 3S2-3S1=S3-S2,也即 3a2=a3,得公比 q=3,所以 an - - - =a1qn 1=3n 1.故填 3n 1.
类型一
等比数列的判定与证明
(2016·全国卷Ⅲ)已知数列{an}的前 n 项和 Sn=1+λan, 其中 λ≠0. (1)证明{an}是等比数列,并求其通项公式; 31 (2)若 S5= ,求 λ. 32
自 查 自 纠: 1.比 常数 公比 2.等比中项 ab ± ab 3.(1)a1q
n-1
am q
n-m
n-m a n-m a n n ± am am
a1 a1 (2) y= q qx q 4.na1 a1(1-qn) a1-anq a1 乘公比,错位相减 1-q 1-q q-1
1 q1 5.(2) q1 q1q2 q1 q2 (3)qm (4)qn (5)①q>1 0<q<1 ②0<q<1 q>1 ③q=1 ④q<0
2 设首项为 1,公比为 的等比数列{an}的前 n 3 项和为 Sn,则 ( ) A.Sn=2an-1 C.Sn=4-3an B.Sn=3an-2 D.Sn=3-2an
2 1- an n-1 3 2 2 1 - an =3-2an.故选 D. 解:an= 3 ,Sn= =3 3 2 1- 3
2 已知等比数列{an}的公比为正数,且 a3·a9=2a5 , a2=1,则 a1=( )
1 A. 2
2 B. 2
C. 2
D.2
解: 因为 a3· a9=2a2 则由等比数列的性质有: a3· a9 5,
2 2 a a 6 6 2 2 =a2 = 2 a , 所以 = 2 , 即 = q =2.因为公比为正数, 2 6 5 a a5 5
高三数学等比数列试题答案及解析
高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。
等比数列及其前n项和-高考数学复习
2或
__________.
2
解析 由
2
a2=4.由 a1+a2+a3=14,得 +a2+a2q=14,
1
2
2q -5q+2=0,解得 q=2 或2.
a1a2a3=64,得23 =64,所以
1
所以+1+q=3.5,所以
题组三 连线高考
7.(2023·全国甲,理5)设等比数列{an}的各项均为正数,前n项和为Sn,若
量,可“知三求二”.
(2)整体思想:当所给条件只有一个时,可将已知和所求都用a1,q 表示,寻求
两者间的联系,整体代换即可求解.
(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要
对q 分q=1和q≠1两种情况进行讨论.
[对点训练1](2023·天津,5)已知数列{an}的前n项和为Sn,a1=2,an+1=2Sn+2,则
所以数列{an+1-2an}是首项为3,公比为2的等比数列.
2
[对点训练2]已知数列{an}和{bn}满足:a1=λ,an+1= 3 an+n-4,bn=(-1)n(an-
3n+21),其中n∈N*,λ为实数.
(1)对于任意实数λ,证明:数列{an}不是等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.
和Sn=A·qn-A(A≠0,q≠0,q≠1),则数列{an}必为等比数列.
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
1.G为a,b的等比中项⇔G2=ab.( × )
2.满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.( × )
2025届高考数学一轮复习教案:数列-等比数列
第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。
2025届高中数学一轮复习课件《等比数列》ppt
高考一轮总复习•数学
第13页
题型
等比数列基本量的计算
典例 1(1)(2023·全国甲卷,理)已知正项等比数列{an}中,a1=1,Sn 为{an}的前 n 项和,
S5=5S3-4,则 S4=( )
A.7
B.9
C.15
D.30
(2)(2023·全国甲卷,文)记 Sn 为等比数列{an}的前 n 项和.若 8S6=7S3,则{an}的公 转化为基本量 a1,q 的方程.高考试题的设计也常以基本量的计算为主.
第26页
对点练 2(1)在等比数列{an}中,a1,a17 是方程 x2-14x+9=0 的两根,则a2aa916的值为 ()
A. 14
B.3
C.± 14
D.±3
(2)在各项都为正数的等比数列{an}中,已知 0<a1<1,其前 n 项之积为 Tn,且 T12=T6, 则 Tn 取得最小值时,n 的值是____9____.
率之比相等,且最后一个音的频率是最初那个音的 2 倍.设第二个音的频率为 f1,第八个
音的频率为 f2,则ff21等于(
)
A.11 26
B.8 2
12 C. 2
D.412 2
答案
高考一轮总复习•数学
第18页
(2)在 1 和 2 之间插入 11 个数使包含 1 和 2 的这 13 个数依次成递增的等比数列,记插 入的 11 个数之和为 M,插入 11 个数后这 13 个数之和为 N,则依此规则,下列说法错误的 是( )
高考一轮总复习•数学
第24页
解析:(1)a11+a12+…+a18=a1a+1aa8 8+aa2+2a7a7+a3a+3aa6 6+a4a+4aa5 5. 巧妙应用积的对称性,把两个条件代入求值,此法只适用于偶数项的情形.若奇数项呢?
新高考数学 第三节 等比数列
解得qa=1=21,,
所以 Sn=a111--qqn=2n-1,an=a1qn-1
=2n-1,所以Sann=22nn--11=2-21-n,故选 B.
法二:设等比数列{an}的公比为 q,因为aa65- -aa43=aa4311--qq22=aa43=2142=2,所以 q=2,
a11-qn
所以Sann=
答案:C
2.(2020·全国Ⅱ卷)记Sn为等比数列{an}的前n项和.若a5-a3=12,a6-a4=24,则
Sann= A.2n-1
B.2-21-n
()
C.2-2n-1
D.21-n-1
解析:法一:设等比数列{an}的公比为 q,则由
a5-a3=a1q4-a1q2=12, a6-a4=a1q5-a1q3=24,
等比数列的性质及应用
考向1 等比数列项的性质应用
(1)已知数列{an}为等比数列,且a2a6+2a24=π,则tan(a3·a5)=
A. 3
B.- 3
()
C.-
3 3
D.± 3
(2)(2020·全国Ⅰ卷)设{an}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+
a7+a8=
()
A.12
[逐点清]
1.(多选) (选择性必修第二册31页练习1题改编)已知数列{an}是等比数列,那么下列
数列一定是等比数列的是
()
A.a1n C.{an+an+1}
B.log2a2n D.{an+an+1+an+2}
解析:等比数列{an}的通项an=1时,log2a
2 n
=0,数列{log2a
2 n
}不是等比数列;等比
S2 =a111--qq2=a11+q=4, 列的前n项和公式,得S4=a111--qq4=a11+q1+q2=4222- 2,
2024届高考数学一轮总复习第四章数列第三讲等比数列及其前n项和课件
【题后反思】等比数列常见性质的应用 (1)通项公式的变形. (2)等比中项的变形. (3)前 n 项和公式的变形.根据题目条件,认真分析,发现具体 的变化特征即可找出解决问题的突破口.
【变式训练】
1.(2021 年江淮十校月考)已知等比数列{an}的公比 q=-21,该
数列前 9 项的乘积为 1,则 a1 等于(
ቤተ መጻሕፍቲ ባይዱ
考点三 等比数列性质的应用
[例 2](1)在各项不为零的等差数列{an}中,2a2 019-a22 020+ 2a2 021=0,数列{bn}是等比数列,且 b2 020=a2 020,则 log2(b2 019·b2 021) 的值为( )
A.1
B.2
C.4
D.8
解析:因为等差数列{an}中 a2 019+a2 021=2a2 020, 所以 2a2 019-a22 020+2a2 021=4a2 020-a22 020=0, 因为数列{an}各项不为零,所以 a2 020=4,因为数列{bn}是等 比数列,所以 b2 019·b2 021=a22 020=16.所以 log2(b2 019·b2 021)=log216 =4.C 正确.
【题后反思】等比数列基本量运算的解题策略 (1)等比数列基本量的运算是等比数列中的一类基本问题,等 比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通 过列方程(组)便可迎刃而解.
(2)等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an}的前 n 项和 Sn=a1(11--qqn)=a11--aqnq,当 q>1 时,用公式 Sn=a1(qq-n-11)代入计 算,当 q<1 时,用公式 Sn=a1(11--qqn)代入计算,可避免出现符号 错误.
高考数学试卷等比数列
一、选择题(每题5分,共50分)1. 在等比数列{an}中,若a1=2,公比q=3,则a5的值为:A. 18B. 54C. 162D. 4862. 已知等比数列{an}的前三项分别为1,-3,9,则该数列的公比为:A. -1B. 1C. -3D. 33. 等比数列{an}的通项公式为an=3^n,则该数列的前10项和S10为:A. 59049B. 390625C. 59025D. 390494. 若等比数列{an}的公比q=1/2,且a1+a3+a5=27,则a2的值为:A. 9B. 18C. 36D. 545. 已知等比数列{an}的前n项和为Sn,若a1=2,q=3,则S4的值为:A. 40B. 48C. 56D. 646. 在等比数列{an}中,若a1=1,公比q=-2,则该数列的第四项a4为:A. -8B. 8C. -16D. 167. 若等比数列{an}的前三项分别为-1,1,-1,则该数列的公比为:A. 1B. -1C. 0D. 不存在8. 已知等比数列{an}的公比q=-1/2,且a1=4,则该数列的前5项和S5为:A. 3B. 6C. 9D. 129. 在等比数列{an}中,若a1=8,公比q=1/2,则该数列的前10项和S10为:A. 255B. 510C. 1020D. 204010. 若等比数列{an}的公比q=2,且a1+a3+a5=27,则a2的值为:A. 9B. 18C. 36D. 54二、填空题(每题5分,共25分)11. 在等比数列{an}中,若a1=3,公比q=2,则a5的值为______。
12. 已知等比数列{an}的前三项分别为1,-3,9,则该数列的公比为______。
13. 等比数列{an}的通项公式为an=3^n,则该数列的前10项和S10为______。
14. 若等比数列{an}的公比q=1/2,且a1+a3+a5=27,则a2的值为______。
15. 已知等比数列{an}的公比q=2,且a1+a3+a5=27,则a2的值为______。
高中数学等比数列知识点总结最新7篇
高中数学等比数列知识点总结最新7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学等比数列知识点总结最新7篇什么是等比数列?对于很多人来说或许等比数列就是一个高考必考的知识点,那么我们到底应该怎么记住这些要点呢?下面是本店铺为您带来的高中数学等比数列知识点总结最新7篇,可以帮助到您,就是本店铺最大的快乐。
高考数学(浙江版,理)课件:5.3 等比数列及其前n项和
a1 a2
an 2
答案 (1)D 解析 (1)不妨设公比为q,则 a32 = a12q4,a1·a9=a 12 q8,a2·a6= a12 ·q6,当q≠±1时,A、 B均不正确;又 a42 = a12 q6,a2·a8=a 12 q8,同理,C不正确;由a 62 =a 12 q10,a3·a9=a 12 q10,知D 正确.
检验知n=12时,212-1>211;n=13时,213-1<218,故满足a1+a2+…+an>a1a2…an的最
大正整数n的值是12.
(1)等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个 基本量a1,n,q,an,Sn,一般可以“知三求二”. (2)在使用等比数列的前n项和公式时,应根据q的情况进行分类讨论,切不 可忽视q的取值而盲目用求和公式.
(2)①由an+1=3an+1得an+1+ 12 =3
an
1 2
.
又a1+ 12 = 23 ,所以 an
1 2
是首项为 3 ,公比为3的等比数列.
2
所以an+ 1 = 3n ,因此{an}的通项公式为an= 3n 1.
22
2
②证明:由①知 1 = 2 . an 3n 1
+q)=3+1+q+q2,所以q=3(q=0舍去).所以an=a1qn-1=3n-1.
(2)设等比数列的公比为q,则q>0,
由a1 q4 a1 q5
1, 2
a1 q6
3,得a1= 312 ,q=2.
( n 1)( n 10 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节等比数列【选题明细表】基础对点练(时间:30分钟)1.(2016·北京海淀模拟)在数列{a n}中,“a n=2a n-1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的( B )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:当a n=0时,满足a n=2a n-1,n=2,3,4,…,但{a n}是等差数列,不是等比数列,故充分性不成立;又当{a n}是公比为2的等比数列时,有错误!未找到引用源。
=2,n=2,3,4,…,即a n=2a n-1,n=2,3,4,…,所以必要性成立,故选B.2.(2016·湖北华师一附中3月联考)在等比数列{a n} 中,a2a3a4=8,a7=8,则a1等于( A )(A)1 (B)±1(C)2 (D)±2解析:因为数列{a n}是等比数列,所以a2a3a4=错误!未找到引用源。
=8,所以a3=2,所以a7=a3q4=2q4=8,所以q2=2,a1=错误!未找到引用源。
=1,故选A.3.(2016·河北衡水中学五调)已知等比数列{a n}的公比q=2,且2a4, a6,48成等差数列,则{a n}的前8项和为( B )(A)127 (B)255 (C)511 (D)1 023解析:因为2a4,a6,48成等差数列,所以2a6=2a4+48,所以2a1q5=2a1q3+48,又因为q=2,所以a1=1,所以S8=错误!未找到引用源。
=255.故选B.4.(2016·山东烟台一模)已知数列{a n}是等比数列,且每一项都是正数,若a1,a49是2x2-7x+6=0的两个根,则a1·a2·a25·a48·a49的值为( B )(A)错误!未找到引用源。
(B)9错误!未找到引用源。
(C)±9错误!未找到引用源。
(D)35解析:因为{a n}是等比数列,且a1,a49是方程2x2-7x+6=0的两根,所以a1·a49=错误!未找到引用源。
=3.而a n>0,所以a25=错误!未找到引用源。
.所以a1·a2·a25·a48·a49=(a25)5=9错误!未找到引用源。
.故选B.5.(2016·河南开封一模)设等比数列{a n}的前n项和为S n,若S m-1=5,S m=-11,S m+1=21,则m等于( C )(A)3 (B)4 (C)5 (D)6解析:由已知得,S m-S m-1=a m=-16,S m+1-S m=a m+1=32,故公比q=错误!未找到引用源。
=-2,又S m=错误!未找到引用源。
=-11,故a1=-1,又a m=a1·q m-1=-16,故(-1)×(-2)m-1=-16,求得m=5.故选C.6.(2016·山西吕梁一模)已知S n是公差不为0的等差数列{a n}的前n 项和,且S1,S2,S4成等比数列,则错误!未找到引用源。
等于( C ) (A)4 (B)6 (C)8 (D)10解析:设公差为d,则S1=a1,S2=2a1+d,S4=4a1+6d,因为S1,S2,S4成等比数列,所以错误!未找到引用源。
=S1S4,即(2a1+d)2=a1(4a1+6d),解得d=0(舍去)或d=2a1,所以错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=8.故选C.7.(2016·河南商丘一模)在各项均为正数的等比数列{a n}中,若a2=1, a8=a6+2a4,则a6= .解析:设公比为q,因为a2=1,则由a8=a6+2a4得q6=q4+2q2,q4-q2-2=0,解得q2=2,所以a6=a2q4=4.答案:48.等比数列{a n}的首项a1=-1,前n项和为S n,若错误!未找到引用源。
=错误!未找到引用源。
,则{a n}的通项公式a n= .解析:因为错误!未找到引用源。
=错误!未找到引用源。
,所以错误!未找到引用源。
=-错误!未找到引用源。
,因为S5,S10-S5,S15-S10成等比数列,且公比为q5,所以q5=-错误!未找到引用源。
,q=-错误!未找到引用源。
,则a n=-1×(-错误!未找到引用源。
)n-1=-(-错误!未找到引用源。
)n-1. 答案:-(-错误!未找到引用源。
)n-1{a n}是公差不为零的等差数列,并且a5,a8,a13是等比数列{b n}的相邻三项.若b2=5,则b n= .解析:因为{a n}是公差不为零的等差数列,并且a5,a8,a13是等比数列的相邻三项,所以(a5+3d)2=a5(a5+8d),所以a5=错误!未找到引用源。
d,所以q=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
,因为b2=5,q=错误!未找到引用源。
,所以b1=错误!未找到引用源。
=3,所以b n=b1q n-1=3×(错误!未找到引用源。
)n-1.答案:3×(错误!未找到引用源。
)n-1{a n}的前n项和为S n,满足S n=4a n-p,其中p为非零常数.(1)求证:数列{a n}为等比数列;(2)若a2=错误!未找到引用源。
,求{a n}的通项公式.(1)证明:当n=1时,S1=4a1-p,得a1=错误!未找到引用源。
≠0,当n≥2时,a n=S n-S n-1=(4a n-p)-(4a n-1-p)=4a n-4a n-1,得3a n=4a n-1,即错误!未找到引用源。
=错误!未找到引用源。
,因而数列{a n}为公比为错误!未找到引用源。
的等比数列.(2)解:由(1)知,数列{a n}的通项公式为a n=错误!未找到引用源。
×(错误!未找到引用源。
)n-1,又a2=错误!未找到引用源。
,可知p=3,于是a n=(错误!未找到引用源。
)n-1.{a n}的前n项和,且公比q≠1,n是无穷等比数列已知1是错误!未找到引用源。
S2和错误!未找到引用源。
S3的等差中项,6是2S2和3S3的等比中项.(1)求S2和S3;(2)求此数列{a n}的前n项和.解:(1)根据已知条件错误!未找到引用源。
整理得错误!未找到引用源。
解得3S2=2S3=6,即错误!未找到引用源。
(2)因为q≠1,则错误!未找到引用源。
可解得q=-错误!未找到引用源。
,a1=4.所以S n=错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
(-错误!未找到引用源。
)n.能力提升练(时间:15分钟){a n}满足:a n+1=λa n-1(n∈N*,λ∈R且λ≠0),若数列{a n-1}是等比数列,则λ的值等于( D )(A)1 (B)-1(C)错误!未找到引用源。
(D)2解析:由a n+1=λa n-1,得a n+1-1=λa n-2=λ(a n-错误!未找到引用源。
).由于数列{a n-1}是等比数列,所以错误!未找到引用源。
=1,得λ=2.故选D.13.(2016·河北衡水中学调研)已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n为数列{a n}的前n项和,则错误!未找到引用源。
的最小值为( A )(A)4 (B)3 (C)2错误!未找到引用源。
-2 (D)错误!未找到引用源。
解析:由a1,a3,a13成等比数列得错误!未找到引用源。
=a1a13⇒(a1+2d)2=a1(a1+12d)⇒4d2=8a1d,因为d≠0,因此d=2a1=2,S n=n2,a n=2n-1,从而错误!未找到引用源。
=错误!未找到引用源。
=(n+1)+错误!未找到引用源。
-2≥2错误!未找到引用源。
-2=4,当且仅当n=2时取等号,故选A.14.(2016·山西四校联考)已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),则S2 016= .解析:由题意得a n·a n+1=2n,a n+2·a n+1=2n+1⇒错误!未找到引用源。
=2, 因此a1,a3,a5,…构成一个以1为首项,2为公比的等比数列;a2,a4,a6,…构成一个以2为首项,2为公比的等比数列;从而S2 016=(a1+a3+…+a2 015)+(a2+a4+…+a2 016)=错误!未找到引用源。
+2×错误!未找到引用源。
=3(21 008-1).答案:3(21 008-1)15.已知数列{a n}满足a1=5,a2=5,a n+1=a n+6a n-1(n≥2).(1)求证:{a n+1+2a n}是等比数列;(2)求数列{a n}的通项公式.(1)证明:因为a n+1=a n+6a n-1(n≥2),所以a n+1+2a n=3a n+6a n-1=3(a n+2a n-1)(n≥2).又a1=5,a2=5,所以a2+2a1=15,所以a n+2a n-1≠0(n≥2),所以错误!未找到引用源。
=3(n≥2),所以数列{a n+1+2a n}是以15为首项,3为公比的等比数列.(2)解:由(1)得a n+1+2a n=15×3n-1=5×3n,则a n+1=-2a n+5×3n,所以a n+1-3n+1=-2(a n-3n).又因为a1-3=2,所以a n-3n≠0,所以{a n-3n}是以2首项,-2为公比的等比数列.所以a n-3n=2×(-2)n-1,即a n=2×(-2)n-1+3n(n∈N*).{a n}的前n项的和为S n,等比数列{b n}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.(1)求a n与b n;(2)设c n=3b n-λ·错误!未找到引用源。
,若数列{c n}是递增数列,求λ的取值范围.解:(1)由已知可得错误!未找到引用源。
所以q2+q-12=0,解得q=3或q=-4(舍),从而a2=6,所以a n=3n,b n=3n-1.(2)由(1)知,c n=3b n-λ·错误!未找到引用源。
=3n-λ·2n.由题意,c n+1>c n对任意的n∈N*恒成立,即3n+1-λ·2n+1>3n-λ·2n恒成立,亦即λ·2n<2·3n恒成立,即λ<2·(错误!未找到引用源。
)n恒成立. 由于函数y=(错误!未找到引用源。
)n是增函数,所以[2·(错误!未找到引用源。