初中数学:圆的切线的证明

合集下载

切线的证明技巧

切线的证明技巧

知识点
二.切线的证明方法: 1.作垂直,证半径
条件:圆与直线的公共点没有标明字母 方法:① 则过圆心作直线的垂线段为辅助线
② 再证垂线段的长等于半径的长
知识点
二.切线的证明方法: 2.连半径,证垂直 条件:圆与直线的公共点标明字母 方法:① 则连这个点和圆心得到辅助半径
② 再证所作半径与这条直线垂直
变式练习
例:如图,在△ABC中,以AB为直径的⊙O交AC于 点M,弦MN∥BC交AB于点E,且ME=1,AM=2, AE= .3 求证:BC是⊙O的切线;
证明:∵在△AME中,AM=2,ME=1,AE= 3,
∴AM=ME2+AE2, AM ME2 AE2
∴△AME是直角三角形,∴∠AEM=90°, 又∵MN∥BC, ∴∠ABC=90°, ∴AB⊥BC, 而AB为直径, ∴BC是⊙O的切线;
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙O相切;
证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.

初中数学 文档:切线有关的定理

初中数学 文档:切线有关的定理

切线三大定理【知识要点】(按点列出)圆心角和圆周角、弦长、弧长的关系【教学过程】:【复习、新授、训练(例题与训练中的基础、拓展、综合、链接部分必与知识点紧密联系)、小结、作业)】知识点1.直线和圆的三种位置关系:知识点2.切线的判定和性质:判定:(1)当圆心到直线的距离d 等于半径r 时,直线是圆的切线;(2)经过半径外端垂直于的半径的直线,是圆的切线。

性质:如果一条直线与圆相切,另一条满足:(1)过圆心,(2)切点,(3)垂直于半径.其中任意两个条件,则必满足第三个条件。

知识点3、弦切角定理:弦切角等于所夹弧对的圆周角。

知识点4、切线长定理:从圆外一点向圆所引的两条切线段长相等;知识点5、圆幂定理:(1)PA ·PB=PC ·PD (2)PT 2=PA ·PB=PC ·PD知识点6、圆与三角形: d<r d=r d>r 关 系 相交 相切 相离 交点个数 两个交点 一个交点 没有交点 直线名称 割线 切线 不相交线 A PDC B A B T PD C Ac b A cADC B A B P1 2 +∠)12 r=(2)如图,是半圆的直径,EF BC ⊥于点,5BF FC=.已知点在的延长线上,与半圆 交于,且82AB AE ==,,则的长为多少.AB C DE F O考点3、圆和三角形(2011黑龙江省大庆)如图,△的两直角边边长为4,边长为3,它的内切圆为⊙0,⊙0与边、、分别相切于点、、,延长交斜边于点.(1)求⊙的半径长; (2)求线段的长.考点4、圆的综合题型已知:如图1,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8厘米,AD=24厘米,BC=26厘米,AB 为圆O 的直径,动点P 从点A 开始沿AD 边向点D 以1厘米/秒的速度运动,动点Q 从点C 开始沿CB 边向点B 以3厘米/秒的速度运动,P 、Q 分别从A 、C 同时出发,当其中到达端点时,另一点也随之停止运动,设运动时间为t 秒.求(1)t 分别为何值时,四边形PQCD 为平行四边形、等腰梯形?(2)t 分别为何值时,直线PQ 与圆O 相切、相交、相离?(97年河北)【知识小结】(先由自己独立小结,最后由老师书面小结)直线与圆的关系:相交、相切、相离圆中切线三大定理:性质定理、判定定理、切线定理圆幂定理圆中内切三角形、四边形【作业】(精少,书面与识记部分均要求有)【教学后记】(对学生学习过程中的反应、吸收、优缺点与自己的教学方法进行反思)。

九年级数学上册22.2.2圆的切线课件新版北京课改版

九年级数学上册22.2.2圆的切线课件新版北京课改版

预习反馈
1.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上
底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半
圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( A )
A.14B.9Fra bibliotekC.10
D.12
预习反馈
2.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直 径,已知∠BAC=35°,∠P的度数为( D )
典例精析
典例精析
典例精析
典例精析
例2、如图所示, ⊙O是△ABC的内切圆,切点分别为E, F,C,AB = 9,BC = 13,AC=10。求AE、BF和CG的长。
典例精析
分析:∵⊙ O是△ABC的内切圆,切点分别为E, F,G, ∴AE=AG,BE=BF,CG=CF 设AE=x,BF=y,CG=z。 ∴ x + y =9,y + z = 13,z + x = 10。 解这个方程组,得 x =3,y = 6,z = 7。 ∴AE = 3,BF = 6, CG = 7。
A. 35° C. 60°
B. 45° D. 70°
预习反馈
3.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且
相交于P点.若PC=2,CD=3,DB=6,则△PAB的周长为何
( D)
A. 6
B. 9
C. 12
D. 14
预习反馈
4.如图,AB、AC是⊙O的两条切线,B、C是切点,若
∠A=70°,则∠BOC的度数为( C )
本课小结
(4)切线长定理包含着一些隐含结论: ①垂直关系三处; ②全等关系三对; ③弧相等关系两对,在一些证明求解问题中经常用到。

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点一、相交弦定理1、相交弦在圆的内部相交的两条弦,称为相交弦.2、相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等。

几何语言:弦AB和CD相交于⊙O内一点P,那么PA·PB=PC·PD. 3、相交弦定理的证明证明:连接AC、BD由圆周角定理推论得:∠C=∠B,∠A=∠D∴△ACP∽△DBP∴ PA:PD=PC:PB二、切割线定理1、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

几何语言:BC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,则:PA²=PB·PC。

2、切割线定理的证明证明:如图,连接AB,AC∵ PA是圆O的切线,由弦切角定理可得∴∠PAC=∠B∵∠APB=∠CPA∴△APC∽△BPA∴ PA:BP=PC:PA三、割线定理1、割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

几何语言:从⊙O一点P引圆的两条割线AB、CD,则:PA·PB=PC·PD.2、割线定理证明证明:如图,连接AD、BC,由圆周角定理推论,得:∠D=∠B∵∠BPC=∠DPA∴△BPC∽△DPA∴ PB:PD=PC:PA∴ PA·PB=PC·PD四、例题例1、如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE·ED=3,BE =1,求⊙O的直径。

解:作OH⊥AB于H,OG⊥CD于G,连接OA由相交弦定理得:CE·ED=AE·EB∴ 3=AE×1∴ AE=3∴ AB=AE+EB=3+1=4∴ AB=CD=4∴ AH=HB=2∴ HE=HB-EB=2-1=1∵ AB=CD,AB⊥CD∴ OH=OG∴四边形OGEH为正方形∴ OH=HE=1由勾股定理得,OA=,∴⊙O的直径为,例2、如题图,⊙O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3, CE:ED=2:1 ,求BE的值。

初中数学 什么是圆的切线

初中数学  什么是圆的切线

初中数学什么是圆的切线
圆的切线是指与圆的边界相切且只有一个交点的直线。

下面我将详细介绍圆的切线的概念和性质:
1. 圆的切线定义:
圆的切线是指与圆的边界相切且只有一个交点的直线。

这个切点是圆上的点,切线与圆的边界只有这一个交点。

2. 圆的切线的性质:
-圆的切线与半径垂直,即切线与半径的夹角为90°。

-从圆的外部引一条直线与圆相交,如果直线与圆的边界相切,那么这条直线就是圆的切线。

-圆的切线长度等于从切点到圆心的半径长度。

-圆的切线与切点到圆心的连线共线。

-圆的切线是与圆心连线的直线中最短的一条。

3. 圆的切线的应用:
圆的切线在几何学和物理学中有广泛的应用。

例如,在光学中,圆的切线可以用于描述光线与曲面的相交关系;在工程学中,圆的切线可以用于定位和布局。

另外,圆的切线的性质也可以用于解决一些几何问题,如构造、证明等。

需要注意的是,圆的切线是一条直线,它与圆的边界相切且只有一个交点。

以上是关于圆的切线的概念和性质的介绍。

希望以上内容能够满足你对圆的切线的了解。

初中数学人教九年级上册第二十四章圆-切线长定理

初中数学人教九年级上册第二十四章圆-切线长定理

(1)写出图中所有的垂直关系;
B
OA⊥PA,OB ⊥PB,AB ⊥OP.
(2)写出图中与∠OAC相等的角;
∠OAC=∠OBC=∠APC=∠BPC. (3)写出图中所有的全等三角形;
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(4)写出图中所有的等腰三角形.△ABP △AOB
条切线,它们的切线长相
O
P
等,圆心和这一点的连线
平分两条切线的夹角. 几何语言:
PA、PB分别切⊙O于A、B
B PA = PB ∠OPA=∠OPB
注意 切线长定理为证明线段相等、角相等提供了新的方法.
拓展结论 A
PA、PB是⊙O的两条切线,A、
B为切点,直线OP交⊙O于点D
E OCD
P
、E,交AB于C.
A
P O
B
课堂小结
切线长
切线长 定理
原理 作用
辅助线
图形的轴对称性
提供了证线段和 角相等的新方法
① 分别连接圆心和切点; ② 连接两切点; ③ 连接圆心和圆外一点.
课后作业
1、《课后作业》 2、练习册
思考:PA为⊙O的一条切线,沿着直线PO对折,设圆上与点
A重合的点为B.
➢ OB是⊙O的一条半径吗?
A
➢ PB是⊙O的切线吗?
O.
P
➢ PA、PB有何关系? B
➢ ∠APO和∠BPO有何关系?
(利用图形轴对称性解释)
二 切线长定理
你能写出上述结论的证
明过程吗?
A
O.
P
B
切线长定理:
A
从圆外一点引圆的两
学习目标
1.掌握切线长定理,初步学会运用切线长定理进行计算 与证明.(重点)

【初中数学】圆中弦切角及弦切角定理

【初中数学】圆中弦切角及弦切角定理

【初中数学】圆中弦切角及弦切角定理一、弦切角1、定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

如图:2、弦切角的三种情况(1)圆心在弦切角外;(2)圆心在弦切角的一条边上;(3)圆心在弦切角内;二、弦切角定理及证明定理:弦切角的度数等于它所夹的弧的圆周角;弦切角的度数等于它所夹的弧的圆心角度数的一半。

已知:如图,PQ是圆O的切线,切点为P。

求证:∠APQ=∠ABP,2∠APQ=∠AOP.(1)当圆心在弦切角外部时证明:连接OA,OP,在非弦切角所夹弧优弧PA上任取一点B,连接BP和BA。

∵ OA=OP∴ ∠OPA=∠OAP∵ ∠OPA+∠OAP+∠POA=180°∴2∠OPA+∠POA=180°∵ PO为圆的切线,OP为半径∴ ∠OPA+∠APQ=90°∴ ∠OPA=90°-∠APQ∴ 2(90°-∠APQ)+∠POA=180°∴∠POA=2∠APQ∵ ∠POA=2∠ABP(同弧所对的圆心角是圆周角的2倍)∴ ∠APQ=∠ABP(2)当圆心在弦切角的一边上时证明:在非弦切角所夹弧AP上任取一点B,连接AB、PB ∵ AP为直径∴ ∠ABP=90°∵ PQ为圆的切线,OP为半径∴ ∠APQ=90°∴∠APQ=∠ABP∴2∠APQ=∠AOP(同弧所对的圆心角是圆周角的2倍). (3)当圆心在弦切角的内部时证明:连接OA,OP,在非弦切角所夹弧劣弧PA上任取一点B,连接BP和BA。

∵ OA=OP∴ ∠OPA=∠OAP∵ ∠OPA+∠OAP+∠1=180°∴2∠OPA+∠1=180°∵ PO为圆的切线,OP为半径∴ ∠OPA=∠APQ-90°∴ 2(∠APQ-90°)+∠1=180°∴ ∠1+2∠APQ=360°∵ ∠1+∠2=360°∴∠2=2∠APQ∴ ∠POA=2∠APQ(这里的∠POA是大于180°的角,是优弧AP所对的圆心角)∵ ∠POA=2∠ABP(同弧所对的圆心角是圆周角的2倍)∴ ∠APQ=∠ABP三、例题例1、已知:如图,直线BC切⊙O于B点,AB=AC,AD=BD,求∠A.解:由弦切角定理可得,∠DBC=∠A∵ AD=BD∴ ∠A=∠ABD∵ AB=AC∴ ∠ABC=∠ACB=2∠A∵ ∠A+∠ABC+∠ACB=180°∴5∠A=180°∴ ∠A=36°例2、已知:如图,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°,求∠CAB的值。

初中数学-切线长定理典型例题

初中数学-切线长定理典型例题

例 如图,△ABC 内接于大⊙O ,∠B =∠C ,小⊙O 与AB 相切于点D .求证:AC 是小圆的切线.分析 AC 与小⊙O 的公共点没有确定,故应过O 作AC 的垂线段OE .再证明OE 等于小圆半径,用“到圆心的距离等于半径的直线是圆的切线”来判定AC 是小圆的切线. 证明 连结OD ,作OE ⊥AC 于E . ∵∠B =∠C ,∴AB=AC .又AB 与⊙O 小相切于D ,∴OD ⊥AB . ∵OE ⊥AC ,∴OD=OE .即小⊙O 的圆心O 到AC 的距离等于半径,所以AC 是小圆的切线. 说明:(1)本题为证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.)之一;(2)本题为基本题型,但应用到切线的性质和判定;(3)本题为教材110页例4的变形题.例 (大连市,l 999)阅读:“如图△ABC 内接于⊙O ,∠CAE=∠B . 求证:AE 与⊙O 相切于点A . 证明:作直径AF ,连结FC ,则∠ACF =90°.∴ ∠AFC+∠CAF =90°. ∵∠B =∠AFC . ∴ ∠B+∠CAF =90°. 又∵ ∠CAE=∠B ,∴ ∠CAE+∠CAF =90°. 即AE 与⊙O 相切于点A .问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).如图,已知△ABC 内接于⊙O .P 是CB 延长线上一点,连结AP .且PA 2=PB ·PC . 求证:PA 是⊙O 的切线. 证明:∵PA 2=PB ·PC ,∴PAPB PC PA .又∵ ∠P=∠P ,∴△PAB ∽△PCA . ∠PAB=∠C . 由阅读题的结论可知,PA 是⊙O 的切线. 说明:(1)此题的阅读材料来源于教材第117页B 组第1题;(2)应用“连半径证垂直”证明切线.例 (西宁,1999)已知:如图,Rt △ABC 中,∠C=90°,以AB 为直径的⊙O 交斜边AB 于E ,OD ∥AB . 求证:(1)ED 是⊙O 的切线;(2)2 DE 2=BE ·OD证明:(1)连结OE 、CE ,则CE ⊥AB . 在Rt △ABC 中,∵OA=OC ,OD ∥AB ,∴D 为BC 的中点,∴DE=CD , 又∵OC=OE ,OD=OD ,∴△COD ≌△EOD ,∴∠OED=∠OCD=90°,∴ED 是⊙O 的切线.(2)在Rt △ABC 中,CE ⊥AB ,∴△CBE ∽△ABC ,∴CB 2=BE ·AB , ∵OD 为△ABC 的中位线,∴AB=2OD ,BC=2ED ,∴(2ED )2=BE ·2OD 即2 DE 2=BE ·OD 说明:此题为综合题,主要应用切线的性质定理、判定定理、射影定理、中位线定理等知识.C典型例题四例 (北京市西城区试题,2002)已知:AB 为⊙O 的直径,P 为AB 延长线上的一个动点,过点P 作⊙O 的切线,设切点为C.(1)当点P 在AB 延长线上的位置如图1所示时,连结AC ,作APC 的平分线,交AC 于点D ,请你测量出CDP 的度数;(2)当点P 在AB 延长线上的位置如图2和图3所示时,连结AC ,请你分别在这两个图中用尺规作APC 的平分线(不写做法,保留作图痕迹),设此角平分线交AC 于点D ,然后在这两个图中分别测量出CDP 的度数;猜想:CDP 的度数是否随点P 在AB 延长线上的位置的变化而变化?请对你的猜想加以证明.解:(1)测量结果: 45CDP . (2)作图略.图2中的测量结果: 45CDP . 图3中的测量结果: 45CDP .猜想: 45CDP 为确定的值,CDP 的度数不随点P 在AB 延长线上的位置的变化而变化.证法一:连结BC .∵ AB 是⊙O 的直径, ∴ 90ACB .∵ PC 切⊙O 于点C , ∴ A 1.∵ PD 平分APC ,.454,3,21432 CDP A CDP∴ 猜想正确. 证法二:连结OC .∵ PC 切⊙O 于点C ,.901. CPO OC PC∵ PD 平分APC ,.45)1(212.121,31.3,.212CPO A CDP A A A OC OA CPO∴ 猜想正确.典型例题五例 (北京市崇文区,2002)已知:ABC ≌C B A ,3,5,90 AC AB B C A ACB ,对应边AC 与C A 重合,如图(1).若将C B A沿CB 边按箭头所示方向平移,如图(2),使边AB 、B A 相交于点D ,边C A 交AB 于点E ,边AC 交B A 于点F ,以C C 为直径在五边形CF C DE 内作半圆O ,设C B 的长为x ,半圆O 的面积为y .1.求y 与x 的函数关系式及自变量x 的取值范围; 2.连结EF ,求EF 与半圆O 相切时的x 的值.解:1.∵ ABC ≌C B A ,3,5,90 AC AB B C A ACB ,,4,.4x C B BC C C x C B BC28)24(2122 x x x y .以C C 为直径在五边形内作半圆,依题意,在运动过程中C A 、AC 与⊙O 始终相切,故只需考虑AB 与⊙O相切的特殊位置,以确定x 的最小值.当C B A 沿CB 边按箭头所示方向平移时, ∵ ABC ≌C B A , ∴ B B , ∴ B DB 是等腰三角形.又∵ ,,C O OC C B BC∴ .O B BO∴ O 是B B 的中点.∴ O 到BD 、D B 的距离相等.∴ AB 与⊙O 相切时,B A 必与⊙O 相切. 设切点分别为G 、H ,连结OG , 则有,,90B B BCA BGO ∴ BOG ∽BAC ..5244324,xx BA BO AC OG解之得.1 x当1 x 或4 x 时,不合题意,∴ 自变量x 的取值范围是41 x . 2.在C BE 和FC B 中,,90,,CF B E C B C B C B B B ∴ C BE ≌FC B .,90,//.C FC FC C E FC C E∴ 四边形CF C E 为矩形. 当EF 与⊙O 相切时,C C C E21. ).4(2143,43,43tan x x x C E BC AC C B C E B解之得.58 x典型例题六例 已知如图,在ABC 中,AC AB ,以AB 为直径的⊙O 交BC 于D ,过D 作⊙O 的切线交AC 于E ,求证:AC DE .分析:因为DE 是⊙O 的切线,D 是切点,所以连OD ,得DE OD ,因此本题的关键在于证明OD AC //. 证明 连结AD 、OD AB 为⊙O 的直径,AC AB , BC AD .D 是BC 中点,O 是AB 的中点, OD 为BAC 的中位线, AC OD // DE 是切线,D 为切点,OD 是⊙O 的半径 DE OD AC DE说明:连结OD 构成了“切线的性质定理”的基本图形,连结AD 构成了圆周角推论的基本图形.典型例题七例 如图,已知⊙O 中,AB 为直径,过B 点作⊙O 的切线,连线CO ,若OC AD //交⊙O 于D .求证:CD 是⊙O 的切线.分析:要证AD 是⊙O 的切线,只须证AD 垂直于过切点D 的半径,由此应想到连结OD .证明 连结OD OC AD // ,A COB 及ODA COD OD OA ,OAD ODA COD COBCO 为公共边,OB ODCOB ≌COD .即ODC B BC 是切线,AB 是直径, 90B , 90ODC , CD 是⊙C 的切线.说明:辅助线OD 构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理.典型例题八例 如图,以ABC Rt 的一条直角边AB 为直径作圆斜边BC 于E ,F 是AC 的中点,求证:EF 是圆的切线.分析:连OE ,因为EF 过半径OE 的外端,要证EF 是切线,只需证 90OEF . 思路1 连OF ,证OAF ≌OEF ,则有 90OAF OEF思路2 连AE ,则 90AEC ,证 90OAE FAE OEA FEA 证明1 如图,连OF 、OE ,的中位线是中点为中点为ABC OF AB O AC FB BC OF 1//,32 又B OE OB 3,即21 ,OE OA ,OF OF 所以OAF ≌OEF有 90OAF OEF 即EF OE , EF 过半径OE 的外端, 所以EF 是⊙O 的切线.证明2 如图,连结AE 、OE AB 是⊙O 直径 90AEBFA FE AC F AEC中点为9042314321OE OAEF OE 90 FE 过半径OE 的外端 所以EF 是⊙O 的切线说明:这里的辅助线OE ,仍然想着构造“切线判定定理”的基本图形的作用.典型例题九例 如图,已知弦AB 等于半径,连结OB 并延长使.(1)求证AC 是⊙O 的切线;(2)请你在⊙O 上选取一点D ,使得 (自己完成作图,并给出证明过程)证明:(1)即是⊙O 的切线.(2)①作BO 延长线交⊙O 于D ,连接AD ,,所以D 点为所求.②如图,在圆上取一点使得,连结,所以点也为所求.说明:证明一条直线是圆的切线,通常选择:(1)到圆心的距离等于圆的半径的直线是圆的切线;(2)经过半径的外端并且垂直于这条半径的直线是圆的切线.而涉及切线问题时,应灵活运用切线的性质,通常连结切点和圆心.题目的第(2)问是分类讨论问题,当题目中的图形未给定时,作图时,应将所有符合条件的图形作出,再分别解答.典型例题十例 已知:直线AB 经过⊙O 上的点C ,并且CB CA OB OA ,.求证:直线AB 是⊙O 的切线.证明 连结OC .∵CB CA OB OA ,,∴OC 是等腰三角形OAB 底边AB 上的中线. ∴.OC AB ∴AB 是⊙O 的切线.说明:本题考查切线的判定,解题关键是作出辅助线,易错点是把求证的结论“AB 是⊙O 的切线”.作为条件使用,造成推理过程中的逻辑混乱.典型例题十一例 如图,AB 是⊙O 直径,弦AB CD //,连AD ,并延长交⊙O 过点B 的切线于E ,作AC EG 于G .求证:.CG AC证明 连结BC 交AE 于F 点...21,32.31,//BF AF CD ABBE 为⊙O 切线,...54,21.9051,9042.EF AF EF BF BE ABAB 为直径,∴.AC BC..//,CG AC BC EG AC EG说明: 本题主要考查切线的性质,解题关键是作辅助线.典型例题十二例 如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,AD 交⊙O 于点E ,AC AB AD ,5,4 平分BDA .(1)求证:CD AD .(2)求AC .证明 (1)连OC .CD 切⊙O 于C ,∴.CD OC..//.32,21.31,CD AD AD OC OC OA解 (2)连BC .AB 是⊙O 的直径,∴ 90ACB .ABC ADC ,21,90 ∽.ACD∴.AD AC AC AB 即.52.45 AC ACAC 说明:在题目条件中若有切线,常常要作出过切点的半径.利用三角形相似的知识求出线段的长.典型例题十三例 (北京朝阳区试题,2002)已知:在内角不确定的ABC 中,AC AB ,点E 、F 分别在AB 、AC 上,BC EF //,平行移动EF ,如果梯形EBCF 有内切圆, 当21 AB AE 时,322sin B ; 当31 AB AE 时,23sin B (提示:43223 ); 当41 AB AE ,54sin B . (1)请你根据以上所反映的规律,填空:当51AB AE 时,B sin 的值等于_________; (2)当nAB AE 1时(n 是大于1的自然数),请用含n 的代数式表示 B sin ___________,并画出图形、写出已知、求证和证明过程。

初中数学重点梳理:切线和割线

初中数学重点梳理:切线和割线

切线和割线知识定位切割线定理是初中平面几何中的重要定理,它应用广泛,各地的中考题有相当多的题目都用到它,竞赛题也不例外.且题目新颖,灵活多变,学生往往甚感困难。

因此有计划、有目的、有步骤地对切割线定理进行补充、演化无疑是十分有益的。

知识梳理知识梳理1:切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的之一。

几何语言:∵PT切⊙O于点T,PDC是⊙O的割线∴PT²=PD·PC(切割线定理)知识梳理2:割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD例题精讲【试题来源】【题目】如图,等边三角形ABC中,边AB与⊙O相切于点H,边BC,CA与⊙O交于点D,E,F,G。

已知AG=2,GF=6,FC=1.则DE=_______.【答案】21【解析】2由切割线定理可知16:4又AH AG AF,AHAC AG=•=∴==2又99故5则25又7,9,AC AG GF FCAB ACBHBD BE BHCE CD CF CG BC AC=++=∴===•==•=•===【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:2PN MN NQ=⋅.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A.B两点,并交ST于点C,求证:1111()2PC PA PB=+.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC。

初中数学九年级上册《切线的概念、切线的判定和性质》PPT课件(共12张PPT)

初中数学九年级上册《切线的概念、切线的判定和性质》PPT课件(共12张PPT)

直线和⊙O相离
d>r (没有公共点)
直线和⊙O相切
d = r (一个公共点)
直线和⊙O相交
d<r (两个公共点)
第2页,共12页。
如图在⊙O中经过半径OA的外端点A 做直线l⊥OA,则圆心O到直线 l 的距离 是多少?
直线 l 和⊙O有什么位置关系?
o
A
l
这时圆心O到直线 l 的距离就是⊙O的半径.
·O
∵ l2切⊙O于B,OB是半径
∴ l2⊥OB.
又∵ AB为直径,
l2
B
∴ l1∥ l2 .
第8页,共12页。
知识拓展
▪ 例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB
的延长线上,且∠DCB= ∠A.
▪ (1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相 切,请说明理由.
▪ (2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.
1.如图 AB是⊙O的直径,∠ABT=45°AT=AB,
求证AT 是⊙O的切线. 证明: ∵ AT=AB,∠ABT = 45°,
∴ ∠ATB = ∠ABT=45 °.
∴ ∠TAB = 180°-∠ATB-∠ABT
B
= 90°.
∴ TA⊥OA.
·O
又∵ OA是⊙O的半径 ∴ AT是⊙O的切线.
T
A
第6页,共12页。
▪ 归纳小结
▪ 本节课应掌握: ▪ 1.直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆
相离等概念. ▪ 2.设⊙O的半径为r,直线L到圆心O的距离为d则有: ▪ 直线L和⊙O相交d<r
▪ 直线L和⊙O相切d=r
▪ 直线L和⊙O相离d>r

初中绝招数学-用切线的性质牵线搭桥

初中绝招数学-用切线的性质牵线搭桥

用切线的性质牵线搭桥袁芝馨圆的切线是圆中一个非常重要的知识点,前面我们已经给同学们介绍了如何进行切线的判定,这一讲我们将给同学们介绍如何灵活运用切线的性质,为圆中有关的证明与计算牵线搭桥. 一、与切线有关的性质1.切线的性质定理:圆的切线垂直于过切点的半径. 2.切线的有关性质: (1)与圆只有一个交点;(2)圆心到切线的距离等于半径(d=r ); (3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心.【说明】:(4)、(5)只是由(3)推出的有关性质. 3.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 4.已知切线常考虑:(1)切线的性质(垂直于过切点的半径);(2)切线长定理.5.已知切线常做的辅助线:作过切点的半径,构造直角三角形.二、例题讲解例1 如图1,AE 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC . 若∠A=36°,则∠CBE 的度数为_______.分析:连接OB (图2),则△ABO 为直角三角形,而△OBC 是等腰三角形,利用角之间的关系进行相互转换,便可求得∠CBE 的度数.解:连接OB (图2),∵ AE 为⊙O 的切线, ∴ ∠ABO=90°. 在Rt △ABO 中,∵∠A=36°, ∴∠AOB=54°. ∵ OB=OC ,∴∠C=∠OBC , ∴ ∠AOB=∠OBC +∠C=2∠C . ∴∠C=27°.∴∠CBE=∠A+∠C=63°.思考:若将∠A=36° 换成∠A =α ,那么∠CBE 的度数是多少?(答案:︒+452α)COBECOABE例2 如图1,AB 为⊙O 的直径,PQ 切⊙O 于点T ,AC ⊥PQ 于点C ,交⊙O 于点D . (1)求证:AT平分∠BAC ;(2)若AD=2,TC=3,求⊙O 半径的长.【分析】(1)连结OT (图2),因为PQ 是⊙O 的切线,利用切线的性质,再进行角之间的相互转换,便可以得出结论;(2)过点O 作OM ⊥AC (图3),由垂径定理和勾股定理可以求出⊙O 半径的长. (1)证明:连结OT (图2), ∵ PQ 是⊙O 的切线,∴ OT ⊥PQ .∵ AC ⊥PQ ,∴ AC ∥OT .∴∠OTA=∠TAC . ∵ OA=OT ,∴∠OTA=∠OAT . ∴∠OA T=∠CAT .即AT 平分∠BAC . (2)解:过点O 作OM ⊥AC (图3), ∴ AM=MD =21AD=1 . 又 ∠OTC=∠ACT=∠OMC =90° ∴ 四边形OTCM 是矩形. ∴ OM=TC=3.在Rt △AMO 中, ∵ OA 2=OM 2+AM 2=()23+12= 4,∴ OA=2.即⊙O 半径的长为2.说明:灵活运用圆的有关知识是解题的关键.思考:若连结BD 交OT 于点E (如图4),也可以求出⊙O 半径的长,请同学们课下完成.例3 已知:如图1,BAP 是⊙O 的割线,AB 是⊙O 的直径,PC 是⊙O 的切线,C 为切点,BD ⊥PC 于点D ,交⊙O 于点E ,且PA=AO=1.(1)求∠P 的度数; (2)求DE 的长.分析:由AB 是⊙O 的直径,PC 是⊙O 的切线,故连结OC 、AE 后(图2),可得∠PCO =∠AEB = 90°.利用直角三角形的有关知识,可求得∠P 的度数和DE 的长.解:(1)连结OC (图2),∵ PC 是⊙O 的切线,∴∠PCO = 90°. 在Rt △OCP 中,∵ PA=AO=OC ,图1 AB D O例2图1例2图2例2图3例2图4∴ OC=21PO .∴∠P=30°. (2)在Rt △BDP 中,∵ PB=AP+AO+BO=3,∠P=30°, ∴ BD=21PB=23. 连接AE ,∵ AB 是⊙O 的直径,∴ ∠AEB =90°. ∴ ∠AEB=∠D = 90°.∴ AE ∥PD . ∴ ∠EAB =∠P =30°.∴ BE=21AB=1. ∴ DE=DB -BE=21. 答:∠P=30°,DE=21. 说明:已知切线通常作过切点的半径,已知直径通常构造直径所对的圆周角.例4 如图1,AD 是半圆O 的直径,AB 、CD 与半圆O 切于点A 、D ,BC 切半圆O 于点E ,如果AB=4,CD=9,求半圆O 的直径.分析:由于BC 、CD 是由半圆O 外的一点C 向圆所作的两条切线上的线段,即切线长(切线AB 与BC 同理),因此可以利用切线长定理求出直径的长.解:过点B 作BF ⊥CD 于F ,如图2,∵ BA 是半圆O 的切线,AD 是半圆O 的直径, ∴ BA ⊥AD . 同理CD ⊥AD , ∴ 四边形ABFD 是矩形.∴ BF=AD ,FD=BA=4. ∴ CF=CD -CF=5. ∵ CB 、BA 和CD 都是半圆O 的切线, ∴ CE=CD=9,BE=BA=4. ∴ CB=CE+EB=13. 在Rt △CFB 中,∵ 22CF CB BF -==12. ∴ AD=12.即半⊙O 直径的长为12.说明:(1)由于AB 、CD 、BC 都是半圆O 的切线,在有关圆的切线计算问题中,我们可联想切线长定理;(2)直角梯形常用的辅助线是做它的高线.图1。

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

2.2切线长定理课件

2.2切线长定理课件
P O B N
展示交流三:
已知如图,A是⊙O外一点,AB,AC分别与⊙O相切于 B,C. P是弧BC上任意一点,过点P作⊙O的切线,交AB 于点M,交AC于点N.设OA=d,BO=r.求证:△AMN的 周长是一个定值,并求出这个定值.(书本C组题)
o.
. P
自主导学
方法二:尺规作图
A
O O ·PB Nhomakorabea自主导学
A
O
经过圆外一点作圆的切线, 这点和切点之间的线段的长, P 叫做这点到圆的切线长。
B
如图,P是⊙O外一点,PA,PB 是⊙O的两条切线,我们把线段 PA,PB叫做点P到⊙O的切线长。
切线和切线长是两个不同的概念: 1、切线是一条与圆相切的直线,不能度量; 2、切线长是线段的长,这条线段的两个端点分别是圆外一点和 切点,可以度量。
∵ OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP(HL)
∴ PA = PB
自主导学
切线长定理
A O B P
从圆外一点引圆的两条切线,它们的切线长相等,
几何语言:
PA = PB
PA、PB与⊙O分别相切于点A、B
自主导学
已知PA,PB切⊙O于A,B.
图(1)中,得到 ________的结论; 图(2)中,连结AB,增加了_________的结论; 图(3)中,再连结OP,增加了________的结论; 图(4)中,再连结OA,OB。又增加了___的结论.
自主导学
若从⊙O外的一点引两 条切线PA,PB,切点分别是 A、B,连结OA、OB、OP,你 能发现什么结论?并证明你 所发现的结论。 PA = PB,
∴OA⊥PA,OB⊥PB
A O P
B 证明:∵PA,PB与⊙O相切,点A,B是切点 即∠OAP=∠OBP=90°

人教版九年级初中数学上册第二十四章圆切线的性质定理

人教版九年级初中数学上册第二十四章圆切线的性质定理

判定定理的表述
圆切线的判定定理:过圆外一点有且只有一条直线与圆切于一点。
证明方法:利用反证法,假设过圆外一点有两条直线与圆切于一点,则这两条直线重合,这 与已知条件矛盾,因此假设不成立,故原命题成立。
应用:在解题过程中,可以利用圆切线的判定定理来判断某一直线是否为圆的切线。
注意事项:在应用圆切线的判定定理时,需要注意前提条件是“过圆外一点”,否则结论可 能不成立。
性质定理的证明
定义:圆切线的定义是过半径的外端且垂直于这条半径的直线 性质定理:从圆外一点引圆的两条切线,它们的切线长相等 证明方法:利用相似三角形的性质进行证明 定理的应用:在解题中,可以利用这个定理来证明一些与圆有关的题目
求解与圆切线相关的问题
圆切线的定义和性质 圆切线的判定方法 圆切线的应用举例 圆切线与其他几何图形的联系
判定定理的应用
判定圆内接四边形的对角是否互补 判定一个四边形是否为圆外切四边形 判定一个四边形是否为圆内接四边形 判定一个四边形是否为圆外切四边形
性质定理的表述
圆切线的定义:过半径的外端,并且垂直于这条半径的直线是圆的切线。 性质定理:从圆外一点引圆的两条切线,它们的切线长相等。 性质定理的证明:利用勾股定理和切线的定义进行证明。 性质定理的应用:在解题中利用此定理进行证明和计算。
注意事项:注意题 目中的隐含条件, 避免出现错误
拓展:通过练习和 巩固,提高解题能 力和思维水平
与圆切线相关的其他知识点
圆切线的定义和性质
圆切线的判定定理
圆切线的应用
圆切线与其他几何图形的联系
拓展知识的应用领域
几何学:圆切线在几 何学中有着广泛的应 用,如圆内接四边形、 圆与圆的位置关系等
物理学:圆切线在 物理学中也有着重 要的应用,如圆周 运动、弹性力学等

初中数学精品课件:切线长定理

初中数学精品课件:切线长定理

∴AO⊥PA,BO⊥PB.
而AO=BO,PO=PO,
∴Rt△AOP≌Rt△BOP.
∴PA=PB.
A
O
B
P

【例 1】如图,点 O 是AB所在圆的圆心,AC,BC 分别与⊙O 相切于点 A,B.
已知∠ACB=80°,OC=100cm.求点 C 到⊙O 的切线长(结果精确到 1cm).
• 解:如图,连结OA,OB.
• 已知如图,P是⊙O外一点,请你作⊙O的切线.
• 从圆外一点作圆的切线,通常我们把圆外
• 这一点到切点间的线段的长叫做切线长.
• 关于圆的切线,有下面的定理:
• 切线长定理过圆外一点所作的圆的两条切线长相等.
• 证明:如图,连结AO,BO,PO.
• ∵PA,PB分别与⊙O相切于点A,B,




• 【例2】如图,⊙O表示皮带传动装置的一个轮子,传动皮带
• MA,NB分别切⊙O于点A,B.延长MA,NB,相交于点P.已知

• ∠APB=60°,AP=24cm,求两切点间的距离和的长(精确到1cm).









解:如图,连结AB,OA,OB,OP.
∵MP,NP分别切⊙O于点A,B,
• ∵AB,BC(过圆外一点所作的圆的两条切线长相等),
• ∴△OAC≌△OBC.

1
1
∴∠ACO=∠BCO= ∠ACB= ×80°=40°.
2
2
• 在Rt△OAC中,∠OAC=90°.


• ∴ =cos40°,
• ∴AC=OC×cos40°=100×cos40°≈77(cm).

圆中三大切线定理

圆中三大切线定理
能解决 与 切线有 关 的问题
中考考点分析
圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第
20 题都会考
15
查, 第 1 小题一般是切线的证明, 第 2 小题运用圆与三角形相似、 解直角三角形等知识求线段长 度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质, 掌握求线段、 角的方法, 理解概念之间的相互联系和知 识之间的相互转化, 理解直线和圆的三种位置关系, 掌握切线的性质和判定方法, 会根据条件解 决圆中的动态问题。
中考要求 B
会过不在同一直线上的三 点作圆;能利用圆的有关 概念解决简单问题
圆的性质
知道圆的对称性,了解弧、弦、 圆心角的关系
能用弧、弦、圆心角的关 系解决简单问题
圆周角
了解圆周角与圆心角的关系; 知道直径所对的圆周角是直角
垂径定理 点与圆的位置关系
直线与圆的位置关 系
圆与圆的位置关系 弧长 扇形 圆锥的侧面积和全 面积
典题精练
【例 2】 如图, C 是以 AB 为直径的⊙ O 上一点,过 O 作 OE⊥ 线于点 F,
17
连结 CF 并延长交 BA 的延长线于点 P. ⑴ 求证: PC 是⊙ O 的切线 . ⑵ 若 AB=4, AP: PC 1:2 ,求 CF 的长 .
典题精练
【例 1】 如图, 在△ ABC 中, AB BC ,以 AC 为直径的⊙ 0 与 BC 边
交于点 D,过点 D 作⊙ O 的切线 DE ,交 AB 于点 E,若
DE⊥ AB .求证: AE 3BE .
E
B
A O
D
C
题型二:切线的判定定理
思路导航

初中圆的切线知识点总结

初中圆的切线知识点总结

初中圆的切线知识点总结
嘿,同学们!今天咱就来好好聊聊初中圆的切线知识点,这可重要啦!
咱先说说啥是圆的切线吧。

想象一下啊,圆就像一个超级大的甜甜圈,切线呢,就像是一个勇敢的战士,笔直地冲向这个甜甜圈,并且只和甜甜圈接触了那一下,这就是切线啦!比如,你拿根笔直的铅笔去靠近一个圆形的物品,铅笔就是切线呢!
那怎么知道一条线是不是圆的切线呢?这可得注意几个关键点哦!如果一条直线经过圆上的一点,并且和过这个点的半径垂直,那它肯定就是切线啦!就好像你要过一条河,只有笔直地走那座桥才行,歪了可就掉河里啦!
还有呢,切线的性质也很关键呀!切线和圆只有一个交点,这是多么专一呀!再比如说,你有个好朋友只对你好,其他人都不理,这切线对圆就是这么专一!而且切线垂直于经过切点的半径,这就像有个大力士在那撑着,特别稳当。

那还有什么秘密呢?如果圆外一点引圆的两条切线,它们的切线长相等哦!这就像你有两个一样厉害的小伙伴,他们的能力不分上下呢。

哎呀呀,圆的切线知识点是不是很有趣呀?大家可得好好掌握,以后做题就会轻松很多啦!我觉得呀,这圆的切线就像是一把钥匙,能打开很多难题的大门呢!所以大家一定要认真学,别小瞧它哦!
我的观点就是:圆的切线知识点虽然有点难度,但只要用心去学去理解,就一定能学好,能让我们在数学的世界里畅游无阻!。

初中数学-切线问题教法解析

初中数学-切线问题教法解析

连结CF并延长交BA的延长线于点P。求证:PC是⊙O的切
线.
C
证明:连接OC,则OC=OA
F
∴△OAC为等腰三角形
∵OE⊥AC
B
E
O
A
P
∴∠AOF=∠COF
在△OAF与△OCF中
OA=OC
又∵AF切⊙O于A点
∠AOF=∠COF
∴∠OCF=∠OAF=90°
OF=OF
∴PC是⊙O的切线
∴△OAF≌△OCF
证明:连接OC,则OC=OA
D
∴∠OCA=∠OAC 又∵DC=DE ∴∠DCE=∠DEC 又∵∠DEC=∠AEM
F
E A
M
C B
O
∴∠AEM=∠DCE
又∵DM⊥AB
∴∠AEM+∠EAM=90°
∴∠DCE+∠ACO=90° ∴DC是⊙O的切线
分两角,转移为求两角和为90°
例11、如图,△ABC中,E是AC上一点,∠CAB=2∠EBC, AE=AB,以AB为直径的⊙O交AC于点D,交EB于点F。求 证:BC与⊙O相切;
证明:连接OD
E
∴OA=OD ∴∠OAD=∠ODA
C
D
∵AD平分∠OAE ∴∠EAD=∠OAD
A
B
O
∴∠EAD=∠ODA
∴AD//OD
又∵DE⊥AE
∴DE⊥OD
∴直线ED是⊙O的切线
证平行得垂直
例11、如图,在△ABC中,AB=AC,以AC为直径作⊙O交 BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F。 求证:EF与⊙O相切;
切线问题教法解析
圆切线问题主要内容
➢切线的性质及切线长定理的综合应用 ➢切线的证明

初中数学专题练习:圆的切线证明(解析版)

初中数学专题练习:圆的切线证明(解析版)

专题07圆的切线证明1.如图,等边△ABC内接于⊙O,P是上任意一点(不与点A、B重合),连AP、BP,过点C作CM∥BP 交PA的延长线于点M.(1)求∠APC和∠BPC的度数试;(2)探究PA、PB、PM之间的关系;(3)若PA=1,PB=2,求四边形PBCM的面积.解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵,,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC=60°,∴∠M=180°﹣∠BPM=180°﹣(∠APC+∠BPC)=180°﹣120°=60°,∴∠M=∠BPC=60°,∴∠PCM﹣∠PCA=∠ACB﹣∠PCA,即∠ACM=∠BCP,又∵BC=AC,∴△ACM≌△BCP(AAS),∴AM=BP,∵PM=PA+AM,∴PM=PA+PB;(3)∵△ACM≌△BCP,∴CM=CP,又∵∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=1+2=3,如图,过点P作PH⊥CM于H,在Rt△PMH中,∠MPH=30°,∴PH=,=(PB+CM)×PH=(2+3)×=.∴S梯形PBCM2.如图所示,线段AC是⊙O的直径,过A点作直线BF交⊙O于A、B两点,过A点作∠FAC的角平分线交⊙O于D,过D作AF的垂线交AF于E.(1)证明DE是⊙O的切线;(2)证明AD2=2AE•OA;(3)若⊙O的直径为10,DE+AE=4,求AB.(1)证明:连接OD,∴DE为⊙O切线;(2)证明:连接CD.∵AC为⊙O的直径,DE⊥AF∴∠ADC=90°,∠DEA=90°,∴∠ADC=∠AED,∴在△ACD和△ADE中,∠DAC=∠EAD,∠ADC=∠AED,∴△ACD∽△ADE,∴.∴AD2=AE•AC.∵AC=2OA,∴AD2=2AE•OA;(3)解:过点O作OM⊥AB于点M,则四边形ODEM为矩形,设DE=OM=x,则AE=4﹣x,∴AM=5﹣(4﹣x)=1+x,在Rt△AMO中,OA2=AM2+OM2,即:(1+x)2+x2=52解得:x1=3,x2=﹣4(舍去).∴AM=4.∵OM⊥AB,由垂径定理得:AB=2AM=8.3.如图1,△ABC内接于⊙O,过C作射线CP与BA的延长线交于点P,∠B=∠ACP.(1)求证:CP是⊙O的切线;(2)若PC=4,PA=2,求AB的长;(3)如图2,D是BC的中点,PD与AC交于点E,求证:.(1)证明:如图1,连结OA、OC,则OA=OC.∴∠OAC=∠OCA.∴∠AOC+2∠OCA=180°.由圆周角定理,得∠AOC=2∠B.∴2∠B+2∠OCA=180°.∴∠B+∠OCA=90°.∵∠B=∠ACP.∴∠ACP+∠OCA=90°,即∠OCP=90°.∴CP是⊙O的切线;(2)∵∠B=∠ACP,∠ACP=∠CPB,∴△APC∽△CPB.∴=,∴PB===8.∴AB=PB﹣PA=8﹣2=6;(3)如图2,延长ED至F,使DF=ED,连结BF,易得△BDF≌△CDE,∴BF=CE,∠CED=∠F.∴BF∥EC,∴==.由(2)得,PB=,∴=,∴.4.定义:如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.如矩形OBCD 中,点C为O,B两点的勾股点,已知OD=4,在DC上取点E,DE=8.(1)如果点E是O,B两点的勾股点(点E不在点C),试求OB的长;(2)如果OB=12,分别以OB,OD为坐标轴建立如图2的直角坐标系,在x轴上取点F(5,0).在线段DC上取点P,过点P的直线l∥y轴,交x轴于点Q.设DP=t.①当点P在DE之间,以EF为直径的圆与直线l相切,试求t的值;②当直线l上恰好有2点是E,F两点的勾股点时,试求相应t的取值范围.解:(1)如图1,连接OE,BE,若点E是O,B两点的勾股点,则∠OEB=90°,∴∠OED+∠CEB=90°,∵∠OED+∠DOE=90°,∴∠DOE=∠CEB,又∵∠C=∠ODE,∴△BCE∽△EDO,∴=,即=,∴CE=2,∴OB=DE=8+2=10;(2)①如图2﹣1,设以EF为直径的圆的圆心为Q,与直线l的切点为M,直线l与OB的交点为H,连接QM,则∠FME=90°,QM⊥PH,∴∠HMF+∠PME=90°,∵∠PME+∠PEM=90°,∴∠HMF=∠PEM,又∵∠MHF=∠EPM=90°,∴△MHF∽△EPM,∴=,∵QM⊥PH,l∥y轴,∴HF∥MQ∥PE,∴=,∵FQ=QE,∴HM=MP=2,又∵DP=OH=t,DE=8,OF=5,∴HF=5﹣t,PE=8﹣t,∴=,解得,t1=4,t2=9(点P在DE之间,舍去),∴t=4;②如图2﹣2,当直线l在⊙Q的右侧与⊙Q相切时,由①知△MHF∽△EPM,∴=,此时,HM=MP=2,HF=t﹣5,PE=t﹣8,∴=,解得,t1=4,t2=9,∴当t=4或9时直线l与⊙Q相切,∵点E,F以及直线l上的点均可为直角三角形的直角顶点,∴当直线l上恰好有2点是E,F两点的勾股点时,相应t的取值范围为0≤t<4或t=5或t=8或9<t≤12.5.如图,AB是⊙O的直径,点P是圆上不与点A,B重合的动点,连接AP并延长到点D,使AP=DP,点C是BD的中点,连接OP,OC,PC(1)求证:∠A=∠D;(2)填空:①若AB=10cm,当AP=cm时,四边形AOCP是菱形;②当四边形OBCP是正方形时,∠DPC=°.(1)证明:如图,连接PB,∵AB是⊙O的直径,∴BP⊥AD,∵AP=PD,∴BP是线段AD的垂直平分线,∴BA=BD,∴∠A=∠D;(2)解:①∵AP=PD,BC=DC,∴,∵AB是⊙O的直径,∴,∴OA=PC,∴四边形AOCP是平行四边形,∴当时,平行四边形AOCP是菱形,故答案为:5;②当四边形OBCP是正方形时,∠POB=90°,∵OA=OP,∴∠OPA=∠A=45°=POB,∴PC∥AO,∴∠DPC=∠A=45°,故答案为:45.6.如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.解:(1)设点Q的运动速度为acm/s,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,=(60﹣6×5)×5a=450,∴S△PDQ∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.7.如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)证明:CD是⊙O的切线;(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)解:(1)过点O作OE⊥CD于E,∵四边形ABCD是矩形,∴∠A=∠ADC=∠OED=90°,∴四边形ADEO是矩形,∴AD=OE,∵AB=2BC,∴AB=2AD=2OE,∴AO=OE,∴CD是⊙O的切线;(2)∵四边形ADEO是矩形,∴∠AOE=∠BOE=90°,==.∴阴影部分的面积=S扇形BOE8.定义:已知点O是三角形的边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点O叫做该三角形的等距点.(1)如图1,△ABC中,∠ACB=90°,AC=3,BC=4,O在斜边AB上,且点O是△ABC的等距点,试求BO的长.(2)如图2,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆圆心是△ABC的等距点;②求tan∠PDC的值.解:(1)CB=4,AC=3,则AB=5,①当OH⊥BC时,只有OH=OA一种情况,设OB=x,则OH=OA=5﹣x,则sin B===,解得:x=;②当OH′⊥AC时,同理可得:OH′=OB,解得:x=,综上,OB=或;(2)①设△CPD的外接圆圆心为点O,连接OP、OB,则OD=OP=OC,设圆的半径为R,AP=2BP=2a,则AD=2R,OD=R,则,故PD∥OB,故∠BOP=∠DPO,∠COB=∠ODP,而∠ODP=∠OPD,∴∠POB=∠COB,而BO=BO,OP=OC,∴△BCO≌△BPO(SAS),∴∠BPO=90°,即OP⊥AB,且OP=OC,故:△CPD的外接圆圆心是△ABC的等距点;②∵△BCO≌△BPO(SAS),∴BC=BP=a,而AB=3a,AC=4R,故(3a)2=(4R)2+a2,解得:a=,tan∠PDC=tan∠COB====.9.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.(1)求证:∠FGC=∠AGD;(2)若AD=6.①当AC⊥DG,CG=2时,求sin∠ADG;②当四边形ADCG面积最大时,求CF的长.证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)如图,设AC与GD交于点M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=6,AM=6﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(6﹣x)2+(3x)2=62,解得,x1=0(舍去),x2=,∴AM=6﹣=,∴sin∠ADG===;=S△ADC+S△ACG,(3)S四边形ADCG∵点G是上一动点,∴当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=6.10.如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,FG是⊙O的切线,FG∥BD,DF与AB交于点E.(1)求证:BE=BD;(2)若AB=8,DH=3,求EH的长.解:(1)如图,连接OF,∵FG是⊙O的切线,∴∠GFD+∠OFD=90°,∵AB⊥CD,∴∠DEH+∠ODE=90°,∵OF=OD,∴∠OFD=∠ODF.∴∠DEH=∠GFD,∵FG∥BD,∴∠GFD=∠BDF,∴∠DEH=∠BDF,∴BE=BD;(2)∵CD是⊙O的直径,弦AB⊥CD,垂足为H,∴,∵DH=3,∴BD=5,∵BE=BD,∴BE=5,∴EH=BE﹣BH=1,答:EH的长为1.11.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D作DE⊥MN 于点E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(1)证明:连接OD,如图所示:∵OA=OD,∴∠3=∠2,∵AD平分∠CAM,∴∠2=∠1,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,如图所示:∵AC是⊙O的直径,∴∠ADC=90°,∴AD===3(cm),∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠1,∴△ADC∽△AED,∴=,即=,∴AC=15(cm),∴OA=AC=cm,即⊙O的半径为cm.12.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.解:(1)过点O作OE⊥AB于点E,∵O为∠MBN角平分线上一点,∴∠ABD=∠CBD,又∵BC为⊙O的切线,∴AC⊥BC,∵AD⊥BO于点D,∴∠D=90°,∴∠BCO=∠D=90°,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即=,∴AD=2.13.如图1是一块内置量角器的等腰直角三角板,它是一个轴对称图形.已知量角器所在的半圆O的直径DE与AB之间的距离为1,DE=4,AB=8,点N为半圆O上的一个动点,连结AN交半圆或直径DE 于点M.(1)当AN经过圆心O时,求AN的长;(2)如图2,若N为量角器上表示刻度为90°的点,求△MON的周长;(3)当时,求△MON的面积.解:(1)如图1中,连接FO延长FO交AB于H.则FH⊥AB,FH⊥DE.∵FA=FB,FH⊥AB,∴AH=HB=4,在Rt△AOH中,∵OH=1,AH=4,∴OA===,∴AN=OA+ON=+2.(2)如图2中,连接OM,作OJ⊥MN.在Rt△AHN中,∵AH=4,NH=ON+OH=2+1=3,∴AN===5,由△△OJN∽△AHN,可得=,∴=,∴JN=,∵OJ⊥MN,∴JM=JN,∴MN=2JN=,∴△MON的周长=2+2+=.(3)如图3﹣1中,连接AO,延长AO交⊙O于K,作OJ⊥MN于J,连接OM,ON.设AM=MN=x,OJ=y,则有,解得,∴MN=,OJ=,=•MN•OJ=××=.∴S△MON如图3﹣2中,连接ON,作NJ⊥AB于J交DE于K.∵AM=MN,MK∥AJ,∴NK=JK=OH=1,∵NJ⊥AB,DE∥AB,∴NK⊥OE,∴sin∠NOK==,∴OK=NK=,∵四边形OKJH是矩形,∴HJ=OK=,∴AJ=4+,∴MK=AJ=2+,∴OM=MK﹣OK=2﹣,=•OM•NK=•(2﹣)×1=1﹣,∴S△MON综上所述,满足条件的△MON的面积为或1﹣.14.MN是⊙O上的一条不经过圆心的弦,MN=4,在劣弧MN和优弧MN上分别有点A,B(不与M,N 重合),且,连接AM,BM.(1)如图1,AB是直径,AB交MN于点C,∠ABM=30°,求∠CMO的度数;(2)如图2,连接OM,AB,过点O作OD∥AB交MN于点D,求证:∠MOD+2∠DMO=90°;(3)如图3,连接AN,BN,试猜想AM•MB+AN•NB的值是否为定值,若是,请求出这个值;若不是,请说明理由.解:(1)如图1,∵AB是⊙O的直径,∴∠AMB=90°.∵,∴∠AMN=∠BMN=45°.∵OM=OB,∴∠OMB=∠OBM=30°,∴∠CMO=45°﹣30°=15°;(2)如图2,连接OA,OB,ON.∵,∴∠AON=∠BON.又∵OA=OB,∴ON⊥AB.∵OD∥AB,∴∠DON=90°.∵OM=ON,∴∠OMN=∠ONM.∵∠OMN+∠ONM+∠MOD+∠DON=180°,∴∠MOD+2∠DMO=90°;(3)如图3,延长MB至点M′,使BM′=AM,连接NM′,作NE⊥MM′于点E.设AM=a,BM=b.∵四边形AMBN是圆内接四边形,∴∠A+∠MBN=180°.∵∠NBM′+∠MBN=180°,∴∠A=∠NBM′.∵,∴AN=BN,∴△AMN≌△BM′N(SAS),∴MN=NM′,BM′=AM=a.∵NE⊥MM′于点E.∴.∵ME2+(BN2﹣BE2)=MN2,∴.化简得ab+NB2=16,∴AM•MB+AN•NB=16.15.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD 于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥PD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠ECP=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国最大的教育门户网站 圆的切线的证明
一、“见切点,连半径”――证明半径与直线垂直 例1.AB 是O 的直径,AB AC ⊥,BC 交⊙O 于P Q ,是AC 的中点.求证:QP
是⊙O 的切线.
分析:本例中,要证明“QP 是⊙O 的切线”,因为P 在⊙O 上,如果结论成立,则点P 肯定是切点,所以只要连接OP ,证明OP PQ ⊥即可.
证明:连接OP ,PA ,
AB 是⊙O 的直径,90APB ∠=︒∴. 在Rt APC △中,Q 是AC 的中点,
PQ AQ =∴,QAP QPA ∠=∠∴.
又OP OA =,OAP QPA ∠=∠∴,OAQ QPO ∠=∠∴.
AB AC ⊥,OP PQ ⊥∴.QP ∴是⊙O 的切线.
二、“过圆心,作垂线”――证明垂线段等于半径
例2.直角梯形ABCD 中,以腰CD 为直径的⊙1O 恰与另一腰AB 相切,求证:以腰AB 为直径的⊙2O 也与腰CD 相切.
分析:要证明以腰AB 为直径的⊙2O 与腰CD 相切,因为⊙2O 的半径是AB 的一半,由切线的定义可知,CD 如果与⊙2O 相切,则2O 到CD 的距离应等于半径1
2
AB ,
所以过2O 作2O E CD ⊥,证明21
2
O E AB =
即可. 证明:过1O 作12O O AB ⊥,则22O A O B =, 作21DF O O ⊥于F ,作2O E CD ⊥于E ,
AB 与⊙1O 相切,121O O O D =∴.
211211Rt Rt O O E DO F O O E DO F ∠=∠,∴△≌△,
2O E DF =∴.
B
C
Q P
O
A B C
D
E F
1O
O
中国最大的教育门户网站 2DF O A =,21
2
O E AB =
∴,∴以腰AB 为直径的⊙2O 也与腰CD 相切.。

相关文档
最新文档