提公因式法练习题

合集下载

初二分式提公因式法5道练习题

初二分式提公因式法5道练习题

初二分式提公因式法5道练习题下面是五道关于初二分式提公因式法的练习题。

请你仔细阅读题目并按照要求进行求解。

练习一:将下列各分式化简为最简形式:1) 2x^2 - 10x + 12 / 4x^2 - 162) 5a^3 + 15a^2b - 10ab^2 / 20a^2b - 10ab^2 + 5b^3练习二:将下列各分式进行因式分解:1) (x^2 + 5x + 6) / (x^2 - 4)2) (2a^2 - 8ab) / (a^2 - 4b^2)练习三:将下列各分式进行合并为一个分式:1) 1 / (x - 3) + 3 / (x + 2)2) 2 / x + 1 / (2x - 3)练习四:将下列各分式进行拆分为两个分式相加或相减:1) 7 / (x + 3) - 5 / (x - 2)2) 5 / (x^2 + 2x + 1) + 3 / (x^2 + 4x + 4)练习五:将下列各式子进行合并或拆分:1) 2(x + 1) / (x^2 - 1) + 3(x - 1) / (x^2 + x - 12)2) (x - 2)^2 / (x^2 - 4) - (x + 2) / (x + 2)以上为初二分式提公因式法的练习题,请根据要求进行计算和化简。

答案如下:练习一:1) (x - 2) / (2x + 4)2) a^2 / (4a^2 - 2ab)练习二:1) (x + 2) / (x + 2)2) 2b / (a + 2b)练习三:1) (4x - 3) / (x^2 - x - 6)2) (4x - 3) / (2x^2 - 3x)练习四:1) (2x + 19) / (x^2 + x - 6)2) (8x + 8) / (x + 2)^2练习五:1) (5x + 1) / (x^2 - x - 12)2) (x - 4) / (x + 2)希望以上练习题对你的学习有所帮助。

如果还有其他问题,请随时告诉我。

八年级数学人教版上册同步练习提公因式法(解析版)

八年级数学人教版上册同步练习提公因式法(解析版)

14.3.1提公因式法一、单选题1.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A .2B .2-C .6D .6- 【答案】A【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点评】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.2.下列各式由左边到右边是因式分解且分解结果正确的是( )A .()3a 43a 12-=-B .()()24x 94x 34x 3-=+-C .()22x 4x 4x 2-+=-D .()3224a 6a 2a 2a 2a 3a ++=+ 【答案】C【分析】根据因式分解的意义求解即可.【详解】A 、()34312a a -=-是整式的乘法,故A 不符合题意;B 、()()2492323x x x -=+-,原式分解不正确,故B 不符合题意;C 、()22442x x x -+=-,分解正确,故C 符合题意;D 、()3224622231a a a a a a ++=++,原式分解不正确,故D 不符合题意;故选:C .【点评】本题考查了因式分解的意义,利用因式分解是把一个多项式转化成几个整式积的形式.3.下列从左到右是因式分解的是( ).A .(a +b )(a -b )=a 2-b 2B .(a +b )2 =a 2+2ab +b 2C .(x +2)(x -5)=x 2-3x +10D .x 2+2x -15=(x -3)(x +5) 【答案】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、是整式的乘法,故B 错误;C 、是整式的乘法,故C 错误;D 、符合因式分解,故D 正确;故选:D .【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.4.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=-【答案】C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点评】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.5.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解【答案】D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点评】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义. 6.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 【答案】C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点评】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.7.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 2【答案】B【分析】根据分解因式的定义逐个判断即可.【详解】A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点评】此题考查了因式分解的定义.掌握其定义是解答此题的关键.8.(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【答案】C【分析】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题目9.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2,所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).故答案:3x -.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.【答案】8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点评】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键. 11.多项式22y y m ++因式分解后有一个因式是(1)y -,则m =_______.【答案】3-【分析】由于x 的多项式y 2+2y+m 分解因式后有一个因式是(y-1),所以当y=1时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】∵多项式y 2+2y+m 因式分解后有一个因式为(y-1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=-3.故答案为:-3.【点评】本题考查了因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解. 12.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.【答案】4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点评】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.三、解答题13.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值.解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ).则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n ,解得n =3,m =6,∴另一个因式为x +3,m 的值为6依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ;(2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ;(3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值.【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5.【分析】(1)仿照题干中给出的方法计算即可;(2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】(1)∵2(3)()33x x a x x ax a -+=-+-=2(3)3x a x a +--=2712x x -+.∴a ﹣3=﹣7,﹣3a =12,解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +-=+--=226x x --.=226x bx +-.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++-=-++.对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++-=-++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++-=-+-+-=+-+--.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k .解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点评】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.14.解答下列各题:(1)计算:()()()22x 12x 52x 5+-+-(2)分解因式:()225m 2x y 5mn --. 【答案】(1)426x +;(2)()()5m 2x y+n 2x y n ---【分析】(1)利用完全平方公式和平方差公式分别计算前后两部分,然后进行加减运算即可;(2)先提取公因式5m ,再利用平方差公式计算.【详解】(1)原式2241=4425x x x +++-=426x +(2)原式()22=5m 2x y n -⎡⎤-⎣⎦()()=5m 2x y+n 2x y n ---【点评】本题考查整式的混合运算和因式分解,解题的关键是熟练掌握完全平方公式和平方差公式的法则. 15.将下列各式因式分解:(1)324x xy -;(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y .【答案】(1)x (x+2y )(x-2y );(2)(x ﹣y )2(3)x y -.【分析】(1)先提取公因式x ,后变形成为22(2)x y -,用平方差公式分解即可;(2)先将6xy (y ﹣x )变形为-6xy (x﹣y),后提取公因式,再用完全平方公式分解即可.【详解】(1)324x xy -=22(4)x x y -=22[(2)]x x y -=x (x+2y )(x-2y );(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y=(x ﹣y )2x -6xy (x ﹣y )+9(x ﹣y )2y=(x ﹣y )(2x -6xy +92y )=(x ﹣y )2(3)x y -.【点评】本题考查了提取公因式法,平方差公式法,完全平方公式法分解因式,熟练掌握先提后套用公式分解因式是解题的关键.16.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.【答案】(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案; (3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,aa b - 故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点评】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键. 17.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值【答案】(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得; (2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249a b ∴-=,22249a b ab ∴+-=,()2221249a b ∴+-⨯-=,2225a b ∴+=.【点评】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.18.设333201720182019x y z ==,322222x mx nx x mx n =+++++,且=.求111x y z++的值. 【答案】1.【分析】由322222x mx nx x mx n =+++++,可得000x y z >>>,,,令333201720182019x y z k ===,由=变形得=可得2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭因式分解11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭,由000x y z >>>,,,1110x y z ++>,可得1111x y z ++=. 【详解】∵322222x mx nx x mx n =+++++,∴000x y z >>>,,,或,,x y z 一正,两负,333201720182019x y z ==说明x ,y ,z 同号,∴000x y z >>>,,,令333201720182019x y z k ===,=++,=+,=+,111x y z ⎛⎫=++ ⎪⎝⎭,111x y z=++, ∴2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭, ∴11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭, ∵000x y z >>>,,,1110x y z++>, ∴1111x y z++=. 【点评】本题考查立方根条件求值问题,掌握立方根的性质,巧秒恒等变形使实际问题简化,利用等式两边平方,因式分解求出代数式的值是解题关键.19.已知5x y +=,4xy =,求下列各式的值.(1)x y -;(2)33x y xy +.【答案】(1)3±;(2)68【分析】(1)根据完全平方公式的变形公式(x ﹣y )2=(x+y)2﹣4xy 进行求解即可;(2)利用完全平方公式求解x 2+y 2,再将所求代数式因式分解,进而代入数值即可求解.【详解】(1)∵5x y +=,4xy =,∴(x ﹣y )2=(x+y)2﹣4xy=52﹣4×4=9,∴x ﹣y=±3;(2)∵(x+y )2= x 2+y 2+2xy ,∴x 2+y 2=52﹣2×4=17,∴33x y xy +=xy(x 2+y 2)=4×17=68.【点评】本题考查代数式求值、完全平方公式、平方根、因式分解、有理数的混合运算,熟记完全平方公式,灵活运用公式是解答的关键.20.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =________;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =________;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.【答案】(1)4-;(2)1-;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a -+展开,根据所给出的二次三项式即可求出a 的值;(2)(2x +3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x +n ),得2x 2+9x ﹣k =(2x ﹣1)(x +n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】(1)∵(1)()x x a -+=x 2+(a ﹣1)x ﹣a =254x x -+,∴a ﹣1=﹣5,解得:a =﹣4;故答案是:﹣4(2)∵(2x +3)(x ﹣2)=2x 2﹣x ﹣6=2x 2+bx ﹣6,∴b =﹣1.故答案是:﹣1.(3)设另一个因式为(x+n),得2x2+9x﹣k=(2x﹣1)(x+n),则2x2+9x﹣k=2x2+(2n﹣1)x﹣n,∴2n﹣1=9,﹣k=﹣n,解得n=5,k=5,∴另一个因式为x+5,k的值为5.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.祝福语祝你考试成功!。

因式分解-提取公因式练习题

因式分解-提取公因式练习题

因式分解练习题(提取公因式)知识点一 因式分解的定义理解把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。

因式分解的实质是( )与( )是“积化和差”的过程正好( )。

【例题 】 1.下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xyB .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2D .x 2-9-6x=(x+3)(x -3)-6x2.下列各式从左到右的变形中,是因式分解的为( )A 、2222)1(xy y x x xy -=-B 、)3)(3(92-+=-x x xC 、222)1)(1(1y x x y x ++-=+-D 、c b a x c bx ax ++=++)(3、下列分解因式结果正确的是( )A. a 2b +7ab -b =b (a 2+7a )B. 3x 2y -3xy +6y =3y (x 2-x +2)C. 8xyz -6x 2y 2=2xyz (4-3xy )D. -2a 2+4ab -6ac =-2a (a -2b -3c )知识点二:确定多项式的公因式的方法1、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

2、找公因式的方法【例题】1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---知识点三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+2、__()b a a b -=-3、__()z y y z -+=-4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数【专项训练】一、把下列各式分解因式。

八年级数学上册《提公因式法因式分解》练习题及答案

八年级数学上册《提公因式法因式分解》练习题及答案

八年级数学上册《提公因式法因式分解》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.将2(2)(2)m a m a -+-分解因式,正确的是( )A .2(2)()a m m --B .(2)(1)m a m -+C .(2)(1)m a m --D .(2)(1)m a m --2.计算1110(2)(2)---等于( ).A .2-B .21(2)-C .1032-⨯D .102- 3.下列各组多项式中没有公因式的是( ).A .3x -2与 6x 2-4xB .23()a b -与311()b a -C . mx—my 与 n y—n xD .ab—ac 与 ab—bc4.如图1的8张宽为a ,长为()b a b <的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .5b a =B .4b a =C .3b a =D .b a =5.下列因式分解正确的是( )A .2()x xy x x x y x -+=-+B .32222()a a b ab a a b ++=+C .2224(1)3x x x -+=-+D .29(3)(3)ax a x x -=+•-6.把2a 2﹣4a 因式分解的最终结果是( )A .2a (a ﹣2)B .2(a 2﹣2a )C .a (2a ﹣4)D .(a ﹣2)(a +2)二、填空题7.分解因式:252020m m -+=______.8.已知221062m n m n ++=-,则m n -=______.9.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫_________.三、解答题10.计算:(1)a b a b ab ab +--;(2)2422x x x ---;(3)24m n m n m n m n -+-++;(4)321111x x x x x x -+-+-+++. 11.(1)已知53m n =,求222m m n m n m n m n+-+--的值; (2)已知12x x +=,求221x x +的值; (3)已知34(1)(2)12x A B x x x x -=+----,求实数A ,B . 12.把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3参考答案:1.C【分析】直接利用提取公因式法进行分解因式即可.【详解】解:2m ()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --;故选C .【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.2.C【详解】根据有理数的乘方可得()()111022(2)-=-⨯-,然后根据含乘方的有理数计算法则进行求解即可.【解答】解:1110(2)(2)---()()10102(2)2=-⨯---103(2)=-⨯-1032=-⨯.故选C .【点睛】本题主要考查了含乘方的有理数计算,解题的关键在于能够熟练掌握相关计算法则.3.D【分析】根据公因式的定义可直接进行排除选项.【详解】A 、由()264232x x x x -=-,所以32x -与264x x -有公因式()32x -,故不符合题意;B 、由()()2233b a a b -=-可得公因式为()2b a -,故不符合题意; C 、由()(),mx my m x y ny nx n x y -=--=--可得公因式为()x y -,故不符合题意;D 、由()(),ab ac a b c ab bc b a c -=--=-可得没有公因式,故符合题意;故选D .【点睛】本题主要考查提取公因式,熟练掌握因式分解的方法是解题的关键.4.A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,S 1=(BC -3a )×b ,S 2=(BC -b )×5a12S S S =-=(BC -3a )×b -(BC -b )×5a .= 355bBC ab aBC ab=52b a BC ab当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50b a, 5b a .故选择:A .【点睛】本题考查了多项式乘以单项式在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.5.B【分析】根据提公因式法以及公式法分解因式,提取公因式后整理注意符号变化.【详解】解:A. 2(+1)x xy x x x y -+=-,故错误,不符合题意;B. 32222()a a b ab a a b ++=+,故正确,符合题意;C. 2224(1)3x x x -+=-+,不是因式分解,故错误,不符合题意;D. 29ax -无法因式分解,故错误,不符合题意.故选B.【点睛】本题主要考查了提公因式法以及公式法分解因式,正确理解应用因式分解是解题的关键.6.A【分析】2a 2-4a 中两项的公因式是2a ,提取公因式即可【详解】解:2a 2-4a = 2a (a - 2);故选A .【点睛】本题考查了提公因式法分解因式,正确确定公因式是关键.7.5(m ﹣2)2【分析】先提取公因式,再用完全平方公式分解因式即可.【详解】解:252020m m -+=5(m 2﹣4m +4)=5(m ﹣2)2.故答案为:5(m ﹣2)2.【点睛】本题考查了提公因式法与公式法的综合运用,掌握a 2±2ab +b 2=(a ±b )2是解题的关键. 8.4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=-,2210620m n m n +-+∴+=,即()()22310m n -++=,3,1m n ∴==-,()314m n ∴-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.9.提公因式法【解析】略10.(1)2a;(2)2x +;(3)3-;(4)1x x +. 【分析】(1)根据同分母分式的运算法则解题,注意负号的作用;(2)利用同分母分式的减法法则,结合平方差公式进行计算;(3)利用同分母分式的减法法则,结合提公因式化简解题;(4)根据同分母分式的加减法法则解题.【详解】解:(1)()22a b a b a b a b b ab ab ab ab a+-+---===; (2)2244(2)(2)22222x x x x x x x x x --+-===+----; (3)242(4)m n m n m n m n m n m n m n -+--+-=+++33m n m n --=+3()m n m n -+=+3=-; (4)32132(1)11111x x x x x x x x x x x x -+--++--+-==+++++. 【点睛】本题考查分式的加减混合运算,涉及平方差公式、提公因式等知识,是重要考点,掌握相关知识是解题关键.11.(1)4116;(2)2;(3)A =1,B =2. 【分析】(1)先通分,再根据同分母的分式相加减法则进行计算,设m =5k ,n =3k ,再代入求出即可;(2)先根据完全平方公式进行变形,再代入求出即可;(3)先通分,再根据同分母的分式相加减法则进行计算,再得出关于A 、B 的方程组,求出方程组的解即可.【详解】解:(1)222m m n m n m n m n +-+-- 2()()()()m m n m m n n m n m n -++-=+- 222()()m n m n m n -=+-,∵53m n =, ∵设m =5k ,n =3k ,当m =5k ,n =3k 时,原式222(5)(3)41(53)(53)16k k k k k k ⨯-==+-; (2)∵12x x +=, ∵2222111()2222x x x x x x +=+-⋅=-=; (3)12A B x x +-- (2)(1)(1)(2)A xB x x x -+-=-- ()(2)(1)(2)A B x A B x x ++--=--, ∵34(1)(2)12x A B x x x x -=+----, ∵324A B A B +=⎧⎨--=-⎩, 解得:A =1,B =2.【点睛】本题考查了分式的混合运算和求值,乘法公式等知识点,能正确根据分式的运算法则进行化简是解此题的关键.12.(1)2m (m ﹣n )(5m ﹣n );(2)﹣4ab (2a ﹣3b +a 2b 2)【分析】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案;(2)直接提取公因式﹣4ab ,进而分解因式得出答案.【详解】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ]=2m (m ﹣n )(5m ﹣n );(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.。

《提公因式法》练习题

《提公因式法》练习题

§15. 4.1 提公因式法一、分解因式(因式分解)的概念1.计算:(1)x(x+1)(2)(x+1)(x-1)(学生练习,并演板)因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做这个多项式因式分解(或分解因式)。

因式分解与整式乘法是相反方向的变形,即它们互为逆运算。

2.判断下列各式由左边到右边的变形中,哪些是因式分解:(1)6=2×3 (2)a(b+c)=ab+ac(3)a2-2a+1=a(a-2)+1(4)a2-2a=a(a-2)(5)a+1=a(1+1/a)二、提公因式法1、公因式多项式ma+mb+mc中,各项都有一个公共的因式m,称为该多项式的公因式。

一般地,一个多项式各项都有的公共的因式称为这个多项式的公因式。

指出下列各多项式的公因式:(1)8a3b2+12ab3c (2)8m2n+2mn(3)-6abc+3ab2-9a2b通过以上各题,你对确定多项式的公因式有什么方法?(学生归纳、总结)2、提公因式法由m(a+b+c)=ma+mb+mc,得到ma+mb+mc+=m(a+b+c),其中,一个因式是公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,这种分解因式的方法叫做提公因式法。

三、例1:把(1)2a2b-4ab2(2)8a3b2+12ab3c分解因式解:练习:P1671(1)(2)例2:把2a(b+c)-3(b+c)分解因式练习:P1671、(3)(4) 2例3:用简便方法计算(1)9992+999 (2)20072-2006×2007练习:P167 3四、归纳小结(1)分解因式(2)确定公因式(3)提公因式方法补充练习:1、分解因式:(1)m2(a-2)+m(2-a) (2)m-n-mn+1 (3)a2n-a n (4)(3a-4b)(7a-8b)+(11a-12b)(8b-7a)2、计算:210-29-283、已知a-b=3,ab=-1,求a2b-ab24、若a为实数,则多项式a2(a2-1)-a2+1的值()A、不是负数B、恒为正数C、恒为负数D、不等于05、证明:817-279-913能被45整除6、若关于x的二次三项式3x2-mx+n分解因式结果为(3x+2)(x-1),则m=,n=。

初二数学提公因式法练习题

初二数学提公因式法练习题

初二数学提公因式法练习题加强数学学习,特别是初二数学,对于学生来说是至关重要的。

在初二数学学习中,提公因式法是一个重要的内容。

下面将提供一些初二数学提公因式法练习题,供同学们练习。

1. 求下列代数式的最大公因式(初步提取公因式):a) 6x + 9yb) 4a^2b + 2ab^2c) 5m^3n^2 - 15mn^32. 求下列代数式的最大公因式(进一步提取公因式):a) 12x^2y - 16xyb) 15a^3 - 9a^2c) 18m^4n^3 - 12m^3n^43. 通过提公因式法,将下列代数式进行因式分解:a) 6xy + 10xzb) 8ab^2 + 4a^2bc) 5a^3 - 10a^24. 将下列代数式进行提公因式:a) 3p + 3q + 3rb) 4xy + 4xz - 4yzc) 2ab - 3abc + 4ab^25. 判断下列因式是否为完全提取:a) (2x + 2y) - 2(x + y)b) 3(a + b) - (a - b)c) 5m^2 - 10mn + 3mn^2 - 4n^26. 解下列方程并进一步因式分解:a) 2(x + 3) = 8b) 5y - 3(2y - 4) = 20c) 3(2x - 1) - 7 = 19 - 6x7. 解方程组并进一步因式分解:a) 2x - y = 34x + 2y = 10b) 3a + 2b = 105a - b = 3以上是一些初二数学提公因式法的练习题。

通过这些练习题,同学们可以提高自己的数学能力,理解和掌握公因式的概念以及提公因式的方法。

并加强解方程和因式分解的能力。

另外,在练习过程中,同学们要注意各个步骤的正确性和精确性,严格按照因式分解和提公因式的步骤进行操作。

对于解方程组的题目,可以使用消元法或代入法等方法来求解。

数学学习是一个渐进的过程,希望同学们通过这些提公因式法的练习题,能够不断巩固和提高自己的数学能力。

八年级数学上册《因式分解》计算题专项练习

八年级数学上册《因式分解》计算题专项练习

八年级数学上册《因式分解》计算题专项练习提取公因式是因式分解的基础,掌握了提取公因式的方法,就能够更好地解决因式分解问题。

下面是一些提取公因式的练题,供大家练:1、提取公因式:c(x-y+z),得到结果:c(x-y+z)2、提取公因式:p(x-qx-rx^2),得到结果:p(x-q-rx)3、提取公因式:5a^2(3a-2),得到结果:15a^3-10a^24、提取公因式:3bc(4a-25),得到结果:12abc-75bc5、提取公因式:xy(4x-y^2),得到结果:4x^2y-xy^36、提取公因式:7pq(9-2q),得到结果:63pq-14pq^27、提取公因式:6a^2m(4m-3n+7),得到结果:24a^3m-18a^2m^2+42a^2mn8、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)9、提取公因式:x-y(5x+2y),得到结果:(x-y)(5x+2y)10、提取公因式:-2ab(a^2-3ab+b^2),得到结果:-4a^3b+6a^2b^2-2ab^311、提取公因式:-8x^3+56x^2-32x^3,得到结果:-8x^2(x-7)+56x(x-7)12、提取公因式:3mn(2m-5n+10),得到结果:6m^2n-15mn^2+30m^2n13、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)14、提取公因式:(x-y)(5x+2y),得到结果:(x-y)(5x+2y)15、提取公因式:2q(p+q)-4p(p+q),得到结果:-2p(p+q)16、提取公因式:(m+n)(p+q)-(m+n)(p-q),得到结果:2(m+n)q17、提取公因式:a(a-b)+(a-b)2,得到结果:(a-b)(a+b)18、提取公因式:x(x-y)^2-y(x+y)2,得到结果:(x-y)(x^2+xy+y^2)-y(x+y)^219、提取公因式:(2a+b)(2a-3b)-3a(2a+b),得到结果:(2a-b)(2a-3b)20、提取公因式:x(x+y)(x-y)-x(x+y),得到结果:x(x-y)(x+y-1)21、提取公因式:p(x-y)-q(y-x),得到结果:2p(x-y)22、提取公因式:m(a-3)+2(3-a),得到结果:-m(a-3)-2(a-3)23、提取公因式:(a+b)(a-b)-(b+a),得到结果:-(a-b)^224、提取公因式:a(x-a)+b(a-x)-c(x-a),得到结果:(a-c)(a-x)-(a-c)(x-a)25、提取公因式:10a(x-y)^2-5b(y-x),得到结果:10a(x-y)^2+5b(x-y)26、提取公因式:3(x-1)^3y-(1-x)^3z,得到结果:3(x-1)^3(y+z-x)27、提取公因式:x(a-x)(a-y)-y(x-a)(y-a),得到结果:(x-y)(a-x)(a-y)28、提取公因式:-ab(a-b)^2+a(b-a)^2,得到结果:-2ab(a-b)^229、提取公因式:2x(x+y)^2-(x+y)^3,得到结果:(x+y)^2(x-2)30、提取公因式:21×3.14+62×3.14+17×3.14,得到结果:100×3.1431、提取公因式:2.186×1.237-1.237×1.186,得到结果:0掌握了提取公因式的方法,就能够更好地解决因式分解问题。

(完整版)提公因式法练习题

(完整版)提公因式法练习题

提公因式法(一)课堂练习一、填空题1。

把一个多项式__________________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项式______________.2.把下列各多项式的公因式填写在横线上。

(1)x 2—5xy _________ (2)-3m 2+12mn _________(3)12b 3-8b 2+4b _________ (4)-4a 3b 2-12ab 3 __________(5)—x 3y 3+x 2y 2+2xy _________3。

在括号内填入适当的多项式,使等式成立。

(1)-4ab-4b= -4b( )(2)8x 2y-12xy 3= 4xy( )(3)9m 3+27m 2= ( )(m+3)(4)-15p 4—25p 3q= ( )(3p+5q)(5)2a 3b —4a 2b 2+2ab 3= 2ab ( )(6)—x 2+xy-xz= —x( ) (7)21a 2-a= 21a( ) 二、选择题1.下列各式从左到右的变形是因式分解的是 ( )(A)m(a+b )=ma+mb (B )x 2+3x-4=x (x+3)-4(C)x 2—25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+22.下列各等式从左到右的变形是因式分解的是 ( )(A )8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy (x+y )(C)(x-y )2=x 2—2xy+y 2 (D)3x 3+27x=3x(x 2+9)3。

下列各式因式分解错误的是 ( )(A )8xyz —6x 2y 2=2xy (4z —3xy ) (B )3x 2—6xy+x=3x (x-2y )(C)a 2b 2—41ab 3=41ab 2(4a-b ) (D )-a 2+ab-ac=-a (a-b+c) 4.多项式-6a 3b 2—3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( )(A )3ab (B )3a 2b 2 (C)- 3a 2b (D )— 3a 2b 25。

鲁教版八年级数学上册《1.2提公因式法》同步练习题-附答案

鲁教版八年级数学上册《1.2提公因式法》同步练习题-附答案

鲁教版八年级数学上册《1.2提公因式法》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列等式中,从左到右的变形是因式分解的是()A.ax2−ay+a=a(x2−y)B.5m2n−10mn2=5mn(m−2n)C.x(y−z)=xy−xz D.4p2−4p+1=4p(p−1)+12.用提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是()A.2x2y4B.8x4y2C.8x2y4D.2x2y23.把5(a-b)+m(b-a)提公因式后一个因式是(a-b),则另一个因式是()A.5-m B.5+m C.m-5D.-m-54.把多项式a2−a分解因式,结果正确的是().A.a(a+1)B.(a+1)(a−1)C.a(a−1)D.−a(a−1)5.计算(−2)2021+(−2)2022等于()A.−24043B.−2C.−22021D.220216.计算32×2021+42×2021+72×2021的结果为()A.2021B.20210C.202100D.20210007.已知a,b,c为△ABC三边,且满足ab−b2=bc−ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定8.已知x2+x+1=0,则x2022+x2021+x2020+x2019+⋅⋅⋅+x+1的值是()A.0B.1C.−1D.2二、填空题9.用提公因式法分解因式时,从多项式38x4−19x2−57x3中提出的公因式为.10.分解因式:3a−9ab=.11.若x+2y=6,xy=−3则2x2y+4xy2=.12.因式分解:x(x−1)+4(x−1)=.13.因式分解:(2x+y)2−(2x−y)(2x+y)=.14.如果x2+x−1=0则代数式x4+3x3+4x2+x−7的值为.15.已知实数a,b,x,y满足a+b=x+y=3,ax+by=4则(a2+b2)xy+ab(x2+y2)=. 16.如图,把R1、R2、R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3.当R1=19.7,R2=32.4,R3=35.9,I=2.5时,U的值为.三、解答题17.把下列各式因式分解.(1)4a3b3+6a2b−2ab2(2)y(x+1)+y2(x+1)18.因式分解:(2x−a)3+3a(a−2x)2.19.分解因式:(x−2y)(2x+3y)−2(2y−x)(5x+3y).20.常用的分解因式的方法有提取公因式法、运用公式法.有些多项式分解因式时,需要先分组,然后再提取公因式或运用公式.如分解因式:x2−4y2−2x+4y=(x2−4y2)+(−2x+4y)=(x+2y)(x−2y)−2(x−2y)=(x−2y)(x+2y−2)这种分解因式的方法叫分组分解法.利用这种方法解决以下问题:△ABC三边a,b,c满足a2−ab−ac+bc=0,判断△ABC的形状.21.阅读下列材料:已知a2+a−3=0,求a2(a+4)的值.解:∵a2=3−a,∵a2(a+4)=(3−a)(a+4)=3a+12−a2−4a=−a2−a+12∵a2+a=3,∵−(a2+a)+12=−3+12=9∵a2(a+4)=9.根据上述材料的做法,完成下列各小题:(1)已知a2−a−10=0,求2(a+4)(a−5)的值;(2)已知x2−x−1=0,求x3−2x+1的值.22.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”下面是小涵同学用换元法对多项式(x2−4x+1)(x2−4x+7)−7进行因式分解的过程解:设x2−4x=y①,将①带入原式后原式=(y+1)(y+7)−7(第一步)=y2+8y(第二步)=y(y+8)(第三步)=(x2−4x)(x2−4x+8)(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的______方法;(2)老师说,小涵因式分解的结果不彻底,请你通过计算得出该因式分解的最后结果;(3)请你用“换元法”对多项式(x2+x)(x2+x+2)+(x2+x+1)(x2+x−1)+1进行因式分解参考答案1.解:A.ax2−ay+a=a(x2−y+1)因式分解错误,故A不符合题意;B.5m2n−10mn2=5mn(m−2n)符合因式分解的定义,故B符合题意;C.x(y−z)=xy−xz是整式的乘法运算,故C不符合题意;D.4p2−4p+1=4p(p−1)+1右边不是整式的积的形式,不符合因式分解的定义,故D不符合题意.故选:B.2.解:提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是2x2y2.故选D3.解:a2−a=a(a−1)故选C.4.解:原式=5(a−b)−m(a−b)=(a−b)(5−m)另一个因式是(5−m)故选:A.5.解:原式=(−2)2021+(−2)2021×(−2)=(−2)2021×(1−2)=−1×(−22021)=22021.故选:D.6.解:原式=2021×(32+42+72)=2021×(9+42+49)=2021×100=202100.故选:C.7.解:ab−b2=bc−acab−b2+ac−bc=0b(a−b)+c(a−b)=0(a−b)(b+c)=0∵a,b,c为△ABC三边∵b+c≠0∵a−b=0∴a=b∵△ABC是等腰三角形.故选:C.8.解:∵x2+x+1=0,x≠0∴x3+x2+x1=0,x6+x5+x4=0,x9+x8+x7=0……∴x2022+x2021+x2020+x2019+⋅⋅⋅+x+1=0×674+1=1故选B.9.解:38x4−19x2−57x3=19x2(2x2−1−3x)∴从多项式38x4−19x2−57x3中提出的公因式为19x2故答案为:19x2.10.解:3a−9ab=3a(1−3b)故答案为:3a(1−3b).11.解:2x2y+2xy2=2xy(x+2y)∵x+2y=6,xy=−3∵原式=2×(−3)×6=−36.故答案是:−36.12.解:x(x−1)+4(x−1)=(x−1)(x+4)故答案为:(x−1)(x+4)13.解:(2x+y)2−(2x−y)(2x+y)=(2x+y)(2x+y−2x+y)=2y(2x+y).故答案为:2y(2x+y).14.解:∵x2+x−1=0∴x2+x=1x4+3x3+4x2+x−7=x2(x2+x)+2x(x2+x)+x2+(x2+x)−7=x2+2x+x2−6=2(x2+x)−6=−4故答案为:−4.15.解:∵a+b=x+y=3∵(a+b)(x+y)=ax+ay+bx+by=9∵ax+by=4∵ay+bx=5(a2+b2)xy+ab(x2+y2)=a2xy+b2xy+abx2+aby2=ax(ay+bx)+by(bx+ay)=(ax+by)(ay+bx)=4×5=20故答案为:20.16.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.5(19.7+32.4+35.9)=2.5×88=220.故答案为:220.17.(1)解:4a3b3+6a2b−2ab=2ab(2a2b2+3a−1)2(2)解:y(x+1)+y2(x+1)=y(x+1)[1+y(x+1)]=y(x+1)(1+xy+y)18.解:原式=(2x−a)2(2x−a+3a)=(2x−a)2(2x+2a)=2(2x−a)2(x+a).19.解:(x−2y)(2x+3y)−2(2y−x)(5x+3y)=(x−2y)(2x+3y)+2(x−2y)(5x+3y)=(x−2y)[2x+3y+2(5x+3y)]=(x−2y)(12x+9y)=3(x−2y)(4x+3y)20.解:由a2−ab−ac+bc=0得(a2−ab)+(−ac+bc)=0∵a(a−b)−c(a−b)=0,(a−b)(a−c)=0∵a−b=0,或者a−c=0,即a=b,或者a=c∵△ABC是等腰三角形.21.解:(1)∵a2−a−10=0∴a2−a=10∴2(a+4)(a−5)=2(a2−a−20)=2×(10−20)=−20∵2(a+4)(a−5)的值为−20;(2)∵x2−x−1=0∴x2−x=1,x2=x+1∴x3−2x+1=x(x2−2)+1=x(x+1−2)+1=x2−x+1=1+1=2∵x3−2x+1的值为2.22.(1)解:由题意得:从y2+8y到y(y+8)运用了因式分解中的提取公因式法故答案为:提取公因式(2)解:由题意得:(x2−4x)(x2−4x+8)=x(x−4)(x2−4x+8)(3)解:设x2+x=t,将x2+x=t代入(x2+x)(x2+x+2)+(x2+x+1)(x2+x−1)+1中得:t(t+ 2)+(t+1)(t−1)+1原式=t2+2t+t2−1+1=2t2+2t=2t(t+1)=2(x2+x)(x2+x+1)=2x(x+1)(x2+x+1)。

提公因式法练习题

提公因式法练习题

提公因式法练习题提公因式法是一种常用的数学方法,用于将多项式进行因式分解。

在学习代数时,我们经常会遇到需要使用提公因式法来简化表达式的情况。

本文将通过一些练习题来帮助读者加深对提公因式法的理解。

练习题一:将表达式 $3x^2 - 6x$ 进行因式分解。

解答:首先,我们可以将表达式中的公因数提取出来。

这里,公因数为 $3x$,所以我们可以将表达式改写为 $3x(x - 2)$。

这样,我们就成功地将表达式进行了因式分解。

练习题二:将表达式 $4x^3 - 8x^2 + 4x$ 进行因式分解。

解答:同样地,我们首先找到表达式中的公因数。

这里,公因数为 $4x$,所以我们可以将表达式改写为 $4x(x^2 - 2x + 1)$。

然而,我们还可以进一步分解$x^2 - 2x + 1$。

这个表达式可以写成 $(x - 1)^2$。

因此,整个表达式的因式分解形式为 $4x(x - 1)^2$。

练习题三:将表达式 $9x^2 - 16$ 进行因式分解。

解答:这个表达式看起来不像前两个练习题那么容易分解。

但是,我们可以使用一个特殊的公式来进行因式分解,即差平方公式。

差平方公式可以写成 $a^2 - b^2 = (a + b)(a - b)$。

我们可以将表达式 $9x^2 - 16$ 看作 $3^2x^2 - 4^2$。

根据差平方公式,我们可以将其分解为 $(3x + 4)(3x - 4)$。

因此,表达式$9x^2 - 16$ 的因式分解形式为 $(3x + 4)(3x - 4)$。

通过以上的练习题,我们可以看到提公因式法在因式分解中的重要性。

它帮助我们找到多项式中的公因数,并将其提取出来,从而简化表达式。

这种方法在解决代数问题时非常有用,尤其是在求解方程、简化分式等情况下。

除了上述的练习题外,我们还可以通过更复杂的例子来练习提公因式法。

例如,将表达式 $6x^3 + 9x^2 - 12x$ 进行因式分解。

这个表达式看起来比前面的例子更复杂,但是我们可以先找到公因数 $3x$,然后将其提取出来,得到$3x(2x^2 + 3x - 4)$。

2022-2023学年鲁教版(五四制)八年级数学上册《提公因式法》同步练习(含答案)

2022-2023学年鲁教版(五四制)八年级数学上册《提公因式法》同步练习(含答案)

鲁教版(五四制)八上1.2提公因式法同步练习一、选择题(共30题)1.多项式a2−2a的公因式是( )A.a B.a2C.2a D.−2a2.下列多项式中能用提取公因式法分解因式的是( )A.4x2−y2B.x2+6xy+9y2C.2xy+4y2D.2x2−3y23.多项式5a3bc2+10a2b2c−c2−3c中的公因式是( )A.5a2bc B.bc2C.c D.abc4.若(p−q)2−(q−p)3=(q−p)2⋅E,则E是( )A.1−q−p B.q−p C.1+q−p D.1+p−q5.多项式18xy+12x2y−6xyz各项的公因式是( )A.12yz B.6xz C.6xy D.3yz6.把2ax2+4ax进行因式分解,提取的公因式是( )A.2a B.2x C.ax D.2ax7.分解因式x3+x的结果是( )A.x(x2+1)B.x(x+1)(x−1)C.x(x+1)D.x(x+1)28.把多项式a2−4a分解因式,结果正确的是( )A.a(a−4)B.(a+2)(a−2)C.a(a+2)(a−2)D.(a−2)2−49.下列多项式应提取公因式5a2b的是( )A.15a2b−20a2b2B.30a2b3−15ab4−10a3b2C.10a2b−20a2b3+50a4b D.5a2b4−10a3b3+15a4b210.多项式−8a2b3c+16a2b2c2−24a3bc3各项的公因式为( )A.−8a2bc B.2a2b2c3C.−4abc D.24a3b3c311.多项式15a3b3+5a2b−20a2b3中各项的公因式是( )A.a3b3B.a2b C.5a2b D.5a3b312.多项式4a3b−6a2b2+2a2b的公因式是( )A.a2B.a2b C.2a2b D.2ab13.多项式8x m y n−1−12x3m y n的公因式是( )A.x m y n B.x m y n−1C.4x m y n D.4x m y n−1 14.将3a2m−6amn+3a分解因式,下面是四位同学分解的结果:① 3am(a−2n+1);② 3a(am+2mn−1);③ 3a(am−2mn);④ 3a(am−2mn+1).其中,正确的是( )A.①B.②C.③D.④15.把多项式(m+1)(m−1)+(m−1)提取公因式(m−1)后,余下的部分是( )A.m+1B.2m C.2D.m+216.已知mn=1,m−n=2,则m2n−mn2的值是( )A.−1B.3C.2D.−217.多项式2x2−4xy+2x提取公因式2x后,另一个因式为( )A.x−2y B.x−4y+1C.x−2y+1D.x−2y−118.把多项式a6−a2提取公因式后,另一个因式是( )A.a4B.a3C.a4−1D.a3−119.多项式−2x3+6x2+2x因式分解的结果是( )A.−2(x3−3x2+x)B.−2x(x2−3x)C.−2x(x2−3x−1)D.−2(x3−2x2−x)20.把多项式a2−4a分解因式,结果正确的是A.a(a−4)B.(a+2)(a−2)C.a(a+2)(a−2)D.(a−2)2−421.把多项式4a2b+4ab2+b3分解因式正确的是( )A.a(2a+b)2B.b(2a+b)2C.(a+2b)2D.4b(a+b)222.把a2(a−1)+(1−a)分解因式的结果是( )A.(a−1)2(a+1)B.(a−1)2C.(a−1)(a2+1)D.(1−a)(a2+1)23.多项式4a2b−8ab+12ab2的公因式是( )A.2ab B.4ab C.12ab D.24a2b224.下列各式中,运用提公因式法分解因式正确的是( )A.12abc−9a2b2=3abc(4−3ab)B.3x2y−3xy=3y(x2−x)C.−a2+ab−ac=−a(a−b+c)D.x2y+5xy−y=y(x2+5x)25.利用分解因式简便计算57×99+44×99−99,下列计算正确的是( )A.99×(57+44)=99×101=9999B.99×(57+44−1)=99×100=9900C.99×(57+44+1)=99×102=10098D.99×(57+44−99)=99×2=19826.把多项式8x3−6x2+2x提取公因式2x后,另一个因式是( )A.4x2−3x B.4x2−6x+1C.4x2+3x−1D.4x2−3x+127.利用因式分解简便计算69×99+32×99−99正确的是( )A.99×(69+32)=99×101=9999B.99×(69+32−1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32−99)=99×2=19828.已知x−y=2,xy=3,则xy2−x2y的值为( )A.5B.6C.−6D.1229.把2a2b3+8a4b2分解因式,结果是( )A.a2b2(2b+8a2)B.2ab2(ab+4a3)C.2a2b2(b+4a2)D.2a2b(b2+4a2b)30.把b2(x−3)+b(x−3)分解因式,结果是( )A.(x−3)(b2+b)B.b(x−3)(b+1)C.(x−3)(b2−b)D.b(x−3)(b−1)二、填空题(共15题)31.分解因式:m2−2m=.32.因式分解:x2−2x=.33.因式分解:a2+ab−a=.34.分解因式:2a2−ab=.35.a(y−x)3=()(x−y)3.36.−a−b=−().37.因式分解:km+kn=;38.分解因式:9x2−6xy+3xz=.39.多项式12b3−8b2+4b的公因式是.40.分解因式:−3x2y−6xy=.41.已知a+b=2,a−b=3,则a2−b2的值为.42.如图,长为a,宽为b的长方形的周长为16,面积为15,则a2b+ab2的值为.43.分解因式:y(x+2)2+y2(x+2)=.44.3x2y3,2x2y,−5x3y2中各项的公因式是.45.多项式−7ab+14abx−48aby中各项的公因式是.三、解答题(共5题)46.把下列各式分解因式:(1) −5a2b3+20ab2−5ab;(2) (x+y)(x−y)−(x+y)2;(3) 8a(x−y)2−4(y−x)3;(4) x(x2−xy)−(4x2−4xy).47.分解因式:(1) 21xy−14xz+35x2;(2) 15xy+10x2−5x;(3) (2a+b)(3a−2b)−4a(2a+b);(4) (x−2)2−x+2.48.分解因式.(1) 3a3b+12ab2−9a4b3;(2) −8x4y+6x3y−2x2y;(3) m(4x+y)−2mn(4x+y);(4) 3a(a−2b)2−18b(2b−a)2.49.分解因式.(1) ax2y−axy2.(2) −14abc−7ab+49ab2c.(3) x(x−y)−y(y−x),(4) m(x−y)2−x+y.50.把下列各式分解因式:(1) −5a2b3+20ab2−5ab;(2) (2x−y)(x+3y)−(x+y)(y−2x);(3) (x+y)(x−y)−(x+y)2;(4) 5x(x−2y)2−20(2y−x)3.答案一、选择题(共30题)1. 【答案】A2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】D7. 【答案】A8. 【答案】A9. 【答案】A10. 【答案】A11. 【答案】C12. 【答案】C13. 【答案】D14. 【答案】D15. 【答案】D16. 【答案】C17. 【答案】C18. 【答案】C19. 【答案】C20. 【答案】A21. 【答案】B22. 【答案】A23. 【答案】B24. 【答案】C25. 【答案】B26. 【答案】D27. 【答案】B28. 【答案】C29. 【答案】C30. 【答案】B二、填空题(共15题)31. 【答案】m(m−2)32. 【答案】x(x−2)33. 【答案】a(a+b−1)34. 【答案】a(2a−b)35. 【答案】−a36. 【答案】a+b37. 【答案】k(m+n)38. 【答案】3x(3x−2y+z)39. 【答案】4b40. 【答案】−3xy(x+2)41. 【答案】642. 【答案】12043. 【答案】y(x+2)(x+y+2)44. 【答案】x2y45. 【答案】−ab三、解答题(共5题)46. 【答案】(1) 原式=−5ab(ab2−4b+1).(2) 原式=−2y(x+y).(3) 原式=4(x−y)2(2a+x−y).(4) 原式=x2(x−y)−4x(x−y) =x(x−y)(x−4).47. 【答案】(1) 原式=7x(3y−2z+5x).(2) 原式=5x(3y+2x−1).(3) 原式=−(2a+b)(a+2b).(4) 原式=(x−2)(x−3).48. 【答案】(1) 原式=3ab(a2+4b−3a3b2).(2) 原式=−2x2y(4x2−3x+1).(3) 原式=m(4x+y)(1−2n).(4) 原式=3a(a−2b)2−18b(a−2b)2 =3(a−2b)2(a−6b).49. 【答案】(1) axy(x−y).(2) −7ab(2c+1−7bc)(3) (x+y)(x−y).(4) (x−y)(mx−my−1).50. 【答案】(1) −5ab(ab2−4b+1).(2) 2(2x−y)(x+2y).(3) −2y(x+y).(4) 5(x−2y)2(5x−8y).。

提公因式法练习题

提公因式法练习题

..提公因式法(1)(一)课堂练习 一、填空题1.把一个多项式___________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项式_______。

2.把下列各多项式的公因式填写在横线上。

(1)x 2-5xy_________ (2)-3m 2+12mn _________ (3)12b 3-8b 2+4b _________(4)-4a 3b 2-12ab 3 __________ (5)-x 3y 3+x 2y 2+2xy _________ 3.在括号内填入适当的多项式,使等式成立。

(1)-4ab-4b=-4b( ) (2)8x 2y-12xy 3=4xy( )(3)9m 3+27m 2=( )(m+3) (4)-15p 4-25p 3q=( )(3p+5q)(5)2a 3b-4a 2b 2+2ab 3=2ab( )(6)-x 2+xy-xz=-x( )(7)21a 2-a=21a( ) 二、选择题1.下列各式从左到右的变形是因式分解的是 ( )(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4(C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+2 2.下列各等式从左到右的变形是因式分解的是 ( )(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y)(C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9) 3.下列各式因式分解错误的是 ( )(A)8xyz-6x 2y 2=2xy(4z-3xy) (B)3x 2-6xy+x=3x(x-2y)(C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2+ab-ac=-a(a-b+c) 4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( )(A)3ab (B)3a 2b 2 (C)- 3a 2b (D)- 3a 2b 25.把下列各多项式分解因式时,应提取公因式2x 2y 2的是 ( )(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4 (C)6x 3y 2+4x 2y 3-2x 3y 3 (D)x 2y 4-x 4y 2+x 3y 36.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是 ( )(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 28. 下列各式从左到右的变形:①(a+b)(a-b)=a 2-b 2 ②x 2+2x-3=x(x+2)-3 ③x+2=x1(x 2+2x) ④a 2-2ab+b 2=(a-b)2是因式分解的有 ( ) (A)1个 (B)2个 (C)3个 (D)4个 (二)课后作业1.把下列各式分解因式(1)9m 2n-3m 2n 2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby(4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2n(7)x n+1-2x n-1(8)-2x 2n +6x n (9)a n -a n+2+a 3n2.用简便方法计算:(1)9×10100-10101(2)4.3×199.7+7.5×199.7-1.8×199.73.已知a+b=2,ab=-3求代数式2a 3b+2ab 3的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 课堂练习
、选择题(每题5分)
1.下列各式从左到右的变形是因式分解的是 ( )
(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4
(C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+2
2.下列各等式从左到右的变形是因式分解的是 ( )
(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y)
(C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9)
3.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )
(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 2
4. 下列各式从左到右的变形:①(a+b)(a-b)=a 2-b 2 ②x 2+2x-3=x(x+2)-3 ③x+2=x 1
(x 2+2x)
④a 2-2ab+b 2=(a-b)2是因式分解的有 ( )
(A)1个 (B)2个 (C)3个 (D)4个5.
5.把多项式m(m-n)2+4(n-m)分解因式,结果正确的是 ( )
(A)(n-m)(mn-m 2+4) (B)(m-n)(mn-m 2+4)
(C)(n-m)(mn+m 2+4) (D)(m-n)(mn-m 2-4)
6.下列各多项式,分解因式正确的是 ( )
(A)(x-y)2-(x-y)=(x-y)(x-y)2 (B)(x-y)2-(x-y)=(x-y)(x-y)=(x-y)2
(C)(x-y)2-(x-y)=(x-y)(x-y-1) (D)a 2(a-b)-ab(b-a)=a(a-b)(a-b)=a(a-b)2
(二)把下列各式分解因式(每题5分)
(1)x n+1-2x n-1 (2)-2x 2n +6x n (3) 1.3xy(a-b)2+9x(b-a)
(4).(2x-1)y 2+(1-2x)2y (5).a 2(a-1)2-a(1-a)2 (6).ax+ay+bx+by
(7)9×10100-10101 (8)4.3×199.7+7.5×199.7-1.8×199.7
2.已知a+b=2,ab=-3求代数式2a 3b+2ab 3的值。

(10分)
3.如果哥哥和弟弟的年龄分别为x 岁、y 岁,且x 2+xy=99,求出哥哥、弟弟的年龄(10分)。

4.当x=21
,y=-31
时,求代数式2x(x+2y)2-(2y+x)2(x-2y)的值。

(10分)。

相关文档
最新文档