高次方程韦达定理学案
教案韦达定理
教案韦达定理TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】教案:韦达定理(一)王伟光一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。
培养逻辑思维及创新思维能力。
二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.x2+2x﹣4=0 3x2+2x﹣6=0 2x2﹣5x﹣3=0x 1+x2=? x1+x2=? x1+x2=?x 1x2=? x1x2=? x1x2=?问题1:对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征?x1+x2=-,x1·x2=,如何推导一元二次方程两根和与两根积和系数的关系?设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.∴aacbbx2421-+-=,aacbbx2422---=.()042≥-acb由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理三:韦达定理内容:韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b cx +x =x x =a a-⋅,。
这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。
其逆命题:如果12x x ,满足1212bc x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。
四:韦达定理应用:韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。
金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用等。
教案韦达定理
教案:韦达定理(一)王伟光一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。
培养逻辑思维及创新思维能力。
二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.(一)定理的发现及论证问题1:对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征?x 1+x2=-,x1·x2=,如何推导一元二次方程两根和与两根积和系数的关系?设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.∴a acbbx24 21-+-=,aacbbx2422---=.()042≥-acb由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理三:韦达定理内容:韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b cx +x =x x =a a-⋅,。
这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。
其逆命题:如果12x x ,满足1212bc x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。
四:韦达定理应用:韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。
金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值;⑤韦达(法国1540-1603)在平面几何中的应用;⑥在二次函数中的应用等。
(1)、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。
例题1:若x 1,x 2是一元二次方程x 2﹣7x-2007=0的两根,则x 1+x 2与x 1?x 2的值分别是【 】练习:①下列一元二次方程两实数根和为﹣4的是【 】A .x 2+2x ﹣4=0B .x 2﹣4x+4=0C .x 2+4x+10=0D .x 2+4x ﹣5=0②若关于x 的方程022=+-m x x 的一个根为1-,则另一个根为【 】 A .3- B .1- C .1 D .3(2)、求对称代数式的值:应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。
韦达定理教案
教师一对一个性化教案学生姓名年级科目授课教师日期时间段课时授课类型新课/复习课/作业讲解课教学目标教学内容个性化学习问题解决教学重点、难点及考点分析教学过程求代数式的值求待定系数一元二次韦达定理应用构造方程方程的求解特殊的二元二次方程组根公式二次三项式的因式分解【内容分析】韦达定理:对于一元二次方程20(0)ax bx c a++=≠,如果方程有两个实数根12,x x,那么1212,b cx x x xa a+=-=说明:(1)定理成立的条件0∆≥(2)注意公式重12bx xa+=-的负号与b的符号的区别根系关系的三大用处(1)计算对称式的值例若12,x x是方程2220070x x+-=的两个根,试求下列各式的值:(1) 2212x x+;(2)1211x x+;(3)12(5)(5)x x--;(4)12||x x-.解:由题意,根据根与系数的关系得:12122,2007x x x x+=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x+=+-=---=(2) 121212112220072007x xx x x x+-+===-(3)121212(5)(5)5()2520075(2)251972x x x x x x--=-++=---+=-(4) 22212121212||()()4(2)4(2007)22008x x x x x x x x-=-=+-=---=说明:利用根与系数的关系求值,要熟练掌握以下等式变形:教学过程222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-, 2121212||()4x x x x x x -=+-,2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:2221x 1x 1+(2)构造新方程理论:以两个数为根的一元二次方程是。
(完整版)韦达定理教学案例
教学环节
教师活动
预设学生行为设计Βιβλιοθήκη 图问题引探解下列方程:
2x2+5x+3=0 3x2-2x-8=0
并根据问题2和以上的求解填写下表
请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?
问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________。
学情分析
1.学生已学习用求根公式法解一元二次方程,。
2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4、使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
⑤当a≠0,c=0时,方程必有一根为0。
学生交流探讨
本设计采用“实践——观察——发现——猜想——证明”的过程,使学生既动手又动脑,且又动口,教师引导启发,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。
初高数学衔接导学案第六至第九课《韦达定理》《方程》《方程组》《不等式》
第六课 根的判别式与韦达定理一、知识点1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:2.韦达定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是12,x x ,那么有: 12x x +=_________ 12x x =_________ 二、例题例1 解关于x 的方程:(1)x 2-3x +3=0 (2)x 2-2x +a =0 (3)2210mx x ++=例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.例4 已知12,x x 是方程2520x x --=两个实数根,求下列式子的值:①1211x x +;②2212x x +;③3312x x +;④()()1211x x --;⑤12x x -例5 已知两个数的和为4,积为-12,求这两个数.例6 求作一个方程,使它的根是方程2780x x -+=的两根的平方的负倒数.例7 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.三、练习: 1.填空题:(1)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 .(2)方程kx 2+4x -1=0的两根之和为-2,则k = .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . (5)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 .2.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.3.已知一元二次方程22450x x --=的两个根分别是12,x x ,求下列式子的值:(1)12(2)(2)x x ++ (2)3312x x + (3)12x x -4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.5.若关于x 的方程x 2+x +a =0的一个根大于1,另一根小于1,求实数a 的取值范围.第七课 分式方程高次方程与无理方程一、知识点解分式方程高次方程与无理方程的常用方法: 二、例题例1 解方程:⑴、354147=--+x x⑵、06)1(5)1(2=++-+x x x x(3)222223(21)20212x x x x +--+=-+例2 解方程:(1)322530x x +-= (2)024)5(2)5(222=----x x x x(3)(2)(1)(3)(6)16x x x x -+++= (4)43226210x x x x +-++=例3 解方程:(11x =+ (23=(3)23152x x ++=三、练习: 解下列方程: (1)2315()6022x x -+=-- (2)43253222=+-+xx x x (3)22324123x x x x =---- (4)xx x x x x 3133512=-++-+(5)22)12(31222222-=+---+x x x x (6)03)76(2)76(222=----x x x x(71= (8)22415x x -+=第八课 二元二次方程组与三元一次方程组一、知识点解方程组的方法: 二、例题例 解下列方程组:(1)22210410x y x y x y --=⎧⎨---+=⎩ (2)1128x y xy +=⎧⎨=⎩(3)222255043x y x y x xy y ⎧---=⎪⎨++=⎪⎩ (4)22124x xy xy y ⎧+=⎪⎨+=⎪⎩(5)2222384x y x xy y ⎧-=⎪⎨++=⎪⎩ (6)2311322114324x y z x y z x y z ++=⎧⎪+-=⎨⎪--=⎩三、练习:解下列方程组(1)⎩⎨⎧=-=+1543222y x y x(2)⎪⎩⎪⎨⎧=+=--52322222y x y xy x(3)⎩⎨⎧-==+103xy y x(4)⎪⎩⎪⎨⎧=---=+-+3)(2)(5)(4)(22y x y x y x y x(5)⎪⎩⎪⎨⎧=-+-=-++09412902522222y xy x y xy x (6)1226310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩第九课 一元二次不等式一、知识点:一元二次不等式的解集:二、例题例1 解下列不等式:⑴ 036>-x (2) 0322<-+x x (3)062<+-x x变式: (1)23520x x +-≥ (2)2210x x -++<(3)2450x x -+> (4)2440x x -+->例2 解下列不等式(1)04312>--x x (2) 012>+-x x (3)81153x x +≥+例3 解关于x 的不等式2(1)0x x a a ++->(a 为常数).例4 已知不等式)0(02≠<++a c bx ax 的解是2<x 或3>x ,求不等式02>++c ax bx 的解.三、练习:1.解下列不等式 (1)0432>--x x(2)0122≤--x x(3)0432>-+x x(4)08162≤+-x x(5)01232<+-x x(6)0432<-x(7)122-≥-x x(8)(2)(53)0x x +-≤(9)3112>--xx (10)0)1(2<++-a x a x (a 为常数).2.已知关于x 不等式022>-+c bx x 的解为1-<x 或3>x 。
韦达定理教案范文
韦达定理教案范文一、教案概述本教案针对高中数学课程中的韦达定理进行讲解和练习。
韦达定理是高中数学的重要内容之一,它是用来求解二次方程根的一种方法。
本教案以理论讲解和例题演练相结合的方式,旨在帮助学生深入理解韦达定理的原理和应用。
二、教学目标1.理解韦达定理的定义和原理;2.掌握使用韦达定理解二次方程的方法;3.能够灵活运用韦达定理求解实际问题。
三、教学内容1.韦达定理的定义和原理;2.韦达定理的应用;3.实际问题的解决方法。
四、教学步骤及教学方法1.引入新课(5分钟)通过引入类比,向学生介绍韦达定理,让学生从直观的例子中理解韦达定理的定义和原理。
2.理论讲解(25分钟)通过讲解例题和解题思路,详细阐述韦达定理的应用方法和步骤,包括如何列方程、如何计算韦达定理的公式、如何求解根等。
3.例题演练(15分钟)以课本上的习题为例,分组演练韦达定理的应用,教师抽取几道题目,引导学生进行讨论和解答,同时解答学生在解题过程中出现的疑惑和问题。
4.进一步拓展(10分钟)通过提供一道拓展习题,引导学生思考如何将韦达定理应用于实际问题的解决。
5.小结与作业布置(5分钟)对本节课的重点内容进行小结,鼓励学生进行课后练习,并布置相应的作业。
五、教学手段及教具教学手段:讲解、演练、互动探究。
教具:教师课件、习题、实物类比。
六、教学评估1.在课堂上观察学生的主动参与情况;2.检查学生在例题演练中的解题思路和结果;3.对学生的课堂表现进行口头评估。
七、教学资源教师课件、学生课本、习题集。
八、教学反思通过对学生课后作业的批改和教学评估,进一步了解学生对韦达定理的掌握情况。
在下节课中,可以根据学生的学习情况,进一步引导学生应用韦达定理解决更加复杂的实际问题。
同时,在讲解过程中,要注意与学生的互动,鼓励学生积极思考和提问,培养学生的解决问题的能力。
(第6次课学案)韦达定理
x2 (2m 1) x m2 3 0 的根,则 m 等于(
A. 3 B. 5
C. 5或பைடு நூலகம் 3
D. 5或3
4.若实数 a b ,且 a , b 满足 a2 8a 5 0, b2 8b 5 0 ,则代数式 A. 20 B. 2 C. 2或 20
C. k 2
D. k 2, 且k 1 )
2.若 x1 , x2 是方程 2 x 6 x 3 0 的两个根,则 A. 2 B. 2
1 1 的值为( x1 x2
1 2
)
C.
D.
9 2
3 . 已 知 菱 形 ABCD 的 边 长 为 5 , 两 条 对 角 线 交 于 O 点 , 且 OA 、 OB 的 长 分 别 是 关 于 x 的 方 程
10.已知关于 x 的一元二次方程 x2 (4m 1) x 2m 1 0 . (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为 x1 , x2 ,且满足
1 1 1 ,求 m 的值. x1 x2 2
11. 若 x1 , x2 是方程 x 2 x 2007 0 的两个根,试求下列各式的值:
2
(k 3) x2 kmx m2 6m 4 0 有实数根.
13、若 x1 , x2 是关于 x 的方程 x2 (2k 1) x k 2 1 0 的两个实数根,且 x1 , x2 都大于 1. (1) 求实数 k 的取值范围; (2) 若
x1 1 ,求 k 的值. x2 2
2
(1) x12 x22 ;
(2)
1 1 ; x1 x2
(3) ( x1 5)( x2 5) ;
维达定理教案
背景记载学校班级数学任课老师九年级数学,人民教育出版社出版2010-11-21课题名称:韦达定理及其应用教学目标:让学生进一步理解韦达定理的实质是反映出由n 个根与系数构成了n 个n 元方程组,与解一元n 次方程是完全等价的问题。
因而只利用根与系数之关系并不能解决一元n 次方程求根的问题。
只有当给出了各根之间满足的某些条件时才能应用韦选定理求方程的解集。
教学内容:教学重点和难点:重点是韦达定理的应用,难点是灵活应用韦达定理解综合性题。
课的类型:综合课教学方法:教材教具准备教学时间教学过程设计和板书设计【教学过程】一、复习提问1.韦达定理及其作用。
2.已知方程x3+p1x2+p2x+p3=0,的根为α、β、γ,则由韦达定理,得αβγ()αβαγβγ()αβγ()+ + = -p 1+ + = p 2= -p 323ìí ïî ï下面解含α、β、γ的方程组,结果说明什么问题?解:(1)×α2 得α3+α2β+α2γ=-p1α2 (4)(2)×(-α)得-α2β-αβγ-α2γ=-αp2 (5)(3)+(4)+(5)得α3+p1α2+p2α+p3=0 这个结果与原方程完全相同,说明如果我们没有办法解出原方程时,同样从这三个根与系数的关系仍不能解出它的根来,只有当给出各根之间具有某种特殊关系时,应用根与系数之关系才能求出方程的根。
二、引入新课——韦达定理的应用三、小结1.已知方程的根与系数具有某种关系时应用韦达定理转化为解方程组的问题求解,当未知数的个数少于方程组中方程个数时,要适当选择方程组求解,之后必须通过检验该解满足余下的方程才是原方程的解。
2.应用韦达定理确定方程中的参数。
作业(略)(王秋芳)。
韦达定理初中教案
韦达定理初中教案教学目标:1. 理解并掌握韦达定理的内容及应用;2. 能够运用韦达定理解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 韦达定理的表述及证明;2. 韦达定理的应用。
教学难点:1. 韦达定理的推导过程;2. 灵活运用韦达定理解决实际问题。
教学准备:1. 教师准备PPT或黑板,展示韦达定理的推导过程和应用实例;2. 学生准备笔记本,记录重要的知识点和解题步骤。
教学过程:一、导入(5分钟)1. 引导学生回顾一元二次方程的根与系数的关系;2. 提问:你们认为一元二次方程的根与系数之间有什么联系呢?二、新课讲解(15分钟)1. 介绍韦达定理的背景和意义;2. 讲解韦达定理的表述及证明过程;3. 通过例题展示韦达定理的应用。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 挑选几位学生的作业进行讲解和分析。
四、拓展与应用(15分钟)1. 引导学生思考:如何利用韦达定理解决实际问题?2. 举例讲解如何利用韦达定理解决实际问题;3. 让学生分组讨论,提出自己遇到的实际问题,共同解决。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结韦达定理的表述和应用;2. 提问:你们认为韦达定理在数学中有什么重要性?教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生练习题的完成情况;3. 学生对实际问题的解决能力。
教学反思:本节课通过讲解韦达定理的表述及证明,让学生了解并掌握韦达定理的内容及应用。
在课堂练习环节,学生能够独立完成练习题,对韦达定理有一定的理解。
但在拓展与应用环节,部分学生对如何将韦达定理应用于实际问题还存在一定的困难。
在今后的教学中,可以更多地举一些实际例子,让学生更好地理解和运用韦达定理。
高次方程韦达定理 学案
高次方程韦达定理学习目标1. 掌握高次方程韦达定理的一般形式2. 能应用韦达定理及其逆定理解题引例 若实数,x y 满足333312017201520172016x y+=-- ⑴333312014201520142016x y+=-- ⑵试求x y +.(2017年清华大学中学生标准学术能力测试,原题是选择题)思路分析 规范解答一般地,在复数域内,设关于x 的n 次方程()11000nnn n n a x a x a x a a -++++=≠ 的n 个根是()1i x i n ≤≤,则有韦达定理(根与系数关系)如下:()()1212112110111k k nn i i n n i ji j n nk n ki i i i i i n n n n i i n a x a a x x a a x x x a a x a -=-≤<≤-≤<<<≤=⎧=-⎪⎪⎪=⎪⎪⎪⎪⎨⎪=-⎪⎪⎪⎪⎪=-⎪⎩∑∑∑∏ ⑶韦达定理的逆定理也成立,即:若()1i x i n ≤≤满足(3)式,则()1i x i n ≤≤一定是关于x 的方程()11000nnn n n a x a x a x a a -++++=≠ 的n 个根.特别地,设一元三次方程()3200ax bx cx d a +++=≠的三个根分别为123,,x x x ,则有:123122331123,,,b x x x a c x x x x x x a d x x x a ⎧++=-⎪⎪⎪++=⎨⎪⎪=-⎪⎩⑷例1 设22222221123456a b c d e f k k k k k k k +++++=++++++⑸对1,2,3,4,5,6k =均成立,试求a b c d e f +++++. 思路分析 规范解答例2 已知方程201710z-=的所有复数根为()1,2,,2017i z i = ,则下列关于2017112i iz =-∑的判断中,一定正确的有( ).A. 是比20172大的实数 B. 是比20172小的实数C. 是有理数D. 是虚数(2017年清华大学优秀中学生文科冬令营试题)思路分析 规范解答例3 若实系数多项式()32f x x ax bx c =+++有三个非负零点,求证:3297a c ab +<. ⑹(2014年北京大学优秀中学生暑期体验营)思路分析 规范解答例4 设实数123123,,,,,a a a b b b 满足{}{}123123122331122331123123min ,,min ,,a a a b b b a a a a a a b b b b b b a a a b b b ++=++⎧⎪++=++⎨⎪≤⎩⑺求证:{}{}123123max ,,max ,,a a a b b b ≤.(2008年北京大学自主招生试题)思路分析 规范解答例5 实数,,a b c 和正数λ使得320x ax bx c +++=有三个实数根123,,x x x ,且21x x λ-=,1232x x x +>. 求证:332279a c ab λ+-≤(全国高中数学联赛试题)思路分析 规范解答课后思考1. 若两两不同的实数,,x y z 满足323232333x x y y z z -=-=-,则x y z ++等于( )A. 1-B. 0C. 1D. 前三个都不对(2016年北京大学博雅计划试题)2. 定义区间两端点之差的绝对值为区间的长度. 若不等式12351234x x x ++≥---的解集是互不相交的若干区间的并集,求这个解集的所有区间的长度之和.(高中数学联赛湖北省预赛试题)3. 若实数,a b 使得方程320x ax bx a -+-=有三个正实根,求32331a ab ab -++的最小值.(第十届东南地区奥林匹克竞赛试题)4. 设关于x 的方程231231n n n n n n x a x a x a x a x ----+++++= 有n 个非负实数根,求证:2323202221nnn n a a a n -⎛⎫≤+++≤+ ⎪⎝⎭.(亚太地区奥林匹克竞赛试题)。
(完整版)韦达定理教学案例
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
教学案例
基本信息
题目
一元二次方程根与系数的关系
学科
数学
年级
九年级
教材内容
人教版九年级上册第二十三章第3节:一元二次方程根与系数的关系
个人信息
设计者
姓名
单位
徐跃鉴
江西省万年县石镇中学
教材分析
一元二次方程根与系数的关系的知识内x+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
回顾总结
板书设计
一元二次方程根与系数的关系
如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b2<-4ac>可判定根的情况;
教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
05.韦达定理学案
2016届自主招生数学教学内容05.韦达定理学案【教学目标】1.通过具体特例获得韦达定理,从而渗透归纳猜想的思想.2.会用韦达定理解有关一元二次方程根与系数关系的问题,渗透化归的思想. 【教学重点】通过具体特例获得韦达定理,从而渗透归纳猜想的思想. 【教学难点】会用韦达定理解有关一元二次方程根与系数关系的问题. 【教学过程】 一.复习引入 1.问题(1)解方程0322=--x x ;051892=+-x x ,并分别求两根之和21x x +与两根之积21x x .问题(2)分别考察21x x +与21x x 方程系数的关系.2.归纳猜想:若21,x x 是一元二次方程)04,0(022≥-≠=++ac ba c bx ax 的两个根,则21x x +, 21x x 与c b a ,,的关系.二.韦达定理 1.韦达定理:若21,x x 是一元二次方程)04,0(022≥-≠=++ac b a c bx ax 的两个根,则ab x x -=+21,ac x x =21.反之,如果ab x x -=+21,ac x x =21,则21,x x 是一元二次方程)0(02≠=++a c bx ax 两个根. 2.学生给出证明:3.练习1:若下列方程有解,试分别写出两根之和与两根之积.(1)06322=-+x x ; (2)01442=+-x x ; (3)06322=++x x .练习2::已知方程022=++c bx x 两根和为23-,两积为-3,求a , b 的值.三.定理应用例1.已知21,x x 是方程02=++m mxx 的两个根.(1)求m 的取值范围;(2)当2-=m 时,求2221x x +的值;(3*)求2221x x +的取值范围.例2.已知抛物线322-+-=mx x y 与x 轴交于不同两点A 、B .(1)若A 点横坐标为1,求B 点的横坐标; (2)若A 、B 两点间距离为1,求m 的值.(或条件改为:方程0322=-+-mx x两根为21,x x )练习:已知方程06322=-+x x 两根为21,x x ,分别求221)(x x -;2221x x +;1221x x x x +;3231x x +的值.例3*.已知方程01)1(2=+-+x m x 有两个不同的实数解21,x x .(1)求实数m 的取值范围;(2)若0,021>>x x ,求m 的取值范围.四.小结与作业1.小结:韦达定理实质:反映了一元二次方程)04,0(022≥-≠=++ac b a c bx ax 根与系数的关系,在解决实际问题过程中,往往不通过求解方程的根而解决问题.注意的是:定理的前提是:方程有解(如例1、例3). 今后常会碰到:用a , b , c 表示2221x x +;||21x x -等.2.可给出韦达定理其他证明: (1)0,0122121=++=++c bx ax c bx ax 两式相减求得21x x +(注意21x x =的讨论);两式相加可得21x x . (2)由))((212x x x x a c bxax --=++比较可得.3.作业:见讲义。
韦达定理教案(大全五篇)
韦达定理教案(大全五篇)第一篇:韦达定理教案教案:韦达定理一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。
培养逻辑思维及创新思维能力。
二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.三、教学过程(一)定理的发现及论证提出问题:已知α,β是方程2x2-3x-1=0的两根,如何求α3+β3的值1.你能否写出一个一元二次方程,使它的两个根分别为1)2和3 2)—4和7问题1:从求这些方程的过程中你发现根与各项系数之间有什么关系?观察、思考、探索:2x-5x+3=0,这个方程的两根之和,两根之积与各项系数之间有什么关系?请猜想? 2问题2;对于一元二次方程的一般式ax+bx+c=0(a≠0)是否也具备这个特征?22结论1.如果ax+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-bc,x1x2=aa结论2.如果方程x+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q. 2结论1具有一般形式,结论2有时给研究问题带来方便.(二)定理的应用例1、关于x的方程x-2x+m=0 的一根为2,求另一根和m的值。
2例2.已知α,β是方程2x2-3x-1=0的两根,不解方程,求下列各式的值.11(1)+(2)(α+1)(β+1)αβ(3)α2+β2(5)α+β33(4)|α-β|例2、已知x1,x2是关于x的方程x2-6x+k=0的两个实数根且x1x2-(x1+x2)=115,求k值。
例3已知实数a,b分别满足a+2a=2,b+2b=2且a≠b,求222211+的值 ab(三)总结一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,为进一步学习使用打下坚实基础.韦达定理的内容2①如果ax+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=- ba,1·2=xxca②如果方程x+px+q=0的两个根是x1,x2,那么 x1+x2=-p,x1·x2=q. 2第二篇:韦达定理代数式的值教案根与系数的关系2教学目标:1、会利用韦达定理求出与根有关的代数式的值2、学会灵活多变的代数式变形3、会求作新方程一、知识回顾1、设、代数式是方程=。
初高中衔接教材教案2韦达定理、一元二次方程、判别式
一元二次方程【学习目标】:1.熟练掌握一元二次方程的解法及其根的判断;2.理解韦达定理并能运用其来处理相关问题。
【复习引入】:一元二次方程是中学代数的重要内容之一,是进一步学习其他方程、不等式、函数等的基础,其内容非常丰富,本讲主要介绍一元二次方程的基本解法及韦达定理的运用.1.概念:方程ax 2+bx+c=0 (a ≠0) 称为一元二次方程.2.基本解法有开平方法、配方法、公式法和因式分解法.3.对于方程ax 2+bx+c=0 (a ≠0),△=b 2-4ac 称为该方程的根的判别式.当△>0时,方程有两个 的实数根,即当△=0时,方程有两个 的实数根,即当△<0时,方程 实数根.4. (1)若一元二交方程ax 2+bx +c =0 (a ≠ 0)的两个根为x 1,x 2,则x 1+x 2=_____,x 1x 2=_______. (韦达定理)(2)若x 1,x 2是方程x 2+px +q =0的二根,则p =______, q =_______,以实数x 1,x 2为根的一元二次方程(二次项系数为1)是________.【典例欣赏】:例1. 试用多种方法解方程:x 2-3x +2=0例2. 已知m,n 为整数,关于x 的三个方程:x 2+(7-m )x +3+n =0有两个不相等的实数根;x 2+(4+m )x +n +6=0有两个相等实数根;x 2-(m -4)x+n+1=0没有实数根. 求m,n 的值 。
变题:已知实数x 、y 满足01222=+-+-+y x xy y x ,试求x 、y 的值。
例3.若21,x x 是方程0201022=-+x x 的两个根,试求下列各式的值:(1)21x x +,21x x ⋅;(2)2111x x +;(3)2221x x +,21x x -;(4))1()1(21+⋅+x x例4.已知21,x x 是一元二次方程01442=++-k kx kx 的两个实数根。
韦达定理复习学案(打印版)
韦达定理复习学案知识要点:(三)一元二次方程根的判别式,根与系数的关系 根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ 1、对于任意一个一元二次方程)0(02≠=++a c bx ax 根的判别式是: △ =b 2-4ac2、一元二次方程的根与根的判别式的三种关系:①当△=b 2-4ac >0时,方程有 个 实数根。
②当△=b 2-4ac=0时,方程有 个相等的实数根。
③当△=b 2-4ac <0时,方程没有实数根。
注:△=b 2-4ac ≥0时,方程有 根。
3、反之,①若方程有两个不相等的实数根,则一定有△=b 2-4ac >0②若方程有两个相等的实数根,则一定有△=b 2-4ac=0。
③若方程没有实数根,则一定有△=b 2-4ac <0。
注:若方程有实数根,则一定有△=b 2-4ac ≥0。
根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
222121212()2x x x x x x +=+-, 12121211x x x x x x ++=, 22121212()()4x x x x x x -=+-,12||x x -= 2212121212()x x x x x x x x +=+,()212122121222121122x x x x x x x x x x x x x x -+=+=+ 例题例1已知x 2+mx+7=0的一个根,则m=________,另一根为_______.例2 k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.例3设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值: =-=+a b x x 21 ==ac x x 21 (1))3)(3(21--x x ; (2)2221)1()1(+++x x (3)112112+++x x x x(4)||21x x - (5))31)(31(1221x x x x ++(6)2221x x + (7)1211x x +例4、已知:α、β是关于x 的方程x 2+(m -2)x+1=0的两根,求(1+m α+α2)(1+m β+β2)的值。
衔接教材3.2韦达定理及其应用导学案(学生版)
【巩固提高】
1.设 是方程 的两个实数根,且 ,求 的值.
2.已知
又 ,求 的值。
【课后反思】学完本节课,你在知识、方法等方面有什么收获与感受?请写下来!
3.如果 是方程 的一个根,求:方程的另一个根和字母 的值.
4.当 为何值时,方程 的两根差为1.
三、巩固练习
【基础检测】
1.设 为方程 的一个根,则 .
2.已知方程 的一个根为-2,可求得 , .
3.若方程 的两根之差的平方为48,则 的值为()
A. B.8C.-8 D.
4.求一个一元二次方程,该方程的两根为1/2,4,并且二次项系数为2.
当 时,方程有一个根为零.
5.若方程 的两根之差为 ,则
二、课内探究
首先独立思考,然后合作交流展示
类型一:已知方程两根的情况,构造方程
1.求一个一元二次方程,该方程的两根为8,-3.
类型二:实数范围内分解因式
2.若 可以分解成两个相同的一次因式,求 的取值.
类型三:已知方程的一个根,求另一个根和字母的值
3.以两个数 为根的一元二次方程(二次项系数为1)是__________________
【预习自测】
1.根据一元二次方程根与系数的关系,求下列方程两根的和与积:
(1) (2)
2.设 是方程 的根,
(1) (2)
3.若关于 的方程 的两根的平方和是11,则
4.已知一元二次方程 ;当 时,方程有两个互为相反数的实根;
一、预习导学
1.韦达定理:若一元二次方程 的两个根为 ,因此方程的两个根 和系数 有关系:________________,_______________,这个一元二次方程根与系数的关系叫做________
初高中数学衔接学案三韦达定理
初高中数学衔接学案三.根与系数的关系学习目标:灵活应用韦达定理解决一元二次方程根与系数的关系 .(说明:根与系数的关系(韦达定理)在初中不作要求,但在高中解决二次方程的问题时,经常用到,高中教材却未安排专门的讲授。
)二.问题导学问题1:当042≥-ac b 时,请写出一元二次方程2ax +b x +c =0(a ≠0)的两根1x ,2x ,并求出1x +2x ; 21x x ⋅问题2:使用韦达定理时应满足那些条件?问题3:思考:我们能说方程0322=+-x x 的两根之和为21,两根之积为23吗? 三.例题精讲例1已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值。
例2 若1x 和2x 分别是一元二次方程22x +5x -3=0的两根。
(1)求|1x -2x |的值; (2)求221211x x +的值; (3)31x +32x 。
例3已知两个数的和为4,积为-12,求这两个数。
例4 若关于x 的一元二次方程2x -x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围。
四.衔接训练1.已知关于x 的方程2x +k x -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )22.关于x 的一元二次方程a 2x -5x +a 2+a =0的一个根是0,则a 的值是( )3.若关于x 的方程2x +(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1(D )04.已知一个直角三角形的两条直角边长恰好是方程22x -8x +7=0的两根,则这个直角三角形的斜边长等于( ) (A (B )3 (C )6 (D )95.如果a 、b 是方程012=-+x x 的两个实数根,那么代数式3223b ab b a a +++ 的值是____________.6.已知菱形ABCD 的边长为5,两天对角线交于O 点,且OA 、OB 的长分别是关于x 的方程03)12(22=++-+m x m x 的两根,则m 等于( )A .-3 B.5 C.5或-3 D.-5或37.已知关于x 的方程22(2)04m x m x ---=。
4(新课)高一数学暑假班教案-韦达定理 -学生版
高中数学韦达定理1、概念:形如()002≠=++a c bx ax 的方程为一元二次方程;2、配方法:对一元二次方程进行配方得到方程:222442a ac b a b x -=⎪⎭⎫ ⎝⎛+3、判别式∆从配方之后的方程可以看出:原方程有没有解,取决于代数式ac b 42-的正负;基于ac b 42-的重要性,令ac b 42-=∆称为该一元二次方程的判别式,它决定了一元二次方程解的个数问题;(1)若0>∆,原方程有两个不等的实数根,这两个根是a ac b b x 2421-+-=a ac b b x 2422---=;(2)若0=∆,原方程有两个相等的实数根,ab x x 221-==;(3)若0<∆,原方程没有实根;4、韦达定理当上述一元二次方程有实数解时,a ac b b x 2421-+-=a ac b b x 2422---=,(两个相等实根的情形也可以写成这样的形式)现在考察21x x +,21x x ⋅;利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-12121211x x x x x x ++=22121212()()4x x x x x x -=+-12||x x -=教学目标1、了解一元二次方程,并会用配方法求解一元二次方程;2、掌握一元二次方程的根的判别式∆,熟知根与∆之间的关系;3、掌握根与系数之间的关系——韦达定理;4、会用根与系数关系进行更深一层次的研究.重点1、根与系数之间的关系——韦达定理;2、韦达定理常见题型及解题思路.难点1、根与系数之间的关系——韦达定理;2、韦达定理常见题型及解题思路.(一)判别式,方程的解,韦达定理,运用韦达定理求值例1、若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是____________.例2、按指定的方法解方程()21(9)250x +-=(直接开平方法)()226160x x --=(配方法)()()()33121x x x -=-(因式分解法)()242720x x -+=(公式法)例3、已知关于x 的方程()24110x m x m +++-=.(1)求证:不论m 为任何实数,方程总有两个不相等的实数根;(2)若方程两根分别为1x 和2x ,且满足12111x x +=,求m 的值.例4、求证:若1x 和2x 分别是一元二次方程)0(02≠=++a c bx ax ,则ax x ∆=-21(其中ac b 42-=∆).例5、设12x x ,是方程22630x x -+=的两个根,利用根与系数的关系,求下列各式的值.(1)221212x x x x +;(2)212()x x -;(3)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭;(4)221211x x +.例6、(1)设a ,b 是方程220190x x +-=的两个实数根,则22a a b ++的值为;(2)已知α、β是方程2520x x ++=的两根,求+的值例7、关于x 的一元二次方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)求证:10x <,20x <;(3)若1212||||6x x x x --=,求k 的值.例8、已知关于x 的一元二次方程2(21)10x k x k -+++=有二个不相等的实根1x 和2x ,(1)若122152xx x x +=,求k 的值;(2)求22212(1)(1)22m x x k k =--++的最大值.1、(1)如果-5是方程25100x bx +-=的一个根,求方程的另一个根及b 的值;(2)如果2是方程240x x c -+=的一个根,求方程的另一个根及c 的值.2、1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值:(1)2212x x +(2)12x x -(3)2212233x x x +-3、设α、β是方程2201320x x +-=的两根,则22(20161)(20161)ααββ+-+-=.4、设α、β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+=.5、已知一元二次方程220x x m -+=.(1)若方程有两个实数根,求m 的范围.(2)若方程的两个实数根为1x ,2x ,且1233x x +=,求m 的值.6、已知关于x 的方程222320x mx m m +++-=有两个实数根1x ,2x .(1)求m 的取值范围;(2)当m 为何值时,使得21212()x x x x ++的值为54.7、已知关于x 的方程22(2)04m x m x ---=.(1)求证:无论m 为何值,方程总有两个不相等实数根.(2)设方程的两实数根为1x ,2x ,且满足21212()||||2x x x x +=-+,求m 的值.(二)利用韦达定理逆定理,构造一元二次方程例9、求方程组1128x yxy+=⎧⎨=⎩①②的解.例10、设02=+-qpxx的两实根为βα,,若以33,βα为根的一元二次方程仍是02=+-qpxx,求所有这样的方程.例11、设方程02=++bcaxx和方程02=++acbxx)0(≠abc,有且仅有一个公共根,求以其余两根为根的方程.例12、若实数,a b满足22850,850a ab b-+=-+=,则1111b aa b--+--的值是()A.20-B.2C.2或20-D.12或20-例13、若1ab≠,且有25200190a a++=及29200150b b++=,则ab=,1ab+=.1、阅读材料:材料1.若一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则12b x x a +=-,12c x x a=材料2.已知实数m 、n 满足210m m --=、210n n --=,且m n ≠,求n m m n +的值.解:由题知m 、n 是方程210x x --=的两个不相等的实数根,根据材料1得1m n +=,1mn =-∴222()21231n m m n m n mn m n mn mn ++-++====--根据上述材料解决下面问题:(1)一元二次方程2430x x --=的两根为1x 、2x ,则12x x +=,12x x =.(2)已知实数m 、n 满足22210m m --=、22210n n --=,且m n ≠,求22m n mn +的值.(3)已知实数p 、q 满足232p p =+、2231q q =+,且2p q ≠,求224p q +的值.2、设实数,s t 分别满足2199910s s ++=,299190t t ++=并且1st ≠,求41st s t ++的值.3、已知实数m 、n 满足23650m m +-=,23650n n +-=,求m nn m +的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对 k 1, 2, 3, 4, 5, 6 均成立,试求 a b c d e f .
思路分析
规范解答
2017
例2 已知方程 z2017 1 0 的所有复数根为 zi i 1, 2,, 2017 ,则下列关于
1
的判断中,
i1 2 zi
一定正确的有(
).
2017
A. 是比
大的实数
2
2017
思路分析
规范解答
a1 a2 a3 b1 b2 b3
例4 设实数 a1, a2 , a3, b1, b2 , b3 满足 a1a2 a2a3 a3a1 b1b2 b2b3 b3b1
⑺
mina1, a2 , a3 min b1,b2 ,b3
求证: maxa1, a2, a3 maxb1,b2,b3 .
(2017 年清华大学中学生标准学术能力测试,原题是选择题)
思路分析
规范解答
一般地,在复数域内,设关于 x 的 n 次方程 an xn an1xn a1x a0 0 an 0 的 n 个根 是 xi 1 i n ,则有韦达定理(根与系数关系)如下:
n
i 1
xi
an1 an
xi x j an2
的解集是互不
x 1 x 2 x 3 4
相交的若干区间的并集,求这个解集的所有区间的长度之和.
(高中数学联赛湖北省预赛试题)
3. 若实数 a, b 使得方程 x3 ax2 bx a 0 有三个正实根,求 2a3 3ab 3a 的最小值. b 1
(第十届东南地区奥林匹克竞赛试题)
4. 设关于 x 的方程 xn a2 xn2 a3xn3 an1x an xn1 有 n 个非负实数根,
.
2
⑻ (全国高中数学联赛试题)
思路分析
规范解答
课后思考
1. 若两两不同的实数 x, y, z 满足 x3 3x2 y3 3y2 z3 3z2 ,则 x y z 等于( )
A. 1
B. 0
C. 1
D. 前三个都不对
(2016 年北京大学博雅计划试题)
1 2 35
2. 定义区间两端点之差的绝对值为区间的长度. 若不等式
B. 是比
小的实数
2
C. 是有理数
D. 是虚数
(2017 年清华大学优秀中学生文科冬令营试题)
思路分析
规范解答
2-4
高次方程韦达定理
2017 年 11 月
例3 若实系数多项式 f x x3 ax2 bx c 有三个非负零点,求证: 2a3 9c 7ab .
⑹
(2014 年北京大学优秀中学生暑期体验营)
1i jn
an
⑶
x x x i1 i2
ik
1i1i2 ik n
1 k ank an
n
xi
i 1
1 n a0 an
韦达定理的逆定理也成立,即:若 xi 1 i n 满足(3)式,则 xi 1 i n 一定是关于 x 的 方程 an xn an1xn a1x a0 0an 0 的 n 个根.
n
求证:
0
22 a2
23 a3
2n an
1
n
2
.
n
(亚太地区奥林匹克竞赛试题)
4-4
1-4
高次方程韦达定理
2017 年 11 月
特别地,设一元三次方程 ax3 bx2 cx d 0 a 0 的三个根分别为 x1, x2 , x3 ,则有:
b
x1 x2ቤተ መጻሕፍቲ ባይዱ x3 a ,
c
x1x2
x2 x3
x3 x1
a
,
⑷
d
x1x2 x3
a
,
a
b
c
d
e
f1
例1 设
⑸
k2 1 k2 2 k2 3 k2 4 k2 5 k2 6 k2
(2008 年北京大学自主招生试题)
思路分析
规范解答
3-4
高次方程韦达定理
2017 年 11 月
例5 实数 a, b, c 和正数 使得 x3 ax2 bx c 0 有三个实数根 x1, x2 , x3 ,且 x2 x1 ,
x3
x1 x2 2
.
2a3 27c 9ab
求证:
3
33
高次方程韦达定理
2017 年 11 月
高次方程韦达定理
学习目标 1. 掌握高次方程韦达定理的一般形式 2. 能应用韦达定理及其逆定理解题
引例 若实数 x, y 满足 试求 x y .
x
y
1
⑴
20173 20153 20173 20163
x
y
1
⑵
20143 20153 20143 20163