2021中考数学压轴题全揭秘精品专题12 圆的有关性质与计算

合集下载

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。

2021中考数学压轴题训练 –圆的专题含答案

2021中考数学压轴题训练 –圆的专题含答案

2021中考数学压轴题满分训练–(圆的专题)1.如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若AD=EC=4,求⊙O的半径.2.AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM =∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=,若⊙O的半径为1,cosα=,求AG•ED的值.3.如图,点O在直线l上,过点O作AO⊥l,AO=3.P为直线l上一点,连接AP,在直线l右侧取点B,∠APB=90°,且PA=PB,过点B作BC⊥l交l于点C.(1)求证:△AOP≌△PCB;(2)若CO=2,求BC的长;(3)连接AB,若点C为△ABP的外心,则OP=.4.如图,已知△ABC内接于⊙O,直径AD交BC于点E,连接OC,过点C作CF⊥AD,垂足为F.过点D作⊙O的切线,交AB的延长线于点G.(1)若∠G=50°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2,若,求tan∠CAF的值.5.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E 作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.6.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO 的延长线交于点D.(1)∠CAB=,∠BOD=;(2)求证:△ABC≌△ODB.(3)若BD=2,求弧BC的长.7.如图,已知AB是⊙O的直径,DO⊥AB于点O,CD是⊙O的切线,切点为C,连接AC,交OD于点E.(1)求证:∠DCE=∠DEC;(2)若AB=17,AC=15,求AE的长.8.如图,MN为半圆O的直径,半径OA⊥MN,D为OA的中点,过点D作BC∥MN.求证:(1)四边形ABOC为菱形;(2)∠MNB=∠BAC.9.如图,BD是⊙O的直径,过A点作CD的垂线交CD的延长线于点E,且DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=2cm,求的长.10.如图,△ABC中,∠ACB<2∠B,CO平分∠ACB交AB于O点,以OA为半径的⊙O与AC相切于点A,D为AC上一点且∠ODA=∠B.(1)求证:BC所在直线与⊙O相切;(2)若CD=1,AD=2,求⊙O的半径.11.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E 在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=AC,CE=10,EF=14,求CD.12.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作直线l交CA的延长线于点P,且∠ADP=∠BCD,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)求证:PD是⊙O的切线;(3)若AC=6,BC=8,求线段PD的长.13.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD 的大小.14.已知:如图,AB是⊙O的弦,AC是⊙O的切线,作OK⊥AB,垂足为K.求证:∠BAC=∠AOK.15.如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,连接AC.(1)求证:AC平分∠DAE;(2)若cos∠DAE=,BE=2,求⊙O的半径.参考答案1.(1)证明:连接OE,∴OA=OE,∴∠OEA=∠OAE.∵PQ切⊙O于E,∴OE⊥PQ.∵AC⊥PQ,∴OE∥AC.∴∠OEA=∠EAC,∴∠OAE=∠EAC,∴AE平分∠BAC.(2)解:过点O作OM⊥AC于M,∴AM=MD==2;又∠OEC=∠ACE=∠OMC=90°,∴四边形OECM为矩形,∴OM=EC=4,在Rt△AOM中,OA===2;即⊙O的半径为2.2.(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=,即,∴,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴,∴.3.解:(1)证明:∵∠APB=90°,∴∠APC+∠BPC=90°∵AO⊥l,BC⊥l,∴∠AOC=∠BCP=90°,∴∠OAC+∠APC=90°,∴∠OAC=∠BPC,在△AOP和△PCB中,∴△AOP≌△PCB(AAS);(2)∵△AOP≌△PCB(AAS)∴AO=PC=3,OP=BC,∴BC=OP=OC+CP=3+2=5;∴BC的长为5.(3)若点C为△ABP的外心,则点C位于斜边中点,又已知BC⊥l,故点C与点O 重合,如图所示:∵AP=BP,∴△APB为等腰直角三角形,∴∠A=∠B=45°,∵AO⊥l,∴△AOP为等腰直角三角形,∴OP=AO,∵AO=3,∴OP=3,故答案为:3.4.(1)解:连接BD,如图,∵DG为切线,∴AD⊥DG,∴∠ADG=90°,∵AD为直径,∴∠ABD=90°,而∠GDB+∠G=90°,∠ADB+∠GDB=90°,∴∠ADB=∠G=50°,∴∠ACB=∠ADB=50°;(2)证明:连接CD,如图,∵AB=AE,∴∠ABE=∠AEB,∵OD=OC,∴∠ODC=∠OCD,而∠ABC=∠ADC,∴∠ABE=∠AEB=∠ODC=∠OCD,∴∠BAD=∠DOC;(3)解:∵∠BAD=∠FOC,∠ABD=∠OFC,∴△ABD∽△OFC,∴=()2=4,∵,设S1=8x,S2=9x,则S△ABD=2S1=16x,∴S△OFC=•16x=4x,∴S△AOC=9x﹣4x=5x,∵===,∴设OF=4k,则OA=5k,在Rt△OCF中,OC=5k,CF==3k,∴tan∠CAF===.5.证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.6.证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,由∠ABC=30°,∴∠CAB=60°,又OB=OC,∴∠OCB=∠OBC=30°,∴∠BOD=60°.故答案为:60°,60°.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,∴AC=OB,由BD切⊙O于点B,得∠OBD=90°,在△ABC和△ODB中,,∴△ABC≌△ODB(ASA).(3)解:∵∠BOD=60°,BD=2,∴∠BOC=120°,OB=BD==2,∴弧BC的长为=.7.(1)证明:连接OC,∵CD是⊙O的切线,切点为C,∴OC⊥CD,即∠OCD=90°,∵OC=OA,∴∠A=∠OCA,∵OD⊥AB,∴∠DEC=∠AEO=90°﹣∠A,∵∠DCE=90°﹣∠OCA,∴∠DCE=∠DEC;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵AB=17,∴OB=,∵∠AOE=∠ACB,∠A=∠A,∴△AEO∽△ABC,∴,∴,∴AE=.8.证明:(1)∵半径OA⊥MN,∴BD=CD,又∵AD=OD,AD⊥BC,∴四边形ABOC为菱形;(2)∵OA⊥BC,BC∥MN,∴OA⊥MN,∵四边形ABOC为菱形,∴AB=OC,∴AB=OA=OB,∴△ABO是等边三角形,∴∠BAO=∠AOB=60°,同理∠COA=60°,则∠BAC=120°,∵OA⊥MN,∴∠BOM=90°﹣60°=30°,∴∠MNB=∠BOM=15°,∴∠MNB=∠BAC.9.(1)证明:连接OA,如图:∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:∵BD为⊙O的直径,∴∠C=90°,∴∠BDC=90°﹣∠DBC=90°﹣30°=60°,∴∠ODA=∠EDA=60°,在Rt△ADE中,∠DAE=90°﹣60°=30°,∴AD=2DE=4(cm),∵∠ODA=60°,OA=OD,∴△OAD为等边三角形,∴OD=AD=4cm,∠AOD=60°,∴的长==π.10.(1)证明:过O作OE⊥BC于E,如图所示:∵⊙O与AC相切于点A,∴OA⊥AC,∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线与⊙O相切;(2)解:∵CD=1,AD=2,∴AC=CD+AD=3,∵AC、BC是⊙O的切线,∴EC=AC=3,在△OEB和△OAD中,,∴△OEB≌△OAD(AAS),∴EB=AD=2,OB=OD,∴BC=EC+EB=5,∴AB===4,设OA=x,则OD=OB=4﹣x,在Rt△AOD中,由勾股定理得:x2+22=(4﹣x)2,解得:x=,即⊙O的半径为.11.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=14,∵CE=10,∠BCD=90°,∴∠DCE=90°,∴CD==4.12.(1)证明:∵∠ADP=∠BCD,∠BCD=∠BAD,∴∠ADP=∠BAD,∴DP∥AB;(2)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB是等腰直角三角形,∵OA=OB,∴OD⊥AB,∵DP∥AB,∴OD⊥PD,∴PD是⊙O的切线;(3)解:在Rt△ACB中,AB===10,∵△DAB为等腰直角三角形,∴AD=AB=5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE=AC=3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴====,∴PA=PD,PC=PD,∵PC=PA+AC,∴PD+6=PD,解得:PD=.13.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠E=38°,∵OD∥CE,∴∠AOD=∠E=38°,∴∠ACD=AOD=19°.14.解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠BAC+∠OAK=90°,∵OK⊥AB,∴∠OAK+∠AOK=90°,∴∠BAC=∠AOK.15.(1)证明:连接OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAE;(2)解:设⊙O的半径为r,∵OC∥AD,∴∠DAE=∠COE,∴cos∠DAE=cos∠COE=,BE=2,∴=,解得:r=4,即⊙O的半径为4.。

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∴,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,∴MN=.8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。

2021年中考数学专题汇编:圆的有关性质(含答案)

2021年中考数学专题汇编:圆的有关性质(含答案)

2021年中考数学专题汇编:圆的有关性质(含答案)2021中考数学专题汇编:圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 如图,☉O的直径AB 垂直于弦CD.垂足是点E ,∠CAO=22.5°,OC=6,则CD 的长为 ( )A .6B .3C .6D .123. 如图,AB 是⊙O的直径,点C ,D ,E 在⊙O 上.若∠AED =20°,则∠BCD的度数为( )A .100°B .110°C .115°D .120°4. 2019·葫芦岛如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°5. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D 是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°6. 如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°7. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 如图,⊙P与x轴交于点A(—5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.13+ 3 B .2 2+ 3C .4 2D .2 2+29. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A .5 cmB .6 cmC .7 cmD .8 cm10. 一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2m ,某天下雨后,排水管水面上升了0.2 m ,则此时排水管水面宽为( )A .1.4 mB .1.6 mC .1.8 mD .2 m二、填空题(本大题共8道小题)11. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.12. 如图,AB 为⊙O的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.13. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB 是________.(填特殊平行四边形的名称)14. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.15. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.17. 如图,在☉O 中,弦AB=1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交☉O 于点D ,则CD 的最大值为 .18. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题(本大题共4道小题)19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在⊙O 中,AB =DE ,BC =EF .求证:AC =DF .21. 如图为一拱形公路桥,圆弧形桥拱的水面跨度AB =80米,桥拱到水面的最大高度为20米. (1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过这座拱桥吗?请说明理由.22.如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠F AB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.2021中考数学专题汇编:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.3. 【答案】B[解析] 连接AC.∵AB为⊙O的直径,∴∠ACB=90°.∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°.故选B.4. 【答案】B5. 【答案】D6. 【答案】D[解析] ∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=180°-22.5°-22.5°=135°,∴∠C=180°-12×135°=112.5°.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC=3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】B[解析] 如图,连接PA,PB,PC,过点P作PD⊥AB 于点D,PE ⊥OC于点E.∵∠ACB=60°,∴∠APB=120°.∵PA=PB,∴∠PAB=∠PBA=30°.∵A(-5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=3,PA=PB=PC=2 3.∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=3,PE=OD=3-1=2,∴CE=PC2-PE2=12-4=2 2,∴OC=CE+OE=2 2+3,∴点C的纵坐标为2 2+ 3.故选B.9. 【答案】A[解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA=(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.10. 【答案】B[解析] 如图,过点O作OE⊥AB于点E,交CD于点F,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m.∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD =1.6 m .故选B.二、填空题(本大题共8道小题)11. 【答案】40°12. 【答案】5[解析] 设圆的半径为x ,则OE =x -1.根据垂径定理可知,CE =3,由勾股定理可得32+(x -1)2=x2,解得x =5. 故答案为5.13. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形,∴OA =AC =BC =OB ,∴四边形OACB 是菱形.14. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°,∴∠ABC =70°.15. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.17. 【答案】[解析]连接OD ,因为CD ⊥OC ,所以CD=,根据题意可知圆半径一定,故当OC 最小时CD 最大.当OC ⊥AB 时OC 最小,CD 最大值=AB=.18. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,∴AO ⊥BC ,垂足为D ,则BD =12BC = 3. 在Rt △OBD 中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1;当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.三、解答题(本大题共4道小题)19. 【答案】(1)证明:如解图,连接OD ,(1分) ∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分) ∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分) ∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠O DF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分) ∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】证明:∵AB =DE ,BC =EF ,∴AB ︵=DE ︵,BC ︵=EF ︵,∴AB ︵+BC ︵=DE ︵+EF ︵,∴AC ︵=DF ︵,∴AC =DF .21. 【答案】解:(1)如图①,设点E 是桥拱所在圆的圆心,连接AE ,过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点D.根据垂径定理知F 是AB 的中点,D 是AB ︵的中点,DF 的长是桥拱到水面的最大高度,∴AF =FB =12AB =40米,EF =DE -DF =AE -DF. 由勾股定理,知AE2=AF2+EF2=AF2+(AE -DF)2. 设桥拱的半径为r 米,则r2=402+(r -20)2,解得r =50.答:桥拱的半径为50米.(2)这艘轮船能顺利通过这座拱桥.理由如下:如图②,由题意,知DE ⊥MN ,PM =12MN =30米,EF =50-20=30(米).在Rt △PEM中,PE =EM2-PM2=40米,∴PF =PE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.22. 【答案】(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠CAF =∠OAC ,∴AC 平分∠F AB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠DCP =90°,∴∠ACB =∠DCP =90°,又∵∠BAC =∠D ,∴△ACB ∽△DCP ,∴∠EBC =∠P ,∵CE ⊥AB ,∴∠BEC =90°,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠CBP =90°,∴∠BEC =∠CBP ,∴△CBE ∽△CPB ,∴BC PC =CE CB ,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠F AB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34,∴CE CP =34,设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.。

【2021中考数学】圆的有关性质含答案

【2021中考数学】圆的有关性质含答案

2021中考数学圆的有关性质一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为() A.1 B.2 C.3 D.42. 把一个圆形纸片至少对折________次,才可以确定圆心()A.1 B.2 C.3 D.无数次3. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6D.124. 2018·济宁如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OPC.OB⊥AC D.AC平分OB6. 一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为()A .6 dmB .5 dmC .4 dmD .3 dm7. 一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2 m ,某天下雨后,排水管水面上升了0.2 m ,则此时排水管水面宽为( )A .1.4 mB .1.6 mC .1.8 mD .2 m 8. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 2二、填空题9. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)10. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.11. 如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________°.12. 如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为________.13. 如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连接OD,BE,它们交于点M,且MD=2,则BE的长为________.14. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题15.(2020·泰州)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M ,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90 ,求线段MN的长.16. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.17. 2018·北京对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.18. 已知⊙O的半径为3,⊙P与⊙O相切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,cos∠BAO=13.设⊙P的半径为x,线段OC的长为y.(1)求AB的长;(2)如图,当⊙P与⊙O外切时,求y与x之间的函数关系式,并写出函数的定义域;(3)当∠OCA=∠OPC时,求⊙P的半径.答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.4. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半,可知∠α=2∠BCD=260°.而∠α+∠BOD=360°,所以∠BOD=100°.5. 【答案】A[解析] ∵AD是⊙O的直径,∴∠ACD=90°.∵四边形OBCD是平行四边形,∴CD∥OB,CD=OB,∴∠CPO=90°,即OB⊥AC,∴选项C正确;∴CP=AP.又∵OA=OD,∴OP是△ACD的中位线,∴CD=2OP,∴选项B正确;∴CD=OB=2OP,即P是OB的中点,∴AC平分OB,∴选项D正确.6. 【答案】B[解析] 如图,连接OD,OB,则O,C,D三点在一条直线上.因为CD垂直平分AB,AB=8 dm,所以BD=4 dm,OD=(OC-2)dm.由勾股定理,得42+(OC-2)2=OC2,解得OC=5(dm).故选B.7. 【答案】B[解析] 如图,过点O作OE⊥AB于点E,交CD于点F,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m.∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.8. 【答案】C [解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE =3.在Rt △OPE 中,由勾股定理可得OP =3 2.二、填空题9. 【答案】菱形 [解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°.又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形,∴OA =AC =BC =OB ,∴四边形OACB 是菱形.10. 【答案】8 [解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.11. 【答案】65 [解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E ,∴AB ⊥CD ,∴∠AED =90°,∴∠D =90°-25°=65°.12. 【答案】12[解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.13. 【答案】8 [解析] 连接AD ,如图所示.∵以AB为直径的⊙O与BC交于点D,与AC交于点E,∴∠AEB=∠ADB=90°,即AD⊥BC.又∵AB=AC,∴BD=CD.又∵OA=OB,∴OD∥AC,∴OD⊥BE,∴BM=EM,∴CE=2MD=4,∴AE=AC-CE=6,∴BE=AB2-AE2=102-62=8.14. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题15. 【答案】解:(1)连接AC .∵弧AP=弧PB ,∴∠1=∠2,∠3=∠4∵CP ⊥AD ,∴∠CME =∠CMA =90°∴∠A =∠5,∵∠A =∠B ,∠5=∠6,∴∠6=∠B ,∵∠3=∠4,DN =DN ,∴△DNE ≌△DNB∴EN =BN ,∴N 为BE 的中心.(2)∵弧AB 的度数为90°∴∠AOB =90°∵OA =OB ∴282AB OA ==∵AM =ME ,EN =BN ∴1422MN AB == 【解析】(1)可先证DE =DB ,∠ADP =∠BDP ,根据三线合一可证N 为BE 的中点.(2)利用MN 为△ABE 的中位线,可得AB =2MN ,进而求得MN 的长.16. 【答案】解:(1)设⊙E 切BC 于点M ,连接EM ,则EM ⊥BC .又线段AE 的延长线交BC 于点F ,∠AFC ≠90°,∴EF >EM ,∴点F 在△ABC 的内切圆⊙E 外.(2)证明:∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∠ABE =∠CBE .∵∠CBD =∠CAD ,∴∠BAD =∠CBD .∵∠BED =∠ABE +∠BAD ,∠EBD =∠CBE +∠CBD ,∴∠BED =∠EBD ,∴ED =BD .(3)如图①,连接CD .设△ABC 的外接圆为⊙O .∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.17. 【答案】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2.(2)如图,函数y=kx(k≠0)的图象经过原点,在-1≤x≤1范围内,函数图象为线段.当函数y=kx(-1≤x≤1,k≠0)的图象经过点(1,-1)时,k=-1,此时d(G,△ABC)=1;当函数y=kx(-1≤x≤1,k≠0)的图象经过点(-1,-1)时,k=1,此时d(G,△ABC)=1. ∴-1≤k≤1.又∵k≠0,∴-1≤k≤1且k≠0.(3)如图,⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时t=-4.②当⊙T 在△ABC 的内部时,当点T 与原点重合时,d (⊙T ,△ABC )=1,此时t =0;当点T 位于T 3位置时,由d (⊙T ,△ABC )=1知T 3M =2.∵AB =BC =8,∠ABC =90°,∴∠C =∠T 3DM =45°,则T 3D =2 2, ∴t =4-2 2. 故此时0≤t ≤4-2 2. ③当⊙T 在△ABC 的右侧时,由d (⊙T ,△ABC )=1知T 4N =2.∵∠T 4DC =∠C =45°,∴T 4D =2 2,∴t =4+2 2.综上,t =-4或0≤t ≤4-2 2或t =4+2 2.18. 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2. (2)如图2,作CH ⊥AP ,垂足为H .由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC ==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OC OC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154. ②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC . 所以AO AC AC AP=.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274. 图4 图5 图6考点伸展第(3)题②也可以这样思考:如图4,图5,图6,当∠OCA =∠OPC 时,3个等腰三角形△OAB 、△P AC 、△CAO 都相似,每个三角形的三边比是3∶3∶2.这样,△CAO 的三边长为92、92、3.△P AC 的三边长为274、274、92.。

2020-2021中考数学压轴题专题复习——圆的综合的综合含详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合含详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合含详细答案一、圆的综合1.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.【答案】画图见解析.【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.2.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.3.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(3,﹣1),点A的坐标为(﹣23B的坐标为(﹣3,0),点C在x轴上,且点D在点A的左侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,同时菱形ABCD沿x轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与BC相切,且切点为BC的中点时,连接BD,求:①t的值;②∠MBD的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=636+33. 【解析】分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值. 详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8; (2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E . ∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3 ∴tan ∠EBA =AE BE =33,∴∠EBA =60°,如图4,∴∠FBA =120°. ∵四边形ABCD 是菱形,∴∠FBD =12∠FBA =11202⨯︒=60°. ∵BC 是⊙M 的切线,∴MF ⊥BC .∵F 是BC 的中点,∴BF =MF =1,∴△BFM 是等腰直角三角形, ∴∠MBF =45°,∴∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)连接BM ,过M 作MN ⊥BD ,垂足为N ,作ME ⊥BC 于E ,分两种情况: 第一种情况:如图5.∵四边形ABCD 是菱形,∠ABC =120°,∴∠CBD =60°,∴∠NBE =60°. ∵点M 与BD 所在的直线的距离为1,∴MN =1,∴BD 为⊙M 的切线. ∵BC 是⊙M 的切线,∴∠MBE =30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan=33,∴3t=2t+6+33,t=6+33;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.4.如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC上的动点,连接AE,DE.(1)当点E是弧BC的中点时,求△ADE的面积;(2)若3tan 2AED ∠=,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】 【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF ADEF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值. 【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH , (2+a )2=(6+a )(2﹣a ),解得a =222±-, ∴a =222-, EH=22, S △ADE =1622AD EH =;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x ∵DF ∥BE∴AF ADEF BD = ∴622AF x ==3 ∴AF =6x在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x =255 AE =8x =1655(3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH , ∴∠DFO=∠EDH ∴△ODF ≌△HED ∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH (2)2=(6+a )•(2﹣a ) 解得a =±232- m =23当点E 为等腰直角三角形直角顶点时,如图同理得△EFG ≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=71m71【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.5.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1. 【解析】 【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案. 【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌, ∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴2BD , ∴2BD , 2. (2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==∴21BD AD ==+.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.6.如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π7.如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;(3)在(2)的条件下,若ΔABD的面积为63ΔABD与ΔABC的面积比为2:9,求CD 的长.【答案】(1)证明见解析;(2)30°;(3)233【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO 中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.(2)如图,连接AO并延长交BC于I交⊙O于J∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,∴BI=IC,∵AC=BC,∴IC=1AC,2∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB.∵FC是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°.(3)过点D 作DG AB ⊥,连接AO由(1)(2)知ABC 为等边三角形∵∠ACF=30°,∴AB CF ⊥,∴AE=BE , ∴2ΔABC 33S AB == ∴AB=3 ∴33AE =在RtΔAEO 中,设EO=x ,则AO=2x ,∴222AO AE OE =+,∴()(222233x x =+,∴x =6,⊙O 的半径为6,∴CF=12. ∵ΔABD 11636322S AB DG DG =⨯⨯=⨯= ∴DG=2.如图,过点D 作DG CF '⊥,连接OD .∵AB CF ⊥,DG AB ⊥,∴CF//DG ,∴四边形G ′DGE 为矩形,∴2G E '=, 63211CG G E CE +=++'==',在RtΔOG D '中,5,6OG OD ='=, ∴11DG '= ∴2221111233CD DG CG =++=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.8.如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若CD的长为134π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+133,直接写出AP的长.【答案】(1)∠CPD是直径AB的“回旋角”,理由见解析;(2)“回旋角”∠CPD的度数为45°;(3)满足条件的AP的长为3或23.【解析】【分析】(1)由∠CPD、∠BPC得到∠APD,得到∠BPC=∠APD,所以∠CPD是直径AB的“回旋角”;(2)利用CD弧长公式求出∠COD=45°,作CE⊥AB交⊙O于E,连接PE,利用∠CPD为直径AB的“回旋角”,得到∠APD=∠BPC,∠OPE=∠APD,得到∠OPE+∠CPD+∠BPC=180°,即点D,P,E三点共线,∠CED=12∠COD=22.5°,得到∠OPE=90°﹣22.5°=67.5°,则∠APD=∠BPC=67.5°,所以∠CPD=45°;(3)分出情况P在OA上或者OB上的情况,在OA上时,同理(2)的方法得到点D,P,F在同一条直线上,得到△PCF是等边三角形,连接OC,OD,过点O作OG⊥CD于G,利用sin∠DOG,求得CD,利用周长求得DF,过O作OH⊥DF于H,利用勾股定理求得OP,进而得到AP;在OB上时,同理OA计算方法即可【详解】∠CPD是直径AB的“回旋角”,理由:∵∠CPD=∠BPC=60°,∴∠APD=180°﹣∠CPD﹣∠BPC=180°﹣60°﹣60°=60°,∴∠BPC=∠APD,∴∠CPD是直径AB的“回旋角”;(2)如图1,∵AB=26,∴OC=OD=OA=13,设∠COD=n°,∵CD的长为134π,∴13131804n ππ= ∴n =45,∴∠COD =45°, 作CE ⊥AB 交⊙O 于E ,连接PE ,∴∠BPC =∠OPE ,∵∠CPD 为直径AB 的“回旋角”,∴∠APD =∠BPC ,∴∠OPE =∠APD ,∵∠APD+∠CPD+∠BPC =180°,∴∠OPE+∠CPD+∠BPC =180°,∴点D ,P ,E 三点共线,∴∠CED =12∠COD =22.5°, ∴∠OPE =90°﹣22.5°=67.5°,∴∠APD =∠BPC =67.5°,∴∠CPD =45°,即:“回旋角”∠CPD 的度数为45°,(3)①当点P 在半径OA 上时,如图2,过点C 作CF ⊥AB 交⊙O 于F ,连接PF , ∴PF =PC ,同(2)的方法得,点D ,P ,F 在同一条直线上,∵直径AB 的“回旋角”为120°,∴∠APD =∠BPC =30°,∴∠CPF =60°,∴△PCF 是等边三角形,∴∠CFD =60°,连接OC ,OD ,∴∠COD =120°,过点O 作OG ⊥CD 于G , ∴CD =2DG ,∠DOG =12∠COD =60°, ∴DG =ODsin ∠DOG =13×sin60°=1332√ ∴CD =133√,∵△PCD 的周长为24+133√,∴PD+PC =24,∵PC =PF ,∴PD+PF =DF =24,过O 作OH ⊥DF 于H ,∴DH=1DF=12,2在Rt△OHD中,OH=225-=OD DH在Rt△OHP中,∠OPH=30°,∴OP=10,∴AP=OA﹣OP=3;②当点P在半径OB上时,同①的方法得,BP=3,∴AP=AB﹣BP=23,即:满足条件的AP的长为3或23.【点睛】本题是新定义问题,同时涉及到三角函数、勾股定理、等边三角形性质等知识点,综合程度比较高,前两问解题关键在于看懂题目给到的定义,第三问关键在于P点的分类讨论9.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH∽△OBC可知:BC HB OC BC=∵AB=8,∴BC2=HB•OC=4HB,∴HB=24 BC,∴OH=OB-HB=4-2 4 BC∵CB=CH,∴OH+HC=4−24BC+BC,当∠BOC=90°,此时∵∠BOC<90°,∴0<BC<,令BC=x则CH=x,BH=2 4 x()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.10.如图,AB 为⊙O 的直径,且AB =m (m 为常数),点C 为AB 的中点,点D 为圆上一动点,过A 点作⊙O 的切线交BD 的延长线于点P ,弦CD 交AB 于点E .(1)当DC ⊥AB 时,则DA DB DC+= ; (2)①当点D 在AB 上移动时,试探究线段DA ,DB ,DC 之间的数量关系;并说明理由;②设CD 长为t ,求△ADB 的面积S 与t 的函数关系式;(3)当9220PD AC =时,求DE OA 的值.【答案】(12;(2)①DA+DB 2DC ,②S =12t 2﹣14m 2 ;(3)24235DE OA =. 【解析】【分析】 (1)首先证明当DC ⊥AB 时,DC 也为圆的直径,且△ADB 为等腰直角三角形,即可求出结果;(2)①分别过点A ,B 作CD 的垂线,连接AC ,BC ,分别构造△ADM 和△BDN 两个等腰直角三形及△NBC 和△MCA 两个全等的三角形,容易证出线段DA ,DB ,DC 之间的数量关系;②通过完全平方公式(DA+DB )2=DA 2+DB 2+2DA•DB 的变形及将已知条件AB =m 代入即可求出结果;(3)通过设特殊值法,设出PD 的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【详解】解:(1)如图1,∵AB 为⊙O 的直径,∴∠ADB =90°,∵C 为AB 的中点,∴AC BC =,∴∠ADC =∠BDC =45°,∵DC ⊥AB ,∴∠DEA =∠DEB =90°,∴∠DAE =∠DBE =45°,∴AE =BE ,∴点E 与点O 重合,∴DC 为⊙O 的直径,∴DC =AB ,在等腰直角三角形DAB 中,DA =DB =22AB , ∴DA+DB =2AB =2CD ,∴DA DB DC+=2;(2)①如图2,过点A 作AM ⊥DC 于M ,过点B 作BN ⊥CD 于N ,连接AC ,BC , 由(1)知AC BC =,∴AC =BC ,∵AB 为⊙O 的直径,∴∠ACB =∠BNC =∠CMA =90°,∴∠NBC+∠BCN =90°,∠BCN+∠MCA =90°,∴∠NBC =∠MCA ,在△NBC 和△MCA 中,BNC CMA NBC MCA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NBC ≌△MCA (AAS ),∴CN =AM ,由(1)知∠DAE =∠DBE =45°,AM 2DA ,DN 2DB ,∴DC =DN+NC =22DB+22DA =22(DB+DA ), 即DA+DB =2DC ;②在Rt △DAB 中,DA 2+DB 2=AB 2=m 2,∵(DA+DB )2=DA 2+DB 2+2DA•DB ,且由①知DA+DB 2DC 2t ,∴2t )2=m 2+2DA•DB ,∴DA•DB =t 2﹣12m 2, ∴S △ADB =12DA•DB =12t 2﹣14m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14m 2; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G ,则NE =ME ,四边形DHEG 为正方形, 由(1)知AC BC =,∴AC =BC ,∴△ACB 为等腰直角三角形,∴AB 2AC , ∵220PD AC =, 设PD =2,则AC =20,AB =2,∵∠DBA =∠DBA ,∠PAB =∠ADB ,∴△ABD ∽△PBA ,∴AB BD AD PB AB PA ==, ∴20292202DB =+, ∴DB =2, ∴AD 22AB DB -=2, 设NE =ME =x ,∵S △ABD =12AD•BD =12AD•NE+12BD•ME , ∴12×122×162=12×122•x+12×162•x , ∴x =4827, ∴DE =2HE =2x =967, 又∵AO =12AB =102, ∴961242735102DE OA =⨯=.【点睛】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.11.如图,在Rt △ABC 中,∠ACB=60°,☉O 是△ABC 的外接圆,BC 是☉O 的直径,过点B 作☉O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作☉O 的切线AF ,与直径BC 的延长线交于点F.(1)连接EF ,求证:EF 是☉O 的切线;(2)在圆上是否存在一点P ,使点P 与点A ,B ,F 构成一个菱形?若存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【解析】【分析】(1)过O 作OM ⊥EF 于M ,根据SAS 证明△OAF ≌△OBE ,从而得到OE=OF ,再证明EO 平分∠BEF ,从而得到结论;(2)存在,先证明△OAC 为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF ,再证明AB=AF=FP=BP,从而得到结论.【详解】(1)证明:如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=∠AOB=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即EO平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为☉O的切线.(2)存在.∵BC为☉O的直径,∴∠BAC=90°,∵∠ACB=60°,∴∠ABC=30°,又∵∠ACB=60°,OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为☉O的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∴∠ABC=∠AFC,∴AB=AF.当点P在(1)中的点M位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,又∵OA=OP,OF为公共边,∴△OAF≌△OPF,∴AF=PF,∠BFE=∠AFC=30°.又∵∠FOP=∠OBP=∠OPB=30°,∴BP=FP,∴AB=AF=FP=BP,∴四边形AFPB是菱形.【点睛】考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.12.如图,已知△ABC,AB=2,3BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x(0≤x≤3); (2) 45; (3) BD的长是1或1+52.【解析】【分析】(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.(2)由勾股定理求得:22AH DH+.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知12DQCQ=.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A作AH⊥BC,垂足为点H.∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF ==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =5k =,∴2253DC DQ CQ =+=. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x x x +=-,整理得 210x x --=,解得 152x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+52. 【点睛】 此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.13.如图,OA ,OD 是⊙O 半径.过A 作⊙O 的切线,交∠AOD 的平分线于点C ,连接CD ,延长AO 交⊙O 于点E ,交CD 的延长线于点B .(1)求证:直线CD 是⊙O 的切线;(2)如果D 点是BC 的中点,⊙O 的半径为 3cm ,求DE 的长度.(结果保留π)【答案】(1)证明见解析;(2)DE 的长度为π.【解析】(1)证明:∵AC 是⊙O 切线,∴OA ⊥AC ,∴∠OAC=90°,∵CO 平分∠AOD ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,∴△AOC ≌△DOC ,∴∠ODC=∠OAC=90°,∴OD ⊥CD ,∴直线CD 是⊙O 的切线.(2)∵OD ⊥BC ,DC=DB ,∴OC=OB ,∴∠OCD=∠B=∠ACO ,∵∠B+∠ACB=90°,∴∠B=30°,∠DOE=60°,∴的长度==π.[来源:]14.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.15.已知AB 是半圆O 的直径,点C 在半圆O 上.(1)如图1,若AC=3,∠CAB=30°,求半圆O 的半径;(2)如图2,M 是BC的中点,E 是直径AB 上一点,AM 分别交CE,BC 于点F,D. 过点F 作FG∥AB 交边BC 于点G,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.【答案】(1)半圆O的半径为3;(2)⊙D与直线AC相切,理由见解析【解析】试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.试题解析:(1)∵ AB是半圆O的直径,在Rt△ACB中,AB=cos AC CAB ∠=3 cos30︒=23.∴ OA=3(2)⊙D与直线AC相切.理由如下:由(1)得∠ACB=90°.∵∠AEC=∠ECB+∠6,∴∠AEC>∠ECB,∠AEC>∠6.∵△ACE与△CEB相似,∴∠AEC=∠CEB=90°.在Rt△ACD,Rt△AEF中分别有∠1+∠3=90°,∠2+∠4=90°.∵ M是BC的中点,∴∠COM=∠BOM.∴∠1=∠2,∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∴ CF=CD.过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有∠CAE+∠ACE=90°,∠CAE+∠6=90°.∴∠ACE=∠6=∠FPE.又∵∠1=∠2,AF=AF,∴△ACF≌△APF.∴ CF=FP.∵ FP∥GB,FG∥AB,∴四边形FPBG是平行四边形.∴ CD=GB.∵ CD⊥AC,∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.。

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)附答案解析

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)附答案解析

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)附答案解析一、圆的综合1.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»CD PB PD==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.2.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.3.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)求CE的长;(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)如图2,连接BF,∵AB为⊙O的直径,∴∠AFB=90°,∴BF∥DE,∵CD=BD,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴»BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.4.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD 内接于⊙O ,∠DCB ﹣∠ADC=∠A ,求证:四边形ABCD 为圆内接倍角四边形;(2)在(1)的条件下,⊙O 半径为5.①若AD 为直径,且sinA=45,求BC 的长; ②若四边形ABCD 中有一个角为60°,且BC=CD ,则四边形ABCD 的面积是 ; (3)在(1)的条件下,记AB=a ,BC=b ,CD=c ,AD=d ,求证:d 2﹣b 2=ab+cd .【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD =3S △AOB =3×34×52=7534. Ⅱ、当∠BAD =30°时,如图4,连接OA ,OB ,OC ,OD .∵四边形ABCD 是圆内接四边形,∴∠BCD =180°﹣∠BAD =150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD .过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c .∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.5.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=,BT ∴=负根已经舍弃),tan E m∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,CN 48==,在Rt CHN V 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH V 中,1KH HN 2==NK HN 242==,在Rt NMK V 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.6.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE=.【解析】【分析】(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=22AD BD+=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD.如图1,设∠BDC=α,∠ADC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴¶AC=¶CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB=∠CDB,∴∠ACE=∠ADC,∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;(3)如图2,连接OC,∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18, ∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.7.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②.【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=, 3tan306233OP OB ∴=⋅=⨯=o , 在Rt POD V 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o ,60ABD o ∴∠=,OB OD =Q ,OBD ∴V 是等边三角形,OD FB ∴⊥,12BE AB =Q , OB BE ∴=,//BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线;②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅==o在Rt POD V 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.8.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .(1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC 与⊙O 相切时,∠OCP 的度数最大,根据切线的性质即可求得; (2)由△OPC 的边OC 是定值,得到当OC 边上的高为最大值时,△OPC 的面积最大,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB ,根据等腰三角形的性质得到∠A=∠C ,得到CO=OB+OB=AB ,推出△APB ≌△CPO ,根据全等三角形的性质得到∠CPO=∠APB ,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC 与⊙O 相切时,∠OCP 最大.如图1,所示:∵sin ∠OCP=OP OC =24=12,∴∠OCP=30° ∴∠OCP 的最大度数为30°,故答案为:30°;(2)有最大值,理由: ∵△OPC 的边OC 是定值,∴当OC 边上的高为最大值时,△OPC 的面积最大,而点P 在⊙O 上半圆上运动,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大, 也就是高为半径长,∴最大值S △OPC =12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.9.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是»BD中点,推出»»CD CB=,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;(2)想办法证明∠EFB=∠EBF即可;(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK ≌△ACT ,Rt △DKC ≌Rt △BTC ,延长即可解决问题;试题解析:(1)如图1中,连接OA ,∵OA=OC ,∴∠1=∠ACO ,∵OA=OB ,∴∠2=∠ABO ,∴∠CAB=∠1+∠2=∠ACO+∠ABO , ∵点C 是BD u u u r 中点,∴CD CB =u u u r u u u r ,∴∠BAC=∠DAC ,∴∠DAC=∠ACO+∠ABO .(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB ,∠COB=2∠BAC ,∴∠BAD=∠BOC ,∵∠DAB=∠OBA+∠EBA ,∴∠BOC=∠OBA+∠EBA ,∴∠EFB=∠EBF ,∴EF=EB .(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a ,∵AB=13,∴EF=EB=FB=FH+BH=a+132, ∴OE=EF ﹣OF=FB ﹣OF=132﹣a ,OB=OC=OE+EC=132﹣a+2=172﹣a , ∵NE=12EF=12a+134, ∴ON=OE=EN=(132﹣a )﹣(12a+134)=134﹣32a , ∵BO 2﹣ON 2=EB 2﹣EN 2, ∴(172﹣a )2﹣(134﹣32a )2=(a+132)2﹣(12a+134)2, 解得a=32或﹣10(舍弃), ∴OE=5,EB=8,OB=7, ∵∠K=∠ATC=90°,∠KAC=∠TAC ,AC=AC ,∴△ACK ≌△ACT ,∴CK=CT ,AK=AT , ∵CD CB =u u u r u u u r ,∴DC=BC ,∴Rt △DKC ≌Rt △BTC ,∴DK=BT ,∵FT=12FC=5,∴DK=TB=FB ﹣FT=3,∴AK=AT=AB ﹣TB=10,∴AD=AK ﹣DK=10﹣3=7.10.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积;(2)若3tan 2AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =2)1655AE =3)23m =,22m =71m =.【解析】【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD =,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.【详解】 解:(1)如图,作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,∵点E 是弧BC 中点,∴∠COE =∠EOH =45°,∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH ,(2+a )2=(6+a )(2﹣a ), 解得a =222±-,∴a =222-,EH=22,S △ADE =1622AD EH =n n ;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x∵DF ∥BE∴AF AD EF BD= ∴622AF x ==3 ∴AF =6x 在Rt △AFD 中,AF 2+DF 2=AD 2(6x )2+(3x )2=(6)2解得x 255AE=8x=165 5(3)当点D为等腰直角三角形直角顶点时,如图设DH=a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH,∴∠DFO=∠EDH∴△ODF≌△HED∴OD=EH=2在Rt△ABE中,EH2=AH•BH(2)2=(6+a)•(2﹣a)解得a=±232-m=23当点E为等腰直角三角形直角顶点时,如图同理得△EFG≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a )•(4﹣a )解得a =±71-m =71-【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.11.如图,AC 是⊙O 的直径,OB 是⊙O 的半径,PA 切⊙O 于点A ,PB 与AC 的延长线交于点M ,∠COB =∠APB .(1)求证:PB 是⊙O 的切线;(2)当MB =4,MC =2时,求⊙O 的半径.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)根据题意∠M +∠P =90°,而∠COB =∠APB ,所以有∠M +∠COB =90°,即可证明PB 是⊙O 的切线.(2)设圆的半径为r ,则OM =r +2,BM=4,OB =r ,再根据勾股定理列方程便可求出r .【详解】证明:(1)∵AC 是⊙O 的直径,PA 切⊙O 于点A ,∴PA ⊥OA∴在Rt △MAP 中,∠M +∠P =90°,而∠COB =∠APB ,∴∠M +∠COB =90°,∴∠OBM =90°,即OB ⊥BP ,∴PB 是⊙O 的切线;(2)设⊙O 的半径为r ,2OM r ∴=+ ,OB r = ,4BM =OBM ∆Q 为直角三角形∴222OM OB BM =+ ,即222(2)+4r r +=解得:r =3,∴⊙O 的半径为3.【点睛】本题主要考查圆的切线问题,证明圆的切线有两种思路一种是证明连线是半径,另一种是证明半径垂直.12.如图,线段BC所在的直线是以AB为直径的圆的切线,点D为圆上一点,满足BD=BC,且点C、D位于直径AB的两侧,连接CD交圆于点E. 点F是BD上一点,连接EF,分别交AB、BD于点G、H,且EF=BD.(1)求证:EF∥BC;(2)若EH=4,HF=2,求»BE的长.【答案】(1)见解析;(2) 233【解析】【分析】(1)根据EF=BD可得»EF=»BD,进而得到»»BE DF=,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定»BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴»EF=»BD∴»»BE DF=∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.13.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=22,∠OCE=45°.等腰直角三角形的斜边是腰长的2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23,则EF=GE-FG=23-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求»BD的长.(3)若tan C=2,AE=8,求BF的长.【答案】(1)见解析;(2) 2π;(3)103. 【解析】 分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AE ADE DE ∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C∵OD=OB ∴∠ABC=∠ODB∴∠C=∠ODB ∴OD ∥AC又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF∴EF 是⊙O 的切线(2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600∴△OBD 是等边三角形 ∴∠BOD=600∴»BD =6062180ππ⨯= 即»BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900 ∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900∴∠C=∠ADE 在Rt △ADE 中, tan 2AE ADE DE ∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5∵OD//AE ∴△ODF ∽△AEF∴ OF OD AF AE = 即:55108BF BF +=+ 解得:BF=103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.。

2021年中考压轴题--圆含答案

2021年中考压轴题--圆含答案

中考压轴题(一)--------与圆有关压轴题欧阳光明(2021.03.07)1.如图,在M中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积;(4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由.[解](1)如图(1),连结MA MB ,. 则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,OB(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.xx(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,303ABABC BC∠==,,ABC PAB∴△∽△等价于302336PAB PB AB PA PB ∠=====,,. 设()P x y ,且x >,则cos3033323x PA AO =-=-=·,sin303y PA ==·.又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△.由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=,∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得31.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式yxBCAMP图2O为1y =+.解方程组21113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. 方法3: 如图3,ABC △为等腰三角形,且ABBC=()P x y ,则 图3ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

2021年四川省各市中考数学真题汇编压轴题:《圆》及答案 (2)

2021年四川省各市中考数学真题汇编压轴题:《圆》及答案 (2)

2021年四川省各市中考数学真题汇编压轴题:《圆》1.(2021•德阳)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.2.(2021•绵阳)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.3.(2021•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.4.(2021•绵阳)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.5.(2021•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.6.(2021•凉山州)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C 所对的边分别是a、b、c.(1)求证:===2R;(2)若∠A=60°,∠C=45°,BC=4,利用(1)的结论求AB的长和sin∠B的值.7.(2021•凉山州)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若DH=2,sin∠BAC=,求半圆的直径.8.(2021•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.9.(2021•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.10.(2021•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.11.(2021•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.12.(2021•自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA =PC=AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:=;(2)若tan∠ABC=2,证明:PA是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.13.(2021•南充)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC的延长线于点E,延长ED交AB的延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=4,求tan∠EAD的值.14.(2021•遂宁)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.15.(2021•广元)在Rt△ABC中,∠ACB=90°,OA平分∠BAC交BC于点O,以O为圆心,OC长为半径作圆交BC于点D.(1)如图1,求证:AB为⊙O的切线;(2)如图2,AB与⊙O相切于点E,连接CE交OA于点F.①试判断线段OA与CE的关系,并说明理由.②若OF:FC=1:2,OC=3,求tan B的值.参考答案1.(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠PAN=∠PAO=90°,∴△PAN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.2.解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴==,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.3.(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,=CD•AM=×=,∴S△ACDRt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,=×=,∴S△ABC∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.4.(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG、OC,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.5.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.6.(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,∴sin A=sin E==,∴=2R,同理:=2R,=2R,∴===2R;(2)解:由(1)得:=,即==2R,∴AB==4,2R==8,过B作BH⊥AC于H,∵∠AHB=∠BHC=90°,∴AH=AB•cos60°=4×=2,CH=BC=2,∴AC=AH+CH=2(),∴sin∠B===.7.(1)证明:连接OD,∵OA=OD,∴∠DAO=∠ADO,∵AD平分∠BAC,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AH∥OD,∵DH⊥AC,∴OD⊥DH,∴DH是半圆的切线;(2)解:连接BC交OD于E,∵AB是半圆AOB的直径,∴∠ACB=90°,∵AD平分∠BAC,∴∠CAD=∠OAD,∴=,∴OD⊥BC,∴∠H=∠HCE=∠DEC=90°,∴四边形CEDH是矩形,∴CE=DH=2,∠DEC=90°,∴OD⊥BC,∴BC=2CE=4,∵sin∠BAC==,∴AB=12,即半圆的直径为12.8.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.9.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.10.解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)AF=CE+BD,理由如下:连接OD,DE,由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.11.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.12.(1)证明:连接OC.∵PC=PA,OC=OA,∴OP垂直平分线段AC,∴=.(2)证明:设BC=a,∵AB是直径,∴∠ACB=90°,∵tan∠ABC==2,∴AC=2a,AB===3a,∴OC=OA=OB=,CD=AD=a,∵PA=PC=AB,∴PA=PC=3a,∵∠PDC=90°,∴PD===4a,∵DC=DA,AO=OB,∴OD=BC=a,∴AD2=PD•OD,∴=,∵∠ADP=∠ADO=90°,∴△ADP∽△ODA,∴∠PAD=∠DOA,∵∠DOA+∠DAO=90°,∴∠PAD+∠DAO=90°,∴∠PAO=90°,∴OA⊥PA,∴PA是⊙O的切线.(3)解:法一:如图,过点E作EJ⊥PF于J,BK⊥PF于K.∵BC=2,由(1)可知,PA=6,AB=6,∵∠PAB=90°,∴PB===6,∵PA2=PE•PB,∴PE==4,∵∠CDK=∠BKD=∠BCD=90°,∴四边形CDKB是矩形,∴CD=BK=2,BC=DK=2,∵PD=8,∴PK=10,∵EJ∥BK,∴==,∴==,∴EJ=,PJ=,∴DJ=PD﹣PJ=8﹣=,∴DE===.法二:由(2)可得BC=2,AC=4,AB=6,PA=6,PB=6,在Rt△PBA中,连接AE,可得∠AEB=90°,∴∠PEA=∠PAB=90°,又∠APE=∠APB,∴△PEA∽△PAB,∴=,∴PE=4,过E作EJ⊥PD于J,过B作BK⊥PF于K,如图所示,∴∠BCD=∠CDF=∠BKD=90°,∴四边形BCDK是矩形,∴BK=CD=2,在Rt△BPH中,sin∠BPH==,在Rt△PEN中,sin∠BPH=,∴EJ=,∴PJ==,∴JD=PD﹣PJ=,在Rt△NED中,DE==.13.(1)证明:连接OD,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:在Rt△ODF中,OD=2,DF=4,∴OF==6,∵OD∥AE,∴,∴==,∴AE=,ED=,∴tan∠EAD==.14.(1)证明:连接OE,OP,∵AD为直径,点Q为弦EP的中点,∴PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)证明:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴=.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═=,∵AC=15,∴AG=9,∴CG==12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=,∴CH=HQ=,∴四边形CHQE的面积=CH•GQ=×6=45.15.解:(1)如图,过点O作OG⊥AB,垂足为G,∵OA平分∠BAC交BC于点O,∴OG=OC,∴点G在⊙O上,即AB与⊙O相切;(2)①OA垂直平分CE,理由是:连接OE,∵AB与⊙O相切于点E,AC与⊙O相切于点C,∴AE=AC,∵OE=OC,∴OA垂直平分CE;②∵OF:FC=1:2,OC=3,则FC=2OF,在△OCF中,OF2+(2OF)2=32,解得:OF=,则CF=,由①得:OA⊥CE,∵∠COF=∠AOC,∠CFO=∠ACO=90°,∴△OCF∽△OAC,∴,即,解得:AC=6,∵AB与圆O切于点E,∴∠BEO=90°,AC=AE=6,而∠B=∠B,∴△BEO∽△BCA,∴,设BO=x,BE=y,则,可得:,解得:,即BO=5,BE=4,∴tan B==.。

2021年湖北省各市中考数学真题汇编压轴题:《圆》及答案

2021年湖北省各市中考数学真题汇编压轴题:《圆》及答案

2021年湖北省各市中考数学真题汇编压轴题:《圆》1.(2021•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.2.(2021•襄阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求优弧的长.3.(2021•黄石)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.4.(2021•荆门)已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:=2R;(2)若△ABC中∠A=45°,∠B=60°,AC=,求BC的长及sin C的值.5.(2021•荆州)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,在射线l 上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.6.(2021•咸宁)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.7.(2021•宜昌)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF 的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.8.(2021•十堰)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.9.(2021•随州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长.10.(2021•湖北)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.11.(2021•宜昌)如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.12.(2021•咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.13.(2021•鄂州)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O 于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.参考答案1.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BDA,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.2.(1)证明:连接OD交BC于H,连接OB、OC,如图,∵点E是△ABC的内心,即∠BAD=∠CAD,∴∠BOD=∠COD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:连接BD、OB,如图,∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=60°,而OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,OB=BD=6,∴∠BOC=120°,∴优弧的长==8π.3.解:(1)连接OC,如右图所示,∵AB是⊙O的直径,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.4.解:(1)如图1,连接AO并延长交⊙O于D,连接CD,则∠ACD=90°,∠ABC=∠ADC,∵sin∠ABC=sin∠ADC=,∴=2R;(2)∵=2R,同理可得:==2R,∴2R==2,∴BC=2R•sin A=2sin45°=,如图2,过C作CE⊥AB于E,∴BE=BC•cos B=cos60°=,AE=AC•cos45°=,∴AB=AE+BE=,∵AB=2R•sin C,∴sin C==.5.解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.6.解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.7.解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.8.解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.9.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过点C作CH⊥BF于H.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=3,∴BE=AB•sin∠1=3×=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,∵sin∠CBF==,∴CH=2,∵CH∥AB,∴=,即=,∴CF=6,∴AF=AC+CF=9,∴BF==6.10.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.11.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC =90°,∴∠HAD =90°,即OA ⊥AD ,又∵OA 为半径,∴AD 是⊙O 的切线;(2)解:如右图,连接OC ,∵OH =OA ,AH =3,∴OH =1,OA =2,∵在Rt △OHC 中,∠OHC =90°,OH =OC , ∴∠OCH =30°,∴∠AOC =∠OHC +∠OCH =120°,∴S 扇形OAC ==, ∵CH ==, ∴S △OHC =×1×=,∴四边形ABCD 与⊙O 重叠部分的面积=S 扇形OAC +S △OHC =+;(3)设⊙O 半径OA =r =OC ,OH =3﹣r , 在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3﹣r )2+12=r 2,∴r =,则OH =,在Rt △ABH 中,AH =3,BH =+1=,则AB =, 在Rt △ACH 中,AH =3,CH =NH =1,得AC =, 在△BMN 和△BCA 中,∠B =∠B ,∠BMN =∠BCA ,∴△BMN∽△BCA,∴=即==,∴MN=,∴OH=,MN=.12.解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AC平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.13.(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连结AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.。

2021中考数学 专项突破:圆的有关性质(含答案)

2021中考数学 专项突破:圆的有关性质(含答案)

2021中考数学 专项突破:圆的有关性质一、选择题(本大题共10道小题)1. 如图,在⊙O 中,点C 是AB ︵的中点,∠A =50°,则∠BOC =( )A . 40°B . 45°C . 50°D . 60°2. M ,N 是⊙O 上的两点,已知OM =3 cm ,那么一定有( )A .MN >6 cmB .MN =6 cmC .0 cm<MN <6 cmD .0 cm<MN≤6 cm3. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A. 5 B .2 5 C .3 D .2 34. △ABC中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°5. 如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD 为8 m ,水面宽AB 为8 m ,则拱桥的半径OC 为( )A .4 mB .5 mC .6 mD .8 m6. 如图,在△ABC 中,∠ACB =90°,∠A =40°,以点C 为圆心,CB 的长为半径的圆交AB 于点D ,连接CD ,则∠ACD 的度数为( )A .10°B .15°C .20°D .25°7. 如图,A ,B ,C ,D 是⊙O 上的四个点,B是AC ︵的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( )A .45°B .60°C .75°D .85°8. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米9. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°10. (2019•仙桃)如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD交的BA延长线于点E,连接BD.下列结论:①CD是O的切线;②CO DB⊥;⋅=⋅.其中正确结论的个数有③EDA EBD△∽△;④ED BC BO BEA.4个B.3个C.2个D.1个二、填空题(本大题共6道小题)11. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.12. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.13. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.14. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.15. 如图,半径为5的⊙P 与y 轴交于点M(0,-4),N(0,-10),则圆心P 的坐标为________.16. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题(本大题共4道小题) 17. 2019·十堰改编 如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E .若BA 平分∠DBE ,AD =5,CE =13,求AE 的长度.18. 如图,⊙O是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BCE ;(2)求证:BE 是⊙O 的切线;(3)若EC =1,CD =3,求cos ∠DBA .19. 如图,已知AB 为⊙O 的直径,C 为半圆ACB ︵上的动点(不与点A ,B 重合),过点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,则点P 的位置有何规律?请证明你的结论.20. 如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点.(1)当1tan 2A =时,求AP 的长;(2)如果⊙Q 过点P 、O ,且点Q 在直线AP 上(如图2),设AP =x ,QP =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4tan 3A =时(如图3),存在⊙M 与⊙O 相内切,同时与⊙Q 相外切,且OM ⊥OQ ,试求⊙M 的半径的长.图1 图2 图32021中考数学 专项突破:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】A 【解析】∵OA =OB ,∠A =50°,∴∠B =50°,∴∠AOB =180°-∠A -∠B =180°-50°-50°=80°,∵点C 是AB ︵的中点,∴∠BOC =∠AOC =12∠AOB =40°,故选A.2. 【答案】D [解析] ∵OM =3 cm ,∴⊙O 的半径为3 cm ,∴⊙O 的直径为6 cm ,即⊙O 中最长的弦的长度为6 cm , ∴MN 最长为6 cm ,∴0 cm <MN≤6 cm.3. 【答案】D[解析] 如图,过点O 作OD ⊥AB 于点D ,连接OA .根据题意,得OD =12OA =1.再根据勾股定理,得AD = 3.根据垂径定理,得AB =2 3.4. 【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA=12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.5. 【答案】B [解析] 如图,连接BO.由题意可得AD =BD =4 m.设⊙O 的半径OC =x m ,则DO =(8-x)m. 由勾股定理可得x2=(8-x)2+42,解得x =5. 故拱桥的半径OC 为5 m.6. 【答案】A [解析] ∵∠ACB =90°,∠A =40°,∴∠B =50°.∵CD =CB ,∴∠BDC =∠B =50°, ∴∠BCD =180°-2×50°=80°, ∴∠ACD =90°-80°=10°.7. 【答案】D[解析] 连接AD ,OA ,OB .∵B 是AC ︵的中点,∴∠ADB =∠BDC =40°,∴∠AOB =2∠ADB =80°.又∵M 是OD 上一点,∴∠ADB ≤∠AMB ≤∠AOB ,即40°≤∠AMB ≤80°,则不符合条件的只有85°.8. 【答案】D9. 【答案】C10. 【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确, ∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒, ∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A .二、填空题(本大题共6道小题)11. 【答案】2 [解析]连接OC ,则OA=OC , ∴∠A=∠ACO=30°,∴∠COH=60°. ∵OB ⊥CD ,CD=2,∴CH=,∴OH=1,∴OC=2.12. 【答案】60° [解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC =30°,∴∠AOB =60°.13. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.14. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.15. 【答案】(-4,-7) [解析] 过点P 作PH ⊥MN 于点H ,连接PM ,则MH =12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).16. 【答案】3或73 [解析] 如图,连接CP ,PB 的延长线交⊙C 于点P′.∵PC =5,BC =3,PB =4, ∴BC2+PB2=PC2,∴△CPB 为直角三角形,且∠CBP =90°, 即CB ⊥PB ,∴PB =P′B =4. ∵∠ACB =90°,∴PB ∥AC. 又∵PB =AC =4,∴四边形ACBP 为平行四边形. 又∵∠ACB =90°,∴▱ACBP 为矩形, ∴PA =BC =3.在Rt △APP′中,∵PA =3,PP′=8, ∴P′A =82+32=73. 综上所述,PA 的长为3或73.三、解答题(本大题共4道小题)17. 【答案】解:连接AC ,如图.∵BA 平分∠DBE , ∴∠1=∠2.∵∠1+∠ABC =180°,∠ABC +∠CDA =180°, ∴∠1=∠CDA .又∵∠2=∠3, ∴∠3=∠CDA , ∴AC =AD =5. ∵AE ⊥CB , ∴∠AEC =90°,∴AE =AC 2-CE 2=52-(13)2=2 3.18. 【答案】(1)证明:如解图,过点B 作BF ⊥AC 于点F , ∵AB ︵=BD ︵,∴AB =BD在△ABF 与△DBE 中,⎩⎨⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE ,∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ;(2)证明:如解图,连接OB , ∵AC 是⊙O 的直径, ∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB ,∴∠BAC =∠OBA , ∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°,又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;解图(3)解:在△EBC 与△FBC 中,⎩⎨⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS),∴CE =CF =1.由(1)可知:AF =DE =1+3=4,∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.19. 【答案】⎝ ⎛⎭⎪⎫360n m 解:P 为半圆ADB ︵的中点. 证明:如图,连接OP .∵∠OCD 的平分线交⊙O 于点P ,∴∠PCD =∠PCO .∵OC =OP ,∴∠PCO =∠OPC ,∴∠PCD =∠OPC ,∴OP ∥CD .∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵,即P 为半圆ADB ︵的中点.20. 【答案】(1)如图4,过点O 作OH ⊥AP ,那么AP =2AH .在Rt △OAH 中,OA =3,1tan A =,设OH =m ,AH =2m ,那么m 2+(2m )2=32.解得m =24AP AH m ==. (2)如图5,联结OQ 、OP ,那么△QPO 、△OAP 是等腰三角形. 又因为底角∠P 公用,所以△QPO ∽△OAP .因此QP OP PO PA =,即33y x=. 由此得到9y x=.定义域是0<x ≤6.图4 图5(3)如图6,联结OP ,作OP 的垂直平分线交AP 于Q ,垂足为D ,那么QP 、QO 是⊙Q 的半径.在Rt △QPD 中,1322PD PO ==,4tan tan 3P A ==,因此52QP =. 如图7,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =3-r .由⊙M 与⊙Q 外切,52Q r QP ==,可得圆心距52QM r =+. 在Rt △QOM 中,52QO =,OM =3-r ,52QM r =+,由勾股定理,得 22255()(3)()22r r +=-+.解得911r =.图6 图7 图8考点伸展如图8,在第(3)题情景下,如果⊙M 与⊙O 、⊙Q 都内切,那么⊙M 的半径是多少?同样的,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =r -3.由⊙M 与⊙Q 内切,52Q r QP ==,可得圆心距52QM r =-. 在Rt △QOM 中,由勾股定理,得22255()(3)()22r r -=-+.解得r =9.。

2020-2021中考数学—圆的综合的综合压轴题专题复习附详细答案

2020-2021中考数学—圆的综合的综合压轴题专题复习附详细答案

2020-2021中考数学—圆的综合的综合压轴题专题复习附详细答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,已知AB 是⊙O 的直径,点C 为圆上一点,点D 在OC 的延长线上,连接DA , 交BC 的延长线于点E ,使得∠DAC=∠B .(1)求证:DA 是⊙O 切线;(2)求证:△CED ∽△ACD ;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD22OD OA-2又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD2,∴AE=AD﹣DE222.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2020-2021中考数学—圆的综合的综合压轴题专题复习及详细答案

2020-2021中考数学—圆的综合的综合压轴题专题复习及详细答案

2020-2021中考数学—圆的综合的综合压轴题专题复习及详细答案一、圆的综合1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.2.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=°时,四边形FOBE是菱形.【答案】(1)见解析;(2)30.【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案. 【详解】(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥, ∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,∴OBE ∆为等边三角形, ∴60BOE ∠=︒, 而OE CD ⊥, ∴30D ∠=︒. 故答案为30. 【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.3.已知▱ABCD 的周长为26,∠ABC=120°,BD 为一条对角线,⊙O 内切于△ABD ,E ,F ,G为切点,已知⊙O 的半径为▱ABCD 的面积.【答案】 【解析】 【分析】首先利用三边及⊙O 的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD 的长即可解答.设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·OG)=3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴S=3(13+BD);连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)求CE的长;(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度.【详解】(1)如图1,连接AD ,OD ; ∵AB 为⊙O 的直径, ∴∠ADB=90°,即AD ⊥BC , ∵AB=AC , ∴BD=DC , ∵OA=OB , ∴OD ∥AC , ∵DE ⊥AC , ∴DE ⊥OD , ∴∠ODE=∠DEA=90°, ∴DE 为⊙O 的切线; (2)如图2,连接BF , ∵AB 为⊙O 的直径, ∴∠AFB=90°, ∴BF ∥DE , ∵CD=BD ,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16, ∴BF=8, ∴DE=4,∵DE 为⊙O 的切线, ∴ED 2=EF•AE ,∴42=CE•(16﹣CE ),∴CE=8﹣ (3)如图3,连接OG ,连接AD , ∵BG ∥DF , ∴∠CBG=∠CDF=30°, ∵AB=AC , ∴∠ABC=∠C=75°, ∴∠OBG=75°﹣30°=45°, ∵OG=OB ,∴∠OGB=∠OBG=45°, ∴∠BOG=90°,∴»BG的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.5.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt △PDC 中,∵sin ∠P=23CD PD =,PC=25 , 令CD=2x ,PD=3x ,由由勾股定理得:(3x )2-(2x)2=(25)2, 解得:x=2,∴CD=4,PD=6, ∴AB=AE=CD=4,AD=BC=PD=6,DE=2, ∵矩形ABCD 的面积为6×4=24,Rt △CED 的面积为12×4×2=4, 扇形ABE 的面积为12π×42=4π, ∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.6.如图,一条公路的转弯处是一段圆弧»().AB ()1用直尺和圆规作出»AB 所在圆的圆心O ;(要求保留作图痕迹,不写作法)()2若»AB 的中点C 到弦AB 的距离为2080m AB m =,,求»AB 所在圆的半径.【答案】(1)见解析;(2)50m 【解析】分析:()1连结AC 、BC ,分别作AC 和BC 的垂直平分线,两垂直平分线的交点为点O ,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为»AB的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O e 的半径为r ,在Rt OAD V 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C Q 为»AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===,设O e 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD V 中,222OA OD AD =+Q ,222(20)40r r ∴=-+,解得50r =,即»AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.7.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析 【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠OCB +∠ACO =90°. ∵OB =OC ,∴∠B =∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.8.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02) 75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.9.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

2020-2021中考数学压轴题专题圆的综合的经典综合题含答案解析.doc

2020-2021中考数学压轴题专题圆的综合的经典综合题含答案解析.doc

2020-2021 中考数学压轴题专题圆的综合的经典综合题含答案解析一、圆的综合1.如图 1,直角梯形OABC中, BC∥ OA,OA=6, BC=2,∠ BAO=45°.(1) OC 的长为;(2) D 是 OA 上一点,以 BD 为直径作⊙ M,⊙ M 交 AB 于点 Q.当⊙ M 与 y 轴相切时,sin∠BOQ= ;(3)如图 2,动点 P 以每秒 1 个单位长度的速度,从点O 沿线段 OA 向点 A 运动;同时动点 D 以相同的速度,从点 B 沿折线 B﹣ C﹣ O 向点 O 运动.当点 P 到达点 A 时,两点同时停止运动.过点P 作直线 PE∥ OC,与折线 O﹣ B﹣ A 交于点 E.设点 P 运动的时间为 t (秒).求当以B、 D、 E 为顶点的三角形是直角三角形时点E的坐标.【答案】( 1) 4;( 2)3;( 3)点 E 的坐标为( 1,2)、(5,10)、( 4, 2).5 3 3【解析】分析:( 1)过点 B 作 BH⊥OA 于 H,如图1( 1),易证四边形OCBH是矩形,从而有OC=BH,只需在△ AHB 中运用三角函数求出BH 即可.( 2)过点 B 作 BH⊥OA 于 H,过点 G 作 GF⊥ OA 于 F,过点 B 作 BR⊥OG 于 R,连接MN 、 DG,如图 1(2 ),则有 OH=2, BH=4, MN ⊥OC.设圆的半径为r,则MN=MB=MD=r.在 Rt△BHD 中运用勾股定理可求出r=2,从而得到点 D 与点 H 重合.易证△AFG∽△ ADB AF GF OF OG OB AB BG OR=x 22﹣=OB ,从而可求出、、、、、、.设,利用2 2 2BR.在 Rt△ORB中运用三角函数就可解决问题.OR =BG ﹣RG 可求出 x,进而可求出( 3)由于△ BDE的直角不确定,故需分情况讨论,可分三种情况(① ∠ BDE=90 °,② ∠BED=90 °,③ ∠ DBE=90 °)讨论,然后运用相似三角形的性质及三角函数等知识建立关于 t 的方程就可解决问题.详解:(1)过点 B 作 BH⊥OA 于 H,如图1( 1),则有∠ BHA=90°=∠ COA,∴ OC∥BH.∵BC∥ OA,∴四边形 OCBH是矩形,∴ OC=BH, BC=OH.∵OA=6, BC=2,∴ AH=0A﹣ OH=OA﹣ BC=6﹣2=4.∵∠ BHA=90 °,∠ BAO=45 °,BH∴tan ∠ BAH==1,∴ BH=HA=4,∴ OC=BH=4.HA故答案为4.( 2)过点 B 作 BH⊥OA 于 H,过点 G 作 GF⊥ OA 于 F,过点 B 作 BR⊥OG 于 R,连接MN 、 DG,如图 1(2 ).由( 1)得: OH=2,BH=4.∵OC与⊙ M 相切于 N,∴ MN ⊥OC.设圆的半径为 r ,则 MN =MB=MD =r.∵BC⊥ OC,OA⊥ OC,∴ BC∥ MN ∥ OA.∵BM=DM ,∴ CN=ON,∴ MN = 1( BC+OD),∴ OD=2r ﹣2 ,2∴DH= OD OH = 2r 4 .2 2 2 2 2 2 在 Rt△ BHD 中,∵∠ BHD=90 °,∴ BD =BH +DH ,∴( 2r )=4 +(2r ﹣4 ).解得: r=2,∴ DH=0,即点 D 与点 H 重合,∴ BD⊥ 0A,BD=AD.∵ BD是⊙M的直径,∴∠BGD=90 °DG⊥ AB BG=AG,即,∴.∵ GF⊥ OA, BD⊥OA,∴ GF∥BD,∴△ AFG∽△ ADB,∴ AF = GF = AG = 1,∴ AF= 1 AD=2, GF= 1 BD=2,∴ OF=4,AD BD AB 2 2 2∴OG= OF 2 GF 2 = 42 22 =2 5.同理可得: OB=2 5 ,AB=4 2,∴ BG= 1AB=2 2.2设OR=x,则 RG=2 5﹣ x.∵BR⊥OG,∴∠ BRO=∠ BRG=90 °,∴ BR2=OB2﹣ OR2 =BG2﹣ RG2,∴( 2 5)2﹣ x2=( 2 2)2﹣( 2 5﹣ x)2.解得: x=2 2 2 28 5 2 8 5,∴ BR =OB ﹣ OR =( 2 5 )﹣() =5 5在 Rt△ ORB中, sin∠ BOR= BR6 53 .= 5 = OB 2 5 5故答案为 3 .5( 3)① 当∠ BDE=90 °时,点 D 在直线 PE 上,如图 2.此时 DP=OC=4, BD+OP=BD+CD=BC=2, BD=t , OP=t.则有解得: t=1.则 OP=CD=DB=1.36,∴ BR=6 5.5 52t=2.∵DE∥ OC,∴△ BDE∽△ BCO,∴DE=BD=1,∴ DE=2,∴ EP=2,OC BC 2∴点 E 的坐标为( 1,2).②当∠ BED=90 °时,如图3.∵∠ DBE=OBC,∠ DEB=∠ BCO=90 °,∴△ DBE∽△ OBC,∴ BE = DB , BEt,∴ BE=5t .=BC OB 2 2 5 5∵PE∥ OC,∴∠ OEP=∠ BOC.∵∠ OPE=∠ BCO=90 °,∴△ OPE∽△ BCO,∴ OE = OP , OE = t,∴ OE= 5 t .OB BC 2 5 2∵ OE+BE=OB=2 5,5 t+5t=2 5 .5解得: t= 5 ,∴ OP=5 , OE=5 5,∴ PE= OE 2OP 2 = 10 ,33 3 3∴点 E 的坐标为( 510, ).3 3③ 当∠ DBE=90 °时,如图 4.此时 PE=PA=6﹣ t , OD=OC+BC ﹣ t=6﹣t .则有 OD=PE , EA= PE 2 PA 2 = 2 ( 6﹣ t ) =6 2 ﹣ 2?t ,∴BE=BA ﹣ EA=4 2 ﹣(6 2 ﹣ 2 t ) = 2 t ﹣ 2 2 .∵ PE ∥ OD , OD=PE ,∠ DOP=90 °,∴四边形 ODEP 是矩形,∴ D E=OP=t , DE ∥ OP ,∴∠ BED=∠ BAO=45°.BE=2,∴ DE= 2 BE ,在 Rt △ DBE 中, cos ∠ BED=DE2∴t = 2( 2 t ﹣2 2 ) =2t ﹣4.解得: t=4,∴ OP=4, PE=6﹣ 4=2,∴点 E 的坐标为( 4, 2).综上所述:当以B 、D 、 E 为顶点的三角形是直角三角形时点 E 的坐标为( 1, 2)、5 10( , )、( 4 ,2). 3 3点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图, AB 为⊙ O 的直径,点 E 在⊙ O 上,过点 E 的切线与 AB 的延长线交于点 D,连接BE,过点 O 作 BE 的平行线,交⊙ O 于点 F,交切线于点 C,连接 AC(1)求证: AC 是⊙ O 的切线;(2)连接 EF,当∠ D=°时,四边形FOBE是菱形.【答案】( 1)见解析;(2) 30.【解析】【分析】(1)由等角的转换证明出OCA≌ OCE ,根据圆的位置关系证得AC 是⊙ O 的切线 . (2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证OBE 为等边三角形,而得出BOE 60 ,根据三角形内角和即可求出答案.【详解】(1)证明:∵ CD与⊙ O 相切于点E,∴OE CD ,∴CEO 90 ,又∵ OC BE ,∴COE OEB ,∠OBE=∠COA∵OE=OB,∴OEB OBE ,∴COECOA,又∵ OC=OC, OA=OE,∴∴OCA≌ OCE(SAS),CAO CEO 90 ,又∵ AB 为⊙ O 的直径,∴AC 为⊙ O 的切线;(2)解:∵四边形 FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴OBE 为等边三角形,∴BOE 60 ,而 OECD ,∴ D 30 . 故答案为 30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关 键 .3.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.( 1)如图 1,四边形 ABCD 内接于⊙ O ,∠ DCB ﹣∠ ADC=∠ A ,求证:四边形 ABCD 为圆内接倍角四边形;( 2)在( 1)的条件下,⊙ O 半径为 5.4 ① 若 AD 为直径,且 sinA=5,求 BC 的长;② 若四边形 ABCD 中有一个角为 60°,且 BC=CD ,则四边形 ABCD 的面积是;( 3)在( 1)的条件下,记 AB=a , BC=b , CD=c , AD=d ,求证: d 2﹣ b 2=ab+cd .【答案】( 1)见解析;( 2) ①BC =6, ②75 3 或 75;( 3)见解析44【解析】【分析】( 1)先判断出∠ ADC=180°﹣ 2∠ A .进而判断出∠ ABC=2∠A ,即可得出结论;( 2) ① 先用锐角三角函数求出 BD ,进而得出 AB ,由( 1)得出∠ ADB=∠BDC ,即可得出结论;② 分两种情况:利用面积和差即可得出结论;( 3)先得出 BE=BC=b , DE=DA=b ,进而得出 CE=d ﹣ c ,再判断出 △ EBC ∽△ EDA ,即可得出结论. 【详解】( 1)设∠ A=α,则∠ DCB=180°﹣ α.∵∠ DCB ﹣∠ ADC=∠ A ,∴∠ ADC=∠ DCB ﹣∠ A=180°﹣ α﹣α=180°﹣2α,∴∠ ABC=180°﹣∠ A DC=2α=2∠ A ,∴四边形 ABCD 是⊙ O 内接倍角四边形;(2) ① 连接 BD .∵AD 是⊙ O 的直径,∴∠ABD=90°.在 Rt △ABD 中, AD=2×5=10, sin ∠ A= 4,∴ BD=8,根5据勾股定理得: AB=6,设∠ A=α,∴∠ ADB=90°﹣ α.由( 1)知,∠ ADC=180°﹣ 2α,∴∠ BDC=90°﹣ α,∴∠ ADB=∠ BDC ,∴ BC=AB=6;② 若∠ ADC=60 °时.∵四边形 ABCD 是圆内接倍角四边形,∴∠BCD=120°或∠ BAD=30°.Ⅰ、当∠ BCD=120°时,如图 3,连接 OA ,OB , OC , OD .∵ BC=CD ,∴∠ BOC=∠ COD ,∴∠ OCD=∠ OCB= 1∠ BCD=60°,∴∠ CDO=60°,∴ AD 是⊙ O2的直径,(为了说明 AD 是直径,点 O 没有画在 AD 上) ∴∠ ADC+∠ BCD=180°,∴ BC ∥ AD ,∴ AB=CD .∵BC=CD ,∴ AB=BC=CD ,∴△ OAB , △ BOC , △ COD 是全等的等边三角形,∴ S 四边形ABCD =3S △AOB =3×32×5=75 3.4 4Ⅱ、当∠ BAD=30°时,如图 4,连接 OA ,OB , OC , OD .∵四边形 ABCD 是圆内接四边形,∴∠ BCD=180°﹣∠ BAD=150°.∵ B C=CD ,∴∠ BOC=∠ COD ,∴∠ BCO=∠ DCO= 1∠ BCD=75°,∴∠ BOC=∠ DOC=30°,2∴∠ OBA=45°,∴∠ AOB=90°.连接 AC ,∴∠ DAC= 1∠ BAD=15°.2∵∠ ADO=∠ OAB ﹣∠ BAD=15°,∴∠ DAC=∠ ADO ,∴ OD ∥ AC ,∴ S △OAD =S △OCD . 过点 C 作 CH ⊥ OB 于 H .在 Rt △ OCH 中, CH= 1 OC= 5,∴ S 四边形 ABCD =S △COD +S △ BOC +S △ AOB ﹣2 2△△△1 5 1 75 . S AOD =SBOC +S AOB =2× 5+ × 5× 5=2 24故答案为:753 或 75 ;44(3)延长 DC , AB 交于点 E .∵四边形 ABCD 是⊙ O 的内接四边形,∴∠ BCE=∠ A= 1∠ ABC .2∵∠ ABC=∠ BCE+∠ A ,∴∠ E=∠BCE=∠ A ,∴ BE=BC=b , DE=DA=b ,∴ CE=d ﹣ c .∵∠ BCE=∠ A ,∠ E=∠ E ,∴△ EBC ∽△ EDA ,∴CEBC ,∴ d cb,∴ d 2 ﹣AEAD ab d2b =ab+cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.4.如图,在 △ ABP 中 ,C 是 BP 边上一点 ,∠PAC=∠ PBA,⊙ O 是 △ABC 的外接圆 ,AD 是⊙ O 的直径 ,且交 BP 于点 E.( 1)求证: PA 是⊙ O 的切线;( 2)过点 C 作 CF ⊥ AD ,垂足为点 F ,延长 CF 交 AB 于点 G ,若 AG?AB=12,求 AC 的长.【答案】( 1)证明见解析( 2)2 3【解析】试题分析:( 1)根据圆周角定理得出∠ ACD=90°以及利用∠ PAC=∠PBA 得出∠CAD+∠PAC=90°进而得出答案;2(2)首先得出△ CAG∽ △ BAC,进而得出A C =AG·AB,求出 AC 即可 .∵AD 是⊙ O 的直径 ,∴∠ ACD=90°,∴∠ CAD+∠ D=90°,∵∠ PAC=∠ PBA,∠ D=∠ PBA,∴∠ CAD+∠ PAC=90°,即∠ PAD=90°,∴PA⊥AD,∴PA 是⊙ O 的切线;(2)∵ CF⊥ AD,∴∠ ACF+∠ CAF=90°,∠ CAD+∠ D=90°,∴∠ ACF=∠ D,∴∠ ACF=∠ B,而∠ CAG=∠ BAC,∴△ ACG∽△ ABC,∴AC: AB=AG: AC,2∴A C=2 3.5.如图,已知四边形 ABCD是矩形,点 P 在 BC边的延长线上,且 PD=BC,⊙ A 经过点 B,与AD 边交于点 E,连接 CE .(1)求证:直线 PD 是⊙ A 的切线;(2)若 PC=2 5, sin∠ P= 2,求图中阴影部份的面积(结果保留无理数).3【答案】( 1)见解析;(2) 20-4π.【解析】分析:( 1)过点 A 作 AH⊥PD,垂足为H,只要证明 AH 为半径即可 .(2)分别算出 Rt△ CED的面积,扇形ABE 的面积,矩形ABCD的面积即可 .详解:( 1)证明:如图,过 A 作 AH⊥ PD,垂足为 H,∵四边形ABCD是矩形,∴AD=BC, AD∥ BC,∠ PCD=∠ BCD=90°,∴∠ ADH=∠P,∠ AHD=∠ PCD=90°,又PD=BC,∴ AD=PD,∴△ ADH≌△ DPC,∴ AH=CD,∵CD=AB,且 AB 是⊙ A 的半径,∴A H=AB,即 AH 是⊙ A 的半径,∴P D 是⊙ A 的切线 .(2)如图,在CD 25 ,Rt△ PDC中,∵ sin∠ P= , PC=2PD 3令CD=2x, PD=3x,由由勾股定理得:( 3x)2 -(2x)2=(2 5 )2,解得: x=2,∴ CD=4, PD=6,∴AB=AE=CD=4, AD=BC=PD=6, DE=2,∵矩形 ABCD的面积为6×4=24, Rt△ CED的面积为1× 4× 2=4,21 扇形 ABE的面积为22π×4=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积 .6.已知,如图: O1为x轴上一点,以O1为圆心作⊙ O1交 x 轴于 C、D 两点,交 y 轴于M、 N 两点,∠ CMD 的外角平分线交⊙O1于点 E,AB 是弦,且 AB∥ CD,直线 DM 的解析式为 y=3x+3.(1)如图 1,求⊙ O1半径及点 E 的坐标.(2)如图 2,过 E 作 EF⊥ BC 于 F,若 A、B 为弧 CND上两动点且弦 AB∥ CD,试问: BF+CF 与 AC 之间是否存在某种等量关系?请写出你的结论,并证明.(3)在( 2)的条件下, EF交⊙ O1于点 G,问弦 BG 的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】( 1) r=5 E ( 4, 5) ( 2) BF+CF=AC ( 3)弦 BG 的长度不变,等于 5 2 【解析】分析:( 1)连接 ED 、 EC 、EO 1、 MO 1,如图 1,可以证到∠ ECD=∠ SME=∠ EMC=∠ EDC ,从而可以证到∠ EO 1D=∠EO 1C=90 °.由直线 DM 的解析式为 y=3x+3 可得 OD=1,OM=3.设⊙O 1 的半径为 r .在 Rt △ MOO 1 中利用勾股定理就可解决问题.( 2)过点 O 1 作 O 1P ⊥EG 于 P ,过点 O 1 作 O 1 Q ⊥ BC 于 Q ,连接 EO 1、 DB ,如图 2.由AB ∥ DC 可证到 BD=AC ,易证四边形 O PFQ 是矩形,从而有 O P=FQ ,∠ PO Q=90 °,进而有111∠EO 1P=∠ CO 1Q ,从而可以证到 △EPO 1≌△ CQO 1,则有 PO 1=QO 1.根据三角形中位线定理 可得 FQ=1BD .从而可以得到 BF+CF=2FQ=AC .2( 3)连接 EO 1, ED , EB , BG ,如图 3.易证 EF ∥BD ,则有∠ GEB=∠ EBD ,从而有BG = ED ,也就有 BG=DE .在 Rt △ EO 1D 中运用勾股定理求出ED ,就可解决问题.详解:( 1)连接 ED 、 EC 、EO 1、 MO 1,如图 1.∵ ME 平分∠ SMC ,∴∠ SME=∠ EMC .∵∠ SME=∠ ECD ,∠ EMC=∠ EDC ,∴∠ ECD=∠ EDC ,∴∠ EO 1D=∠EO 1C .∵∠ EO 1D+∠ EO 1C=180 °,∴∠ EO 1D=∠ EO 1C=90 °.∵直线 DM 的解析式为 y=3x+3,∴点 M 的坐标为( 0, 3),点 D 的坐标为(﹣ 1 ,0),∴ O D=1, OM=3.设⊙ O 1 的半径为 r ,则 MO 1=DO 1=r .222在 Rt △ MOO 1 中,( r ﹣1) +3 =r .解得: r=5,∴ OO 1 =4, EO 1=5,∴⊙ O 1 半径为 5,点 E 的坐标为( 4, 5). ( 2)BF+CF=AC .理由如下:过点 O 1 作 O 1P ⊥ EG 于 P ,过点 O 1 作 O 1Q ⊥BC 于 Q ,连接 EO 1 、 DB ,如图 2.∵ AB ∥ DC ,∴∠ DCA=∠ BAC ,∴ AD = BC , BD = AC ,∴ BD=AC .∵ O 1P ⊥ EG ,O 1Q ⊥ BC , EF ⊥BF ,∴∠ O 1PF=∠ PFQ=∠ O 1QF=90 °,∴四边形 O 1PFQ 是矩形,∴ O 1 P=FQ ,∠ PO 1Q=90 °,∴∠ EO 1P=90 °﹣∠ PO 1C=∠ CO 1Q .EO 1PCO 1Q在 △EPO 1 和 △ CQO 1 中,EPO 1 CQO 1 ,O 1E O 1C∴△ EPO ≌△ CQO ,∴ PO =QO 1 ,∴ FQ=QO .1 1 1 1∵ QO 1⊥ BC ,∴ BQ=CQ .1 1∵ CO1=DO1,∴ O1Q= BD,∴ FQ= BD.2 2∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴ BF+CF=BD=AC.( 3)连接 EO1, ED, EB, BG,如图 3.∵DC是⊙ O1的直径,∴∠ DBC=90°,∴∠ DBC+∠ EFB=180°,∴ EF∥BD,∴∠ GEB=∠ EBD,∴BG = ED,∴ BG=DE.∵ DO1=EO1=5,EO1⊥ DO1,∴ DE=52 ,∴BG=52,∴弦 BG 的长度不变,等于5 2 .点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥ DC 证到 AC=BD 是解决第( 2)小题的关键,由EG∥ DB 证到 BG=DE是解决第( 3)小题的关键.7.如图, PA、PB 是⊙ O 的切线, A, B 为切点,∠ APB=60°,连接 PO并延长与⊙ O 交于 C 点,连接 AC、 BC.(Ⅰ)求∠ ACB的大小;(Ⅱ)若⊙ O 半径为 1,求四边形ACBP的面积.3 3【答案】(Ⅰ)60°;(Ⅱ)2【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥ AP, OP 平分∠ APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可. 详解:(Ⅰ)连接OA ,如图,∵PA 、 PB 是⊙ O 的切线,∴OA ⊥AP , OP 平分∠ APB ,∴∠ APO= 1∠ APB=30°,2∴∠ AOP=60°,∵OA=OC ,∴∠ OAC=∠OCA ,∴∠ ACO=1AOP=30°,2同理可得∠ BCP=30°,∴∠ ACB=60°;(Ⅱ)在 Rt △ OPA 中,∵∠ APO=30°,∴ A P= 3 OA= 3 ,OP=2OA=2,∴ O P=2OC ,1而 S △OPA = × 1×3 ,2∴S △1 △3 ,AOC =SPAO =2 4∴S △ACP =33 ,43 3∴四边形 ACBP 的面积 =2S △ ACP =.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.8.如图, △ ABC 内接于⊙ O ,AB 是直径,⊙ O 的切线 PC 交 BA 的延长线于点 P , OF ∥ BC 交 AC 于点 E ,交 PC 于点 F ,连结 AF .(1)判断 AF 与⊙ O 的位置关系并说明理由;(2)若 AC = 24,AF =15,求 sinB .【答案】 (1) AF 与⊙ O 相切 理由见解析;( 2)35【解析】试题分析:( 1)连接 OC ,先证∠ OCF=90°,再证明 △ OAF ≌△ OCF ,得出∠ OAF=∠OCF=90° 即可;(2)先求出 AE 、 EF ,再证明 △ OAE ∽△ AFE ,得出比例式OA AE,可求出半径,进而AF EF求出直径,由三角函数的定义即可得出结论.试题解析:解:( 1) AF 与⊙ O 相切.理由如下:连接 OC .如图所示.∵ PC 是⊙ O 的切线,∴ OC ⊥ PC ,∴∠ OCF=90°.∵ OF ∥ BC ,∴∠ B=∠AOF ,∠ OCB=∠ COF .∵ OB=OC ,∴∠ B=∠ OCB ,∴∠ AOF=∠ COF .在 △ OAF 和△OCF 中,∵ OA=OC ,∠ AOF=∠ COF ,OF=OF ,∴△ OAF ≌△ OCF ( SAS ),∴∠ OAF=∠ OCF=90°,∴ AF 与⊙ O 相切;( 2)∵△ OAF ≌△ OCF ,∴∠ OAE=∠ COE ,∴ OE ⊥AC , AE= 1AC=12,2∴EF= 152 1229 .∵∠ OAF=90°,∴△ OAE ∽△ AFE ,∴OAAE ,即 OA12 ,AF EF15 9∴OA=20,∴ AB=40, sinB=AC24 3 .AB40 5点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.9.如图 1,延长⊙ O 的直径 AB 至点 C ,使得 BC=1 AB ,点 P 是⊙ O 上半部分的一个动点2(点 P 不与 A 、 B 重合),连结 OP , CP .(1)∠ C 的最大度数为 ;( 2)当⊙ O 的半径为 3 时, △ OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;( 3)如图 2,延长 PO 交⊙ O 于点 D ,连结 DB ,当 CP=DB 时,求证: CP 是⊙ O 的切线.【答案】( 1 ) 30°;( 2)有最大值为 9,理由见解析;( 3)证明见解析 . 【解析】试题分析:( 1)当 PC 与⊙ O 相切时,∠ OCP 的度数最大,根据切线的性质即可求得; (2)由 △ OPC 的边 OC 是定值,得到当 OC 边上的高为最大值时, △ OPC 的面积最大,当 PO ⊥ OC 时,取得最大值,即此时 OC 边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB ,根据等腰三角形的性质得到∠A=∠ C ,得到CO=OB+OB=AB ,推出 △ APB ≌△ CPO ,根据全等三角形的性质得到∠ CPO=∠ APB ,根据圆周角定理得到∠ APB=90°,即可得到结论. 试题解析:( 1)当 PC 与⊙ O 相切时,∠ OCP 最大.如图 1,所示:∵ s in ∠ OCP=OP = 2 = 1,∴∠ OCP=30°OC 4 2∴∠ OCP 的最大度数为 30°,故答案为: 30°;(2)有最大值,理由:∵△ OPC 的边 OC 是定值,∴当 OC 边上的高为最大值时, △ OPC 的面积最大,而点 P 在⊙ O 上半圆上运动,当PO ⊥ OC 时,取得最大值,即此时 OC 边上的高最大,1 1 也就是高为半径长,∴最大值S △OPC = OC?OP= × 6× 3=9;22(3)连结 AP , BP ,如图 2,在△ OAP 与 △OBD 中,OA ODAOPBOD ,∴△ OAP ≌△ OBD ,∴ AP=DB ,OP OB∵PC=DB ,∴ AP=PC ,∵ P A=PC ,∴∠ A=∠ C ,∵ B C= 1AB=OB ,∴ CO=OB+OB=AB ,2AP CP在△ APB 和 △ CPO 中,A C ,∴△ APB ≌△ CPO ,∴∠ CPO=∠ APB ,AB CO∵AB 为直径,∴∠ APB=90°,∴∠ CPO=90°,∴PC 切⊙ O 于点 P ,即 CP 是⊙ O 的切线.10.已知⊙ O 中,弦 AB=AC,点 P 是∠ BAC所对弧上一动点,连接PA, PB.(1)如图①,把△ ABP 绕点 A 逆时针旋转到△ ACQ,连接 PC,求证:∠ACP+∠ ACQ=180°;(2)如图②,若∠ BAC=60°,试探究 PA、 PB、 PC 之间的关系.(3)若∠ BAC=120°时,( 2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】( 1)证明见解析;(2) PA=PB+PC.理由见解析;(3)若∠ BAC=120°时,( 2)中的结论不成立, 3PA=PB+PC.【解析】试题分析:( 1)如图①,连接 PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线 BC、 PE、 CE(连接 BC,延长 BP至 E,使 PE=PC,连接 CE)构建等边△ PCE和全等三角形△ BEC≌△ APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得 PA=PB+PC;(3)如图③,在线段 PC上截取 PQ,使 PQ=PB,过点 A 作 AG⊥ PC于点 G.利用全等三角形△ ABP≌△ AQP( SAS)的对应边相等推知AB=AQ, PB=PG,将 PA、 PB、 PC 的数量关系转化到△ APC中来求即可.试题解析:( 1)如图①,连接 PC.∵△ ACQ是由△ABP 绕点 A 逆时针旋转得到的,∴∠ ABP=∠ ACQ.由图①知,点 A、 B、 P、C 四点共圆,∴∠ ACP+∠ABP=180°(圆内接四边形的对角互补),∴∠ ACP+∠ACQ=180°(等量代换);(2) PA=PB+PC.理由如下:如图②,连接 BC,延长 BP 至 E,使 PE=PC,连接 CE.∵弦 AB=弦 AC,∠ BAC=60°,∴△ ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).∵A、B、 P、C 四点共圆,∴∠BAC+∠ BPC=180°(圆内接四边形的对角互补),∵∠ BPC+∠ EPC=180°,∴∠ BAC=∠ CPE=60°,∵P E=PC,∴△ PCE是等边三角形,∴ CE=PC,∠ E=∠ ECP=∠ EPC=60°;又∵∠ BCE=60°+∠BCP,∠ ACP=60°+∠ BCP,∴∠ BCE=∠ ACP(等量代换) ,CE PC在△ BEC和△ APC中,BCE ACP,∴△ BEC≌△ APC( SAS),∴ BE=PA,AC BC∴P A=BE=PB+PC;(3)若∠ BAC=120°时,( 2)中的结论不成立,3 PA=PB+PC.理由如下:如图③,在线段 PC 上截取 PQ,使 PQ=PB,过点 A 作 AG⊥ PC于点 G.∵∠BAC=120°,∠ BAC+∠ BPC=180°,∴∠ BPC=60°.∵弦 AB=弦 AC,∴∠ APB=∠ APQ=30°.PB PQ在△ ABP 和△ AQP中,APB APQ,∴△ ABP≌△ AQP( SAS),AP AP∴AB=AQ, PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).在等腰△ AQC中, QG=CG.在Rt△ APG中,∠ APG=30°,则 AP=2AG, PG= 3 AG,∴PB+PC=PG﹣ QG+PG+CG=PG﹣ QG+PG+QG=2PG=2 3 AG,∴ 3 PA=2 3 AG,即 3 PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.11.如图,△ABC内接于⊙ O,∠ BAC的平分线交⊙O 于点 D,交 BC 于点 E( BE> EC),且BD=2 3.过点 D 作 DF∥ BC,交 AB 的延长线于点F.(1)求证: DF 为⊙ O 的切线;(2)若∠ BAC= 60°, DE=7,求图中阴影部分的面积.【答案】( 1)详见解析;(2)9 3 ﹣2π.【解析】【分析】(1)连结 OD,根据垂径定理得到 OD⊥BC,根据平行线的性质得到 OD⊥DF,根据切线的判定定理证明;(2)连结 OB,连结 OD 交 BC 于 P,作 BH⊥DF 于 H,证明△ OBD 为等边三角形,得到∠ODB=60°, OB=BD=2 3,根据勾股定理求出 PE,证明△ ABE∽△ AFD,根据相似三角形的性质求出 AE,根据阴影部分的面积 =△BDF 的面积 -弓形 BD 的面积计算.【详解】证明:( 1)连结 OD,∵AD 平分∠ BAC交⊙ O 于 D,∴∠ BAD=∠ CAD,∴BD = CD ,∴O D⊥BC,∵BC∥ DF,∴O D⊥DF,∴D F 为⊙ O 的切线;(2)连结 OB,连结 OD 交 BC 于 P,作 BH⊥DF 于 H,∵∠ BAC=60°, AD 平分∠ BAC,∴∠ BAD=30°,∴∠ BOD=2∠ BAD=60°,∴△ OBD 为等边三角形,∴∠ ODB=60°, OB=BD=2 3 ,∴∠ BDF=30°,∵BC∥ DF,∴∠ DBP=30°,在 Rt△ DBP中, PD= 1BD=3 ,PB=3PD=3,2在 Rt △ DEP 中,∵ PD= 3 , DE= 7 ,∴ P E= ( 7) 2 ( 3) 2 =2,∵OP ⊥ BC ,∴ B P=CP=3,∴ C E=3﹣ 2=1,∵∠ DBE=∠ CAE ,∠ BED=∠ AEC ,∴△ BDE ∽△ ACE ,∴AE : BE=CE : DE ,即 AE : 5=1: 7 ,∴ A E=5 77∵BE ∥DF ,∴△ ABE ∽△ AFD ,BEAE 5 5 7∴7 ,DFAD,即12DF57解得 DF=12,1在 Rt △ BDH 中, BH= BD= 3 ,2∴阴影部分的面积 =△ BDF 的面积﹣弓形 BD 的面积 =△ BDF 的面积﹣(扇形 BOD 的面积﹣△BOD 的面积) =1123 60 (2 3) 23 (2 3) 2 =9 3 ﹣ 2π. 2360 4【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.12. 如图,已知 AB 是⊙ O 的直径, P 是 BA 延长线上一点, PC 切⊙ O 于点 C , CD ⊥ AB ,垂足为 D .( 1)求证:∠ PCA =∠ ABC ;( 2)过点 A 作 AE ∥ PC 交⊙ O 于点 E ,交 CD 于点 F ,交 BC 于点 M ,若∠ CAB = 2∠ B , CF= 3 ,求阴影部分的面积.【答案】( 1)详见解析;(2)63 3.4【解析】【分析】(1)如图,连接 OC,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠ OCB,利用等量代换可得∠ PCA=∠ ABC.(2)先求出△ OCA是等边三角形,在利用三角形的等边对等角定理求出FA=FC和CF=FM,然后分别求出 AM 、 AC、 MO、 CD的值,分别求出S A0 E、S扇形BOE 、 S ABM的值,利用S阴影部分S A0 E S扇形BOE S ABM,然后通过计算即可解答.【详解】解:( 1)证明:连接OC,如图,∵PC 切⊙ O 于点 C,∴ OC⊥ PC,∴∠ PCA+∠ ACO=90o,∵AB 是⊙ O 的直径,∴∠ACB=∠ ACO+OCB=90o∴∠ PCA=∠ OCB,∵O C=OB,∴∠ OBC=∠ OCB,∴∠ PCA=∠ ABC;(2)连接 OE,如图,∵△ ACB中,∠ ACB= 90o,∠ CAB=2 ∠B,∴∠ B=30o,∠ CAB= 60o,∴△ OCA是等边三角形,∵CD⊥AB,∴∠ ACD+∠ CAD=∠ CAD+∠ ABC=90o,∴∠ ACD=∠ B= 30o,∵PC∥ AE,∴∠ PCA=∠ CAE= 30o,∴ FC=FA,同理, CF=FM,∴ AM= 2CF=2 3 ,Rt△ ACM 中,易得AC=2 3 ×3=3=OC, 2∵∠ B=∠ CAE=30o,∴∠ AOC=∠COE=60o,∴∠ EOB=60o,∴∠ EAB=∠ ABC=30o,∴ MA=MB, 连接 OM,EG⊥ AB 交 AB 于 G 点,如图所示,∵O A=OB,∴ MO ⊥ AB,∴ MO = OA×tan30o= 3 ,∵△ CDO≌△ EDO(AAS),3∴EG=CD=AC×sin60o= 3 ,∴ S ABM 1AB MO 3 3 , 2同样,易求S AOE 9 3 ,4S扇形 BOE 60 32 3 360 2∴ S阴影部分SA0 ES扇形 BOE S ABM=9 33 3 3 6 3 3 .4 2 4【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.13.如图,AB 为O 的直径,C 、D为O 上异于 A 、B的两点,连接CD ,过点C 作 CE DB ,交CD 的延长线于点 E ,垂足为点 E ,直径AB 与 CE 的延长线相交于点 F .(1)连接AC、AD,求证:DAC ACF 180 .(2)若ABD 2 BDC .①求证: CF 是O 的切线.3②当 BD 6 ,tan F 时,求 CF 的长.4【答案】( 1)详见解析;(2)① 详见解析;②CF 20. 3【解析】【分析】(1)根据圆周角定理证得∠ ADB=90°,即 AD⊥ BD,由 CE⊥ DB 证得 AD∥ CF,根据平行线的性质即可证得结论;(2)①连接 OC.先根据等边对等角及三角形外角的性质得出∠3=2∠ 1,由已知∠4=2∠ 1,得到∠ 4=∠3,则 OC∥DB,再由 CE⊥ DB,得到 OC⊥CF,根据切线的判定即可证明 CF为⊙ O 的切线;②由 CF∥ AD,证出∠ BAD=∠F,得出 tan ∠BAD=tan∠ F= BD=3,求出 AD= 4 BD=8,利AD 4 3用勾股定理求得AB=10,得出 OB=OC=, 5,再由 tanF= OC=3,即可求出 CF.CF 4【详解】解:( 1)AB是O的直径,且D为O 上一点,ADB 90 ,CE DB ,DEC 90 ,CF / / AD ,DAC ACF 180 .(2)①如图,连接OC .OA OC , 1 2 .3 1 2 ,3 2 1.4 2 BDC ,BDC1,4 2 1 ,4 3 ,OC / / DB .CE DB ,OC CF .又OC 为 O 的半径,CF 为O 的切线.②由( 1)知CF / / AD,BAD F ,tan BAD3 tanF ,4BD 3AD.4BD 6AD4BD8 ,3AB 62 82 10 , OB OC 5 .OC CF , OCF 90 ,OC 3 tanF,CF 420 .解得 CF3【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是( 2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.14.如图, △ ABC 中, AC =BC = 10, cosC = 3,点 P 是 AC 边上一动点(不与点 A 、C 重合),5以 PA 长为半径的⊙ P 与边 AB 的另一个交点为 D ,过点 D 作 DE ⊥ CB 于点 E .(1)当⊙ P 与边 BC 相切时,求⊙ P 的半径.(2)连接 BP 交 DE 于点 F ,设 AP 的长为 x , PF 的长为 y ,求 y 关于 x 的函数解析式,并直接写出 x 的取值范围.(3)在( 2)的条件下,当以 PE 长为直径的⊙ Q 与⊙ P 相交于 AC 边上的点 G 时,求相交所得的公共弦的长 .【答案】( 1) R40 ;( 2) y 5xx 2 8x 80 ;( 3) 50 10 5 .9 3x 20【解析】【分析】(1 )设⊙ P 与边 BC相切的切点为H,圆的半径为R,连接 HP,则 HP⊥ BC, cosC=3,则5sinC=4,sinC=HP=R =4,即可求解;5 CP 10 R 5BF,即:2(2 )首先证明 PD∥ BE,则EB4 5xx2 8x 80 y ,即可求解;PD PF x y(3)证明四边形PDBE为平行四边形,则 AG= EP=BD,即: AB=DB+AD= AG+AD=4 5 ,即可求解.【详解】(1)设⊙ P 与边 BC相切的切点为 H,圆的半径为 R,连接 HP,则 HP⊥ BC, cosC=3,则 sinC=4,5 5sinC=HP=R =4,解得: R=40;CP 10 R 5 9(2)在△ ABC 中, AC= BC= 10, cosC=3,5设 AP=PD= x,∠ A=∠ ABC=β,过点 B 作 BH⊥ AC,则BH= ACsinC= 8,同理可得: CH=6, HA= 4, AB= 4 5 ,则:tan∠CAB=2,BP = 82+( x 4) 2= x 2 8x 80,DA =2 5x ,则 BD = 4 5 ﹣2 5x ,5 5如下图所示, PA = PD ,∴∠ PAD =∠ CAB =∠ CBA = β,tan β= 2,则 cos β= 1, sin β= 2,5 5EB = BDcos β=( 4 5 ﹣2 1= 4 ﹣ 2x ,5x ) ×555∴PD ∥ BE ,∴ EBBF,即: 4 2xx 2 8x 80 y ,5 PDPFxy整理得: y =5x 20 x 2 8x 80 ;3x(3)以 EP 为直径作圆 Q 如下图所示,两个圆交于点 G ,则 PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦, ∵点 Q 是弧 GD 的中点,∴DG ⊥ EP ,∵AG 是圆 P 的直径,∴∠ GDA =90°,∴EP ∥ BD ,由( 2)知, PD ∥ BC ,∴四边形 PDBE 为平行四边形,∴AG= EP= BD,∴AB= DB+AD= AG+AD= 45 ,设圆的半径为r ,在△ ADG 中,2r4rAD= 2rcos β=,DG=,AG=2r,5 52r 20+2r= 4 5 ,解得:2r=,5 5 14r5 ,则: DG== 50﹣105相交所得的公共弦的长为50﹣10 5 .【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.15.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC、 BC分别交于点D、E,过点 D 作DF⊥ BC,垂足为F.( 1)求证:DF 为⊙ O 的切线;(2)若等边三角形ABC 的边长为 4 ,求图中阴影部分的面积.【答案】( 1)见解析( 2)3 322 3【解析】试题分析:( 1)连接 DO,要证明 DF为⊙ O 的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD, CF 的长,从而利用勾股定理可求得DF 的长;再连接OE,求得 CF, EF的长,从而利用S 直角梯形FDOE﹣ S 扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ ABC是等边三角形,∴∠ A=∠ C=60°.∵OA=OD,∴△ OAD 是等边三角形.∴∠ ADO=60°,∵DF⊥ BC,∴∠ CDF=90°﹣∠ C=30°,∴∠ FDO=180°﹣∠ ADO﹣∠ CDF=90°,∴DF 为⊙ O 的切线;(2)∵△ OAD 是等边三角形,∴AD=AO= AB=2.∴CD=AC﹣AD=2.Rt△ CDF 中,∵∠ CDF=30°,∴C F= CD=1.∴DF=,连接 OE,则 CE=2.∴C F=1,∴E F=1.∴S 直角梯形FDOE= (EF+OD) ?DF= ,= =,∴S 扇形OED∴S 阴影 =S 直角梯形FDOE﹣ S 扇形OED= ﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。

2021年中考数学复习之专题突破训练《专题十二:圆》解析

2021年中考数学复习之专题突破训练《专题十二:圆》解析

2021年中考数学复习之专题突破训练《专题十二:圆》参考答案与试题解析一、选择题1.对于一个正多边形,下列四个命题中,错误的是A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补【考点】正多边形和圆.【专题】常规题型.【答案】B【分析】利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.【解答】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.【点评】本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.2.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A.4B.5C.6D.6【考点】垂径定理的应用.【答案】D【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.【点评】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC是解决问题的关键.3.如图,正八边形ABCDEFGH中,∠EAG大小为A.30°B.40°C.45°D.50°【考点】正多边形和圆.【专题】几何图形.【答案】C【分析】连接AC、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【解答】解:连接AC、GE、EC,如图所示:则四边形ACEG为正方形,∴∠EAG=45°,故选:C.【点评】本题考查了正多边形的性质、正方形的性质,正确作出辅助线是解决问题的关键.4.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为A.50°B.55°C.65°D.70°【考点】圆内接四边形的性质.【专题】常规题型.【答案】A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【点评】本题考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.5.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形面积之和是A.2πB.πC.D.6π【考点】扇形面积的计算.【答案】A【分析】根据三角形的内角和是180°和扇形的面积公式进行计算.【解答】解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选:A.【点评】考查了扇形面积的计算,因为三个扇形的半径相等,所以不需知道各个扇形的圆心角的度数,只需知道三个圆心角的和即可.6.如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是A.35°B.140°C.70°D.70°或140°【考点】圆周角定理.【答案】B【分析】由A、B、C是⊙O上的三点,且∠ABC=70°,利用圆周角定理,即可求得答案.【解答】解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选:B.【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为A.π﹣6B.πC.π﹣3D.+π【考点】勾股定理的逆定理;扇形面积的计算;旋转的性质.【专题】常规题型.【答案】B【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.8.如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点【考点】切线的性质.【专题】常规题型.【答案】C【分析】连接OM、ON、MK、NK,根据切线长定理得出PM=PN,易证得△POM≌△PON,得出OP是∠MPN的平分线,然后根据圆周角定理证得∠PMK=∠MOK,∠PNK=∠NOK,∠NMK=∠NOK,∠MNK=∠MOK,即可证得∠PMK=∠NMK =∠PNK=∠MNK,从而证得结论.【解答】解:连接OM、ON、MK、NK,∵PM、PN分别是⊙O的切线,∴PM=PN,∴∠PMN=∠PNM,∵OM=ON易证△POM≌△PON,∴OP是∠MPN的平分线,由圆周角定理可得∠PMK=∠MOK,∠PNK=∠NOK,∠NMK=∠NOK,∠MNK=∠MOK,∴∠PMK=∠NMK=∠PNK=∠MNK,∴点K是△PMN的三个角的角平分线的交点,故选:C.【点评】本题考查了切线的性质,三角形全等的判定和性质,圆周角定理的应用等,熟练掌握性质定理是解题的关键.9.已知扇形的半径为6,圆心角为60°,则这个扇形的面积为A.9πB.6πC.3πD.π【考点】扇形面积的计算.【答案】B【分析】已知了扇形的圆心角和半径长,可直接根据扇形的面积公式求解.【解答】解:∵扇形的半径为6cm,圆心角为60°,∴S==6π.故选:B.【点评】本题考查了扇形面积的计算.此题属于基础题,只要熟记扇形面积公式即可解题.10.如图,已知在△ABC中,∠C=60°,⊙O是△ABC的外接圆,过点A,B分别作⊙O 的切线,两切线交于点P,若⊙O的半径为1,则△P AB的周长为A.3B.3C.3D.2+【考点】三角形的外接圆与外心;切线的性质.【专题】计算题;与圆有关的位置关系;运算能力;推理能力.【答案】A【分析】过点A作直径AD,连接BD,则△ABD是直角三角形,且∠ADB=60°,根据三角函数即可求得AB的长,根据切线长定理以及弦切角定理,即可证明△P AB是等边三角形,据此即可求解.【解答】解:过点A作直径AD,连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠C=60°,∴∠ADB=∠C=60°,∴∠BAD=30°,∵⊙O的半径为1,∴AD=2,∴AB=AD•sin60°=,∵AP为切线,∴∠DAP=90°,∠P AB=60°,又∵AP=BP,∴△P AB为等边三角形,∴△P AB的周长=3AB=3.故选:A.【点评】本题考查了圆的切线性质,圆周角定理,勾股定理,切线长定理,等边三角形的判定和性质,直角三角形的性质等知识,熟练掌握切线的性质是解题的关键.11.如图,是△ABC的外接圆,I是△ABC的内心,AI的延长线与圆相交于点D,连BI,BD、DC.则下列说法中错误的一项是A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠ABI绕点B顺时针旋转一定能与∠IBC重合D.线段CD绕点C顺时针旋转一定能与线段CA重合【考点】三角形的外接圆与外心;三角形的内切圆与内心;旋转的性质.【专题】圆的有关概念及性质;几何直观;推理能力.【答案】D【分析】根据I是△ABC的内心,得到AI平分∠BAC,BI平分∠ABC,由角平分线的定义得到∠BAD=∠CAD,∠ABI=∠CBI根据三角形外角的性质得到∠BDI=∠DIB,根据等腰三角形的性质得到BD=DI.【解答】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠ABI=∠IBC,∠BAD=∠DAC,∴CD=BD,∴选项A,C正确∵∠DBC=∠DAC∴∠DBC=∠DAB∴∠DBC+∠IBC=∠DAB+∠ABI∴∠IBD=∠BID∴BD=ID∴选项B正确故选:D.【点评】考查了三角形的内切圆和内心,圆的有关知识,旋转的性质,证明BD=ID是本题的关键.12.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是A.相交B.相切C.相离D.不确定【考点】直线与圆的位置关系.【答案】A【分析】根据直线和圆的位置关系的内容判断即可.【解答】解:∵⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,∴5<7,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r 时,直线和圆相交.13.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是A.6B.3C.6D.3【考点】切线长定理.【专题】与圆有关的位置关系;几何直观.【答案】A【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=AB tan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.14.如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC的度数为A.30°B.45°C.60°D.75°【考点】平行四边形的性质;圆周角定理;圆内接四边形的性质.【专题】与圆有关的位置关系;几何直观.【答案】C【分析】先根据平行四边形的性质得到∠AOC=∠B,再根据圆周角定理和圆内接四边形的性质得到∠B+∠D=180°,∠AOC=2∠D,则2∠D+∠D=180°,从而可求出∠D 的度数.【解答】解:∵四边形ABCO是平行四边形,∴∠AOC=∠B,∵∠B+∠D=180°,∠AOC=2∠D,∴2∠D+∠D=180°,∴∠D=60°.故选:C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了平行四边形的性质.15.如图,一把直角三角板的顶点A、B在⊙O上,边BC、AC与⊙O交于点D、E,已知∠C=30°,∠AED的大小为A.90°B.100°C.110°D.120°【考点】三角形内角和定理;圆内接四边形的性质.【专题】与圆有关的计算;应用意识.【答案】D【分析】利用三角形内角和定理求出∠B,再根据圆内接四边形的性质求出∠AED即可.【解答】解:∵∠A=90°,∠C=30°,∴∠B=90°﹣30°=60°,∵四边形ABDE是圆内接四边形,∴∠AED=180°﹣∠B=120°,故选:D.【点评】本题考查圆内接四边形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.半径等于12的圆中,垂直平分半径的弦长为A.B.C.D.【考点】勾股定理;垂径定理.【答案】B【分析】先根据勾股定理求出弦的一半,再求出弦长即可.【解答】解:如图,OA=12,则OC=6,根据勾股定理可得,弦的一半==6,∴弦=12.故选:B.【点评】本题主要利用勾股定理求线段的长.17.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为2的圆与OA 的位置关系是A.相离B.相交C.相切D.以上三种情况均有可能【考点】直线与圆的位置关系.【答案】A【分析】首先过点C作CD⊥OA于点D,由∠O=30°,OC=6,可求得CD的长,又由半径为2,即可求得答案.【解答】解:过点C作CD⊥OA于点D,∵∠O=30°,OC=6,∴CD=OC=3,∵半径为2,∴以点C为圆心,半径为2的圆与OA的位置关系是:相离.故选:A.【点评】此题考查了点与圆的位置关系以及含30°角的直角三角形的性质.注意判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.18.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为A.B.C.D.【考点】正方形的判定与性质;切线的性质;相似三角形的判定与性质.【专题】证明题;压轴题.【答案】A【分析】连接OE,OD,求出四边形ADOE是正方形,推出AE=AD=OD=OE,设OE =AD=AE=OD=R,根据切线性质得出OE∥AB,OD∥AC,推出△CEO∽△ODB,得出比例式,代入求出即可.【解答】解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.【点评】本题考查了切线的性质,相似三角形的性质和判定,正方形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目具有一定的代表性,难度也适中.19.如图,在⊙O中,AB是弦,C是弧AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的度数为A.30°B.40°C.50°D.60°【考点】圆心角、弧、弦的关系.【专题】三角形;等腰三角形与直角三角形;圆的有关概念及性质;运算能力.【答案】A【分析】根据等腰三角形的性质求出∠OBA=∠OAB=25°,∠OAC=∠OCA=40°,再根据三角形内角和定理求出∠AOB和∠AOC,再求出答案即可.【解答】解:∵OA=OB,∠OAB=25°,∴∠OBA=∠OAB=25°,∴∠AOB=180°﹣∠OAB﹣∠OBA=130°,∵OA=OC,∠OCA=40°,∴∠OAC=∠OCA=40°,∴∠AOC=180°﹣∠OAC﹣∠OCA=100°,∴∠BOC=∠AOB﹣∠AOC=130°﹣100°=30°,故选:A.【点评】本题考查了圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°.其中正确的结论有A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;菱形的判定与性质;圆周角定理;切线的判定与性质.【专题】与圆有关的位置关系;推理能力.【答案】A【分析】连接OC,OD,根据全等三角形的性质得到∠ODM=∠OCM,求得∠ODM=90°,得到MD与⊙O相切;故①正确;根据全等三角形的性质得到AC=AD,求得AC =AD=CM=DM,于是得到四边形ACMD是菱形,故②正确;根据等腰三角形的性质和三角形的外角的性质得到∠COM=2∠CMO,求得∠CMO=30°,求得AB=OM,故③正确;根据菱形的性质和三角形的内角和得到∠ADM=120°,故④正确.【解答】解:连接OC,OD,∵OC=OD,CM=DM,OM=OM,∴△CMO≌△DMO,∴∠ODM=∠OCM,∵MC与⊙O相切于点C,∴∠OCM=90°,∴∠ODM=90°,∴MD与⊙O相切;故①正确;∵△CMO≌△DMO,∴∠COM=∠DOM,∴∠AOC=∠AOD,∵OA=OA,∴△AOC≌△AOD,∴AC=AD,∴AC=AD=CM=DM,∴四边形ACMD是菱形,故②正确;∵AC=CM,∴∠CAM=∠CMA,∵∠COM=2∠CAM,∴∠COM=2∠CMO,∴∠CMO=30°,∴OC=OM,∵OC=AB,∴AB=OM,故③正确;∵四边形ACMD是菱形,∴∠DAM=∠DMA=∠AMC=∠CAM=30°,∴∠ADM=120°,故④正确;故选:A.【点评】本题考查了切线的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,菱形的判定,正确的识别图形是解题的关键.21.如图,⊙O内切于正方形ABCD,O为圆心,作∠MON=90°,其两边分别交BC,CD 于点N,M,若CM+CN=4,则⊙O的面积为A.πB.2πC.4πD.0.5π【考点】正方形的性质;圆心角、弧、弦的关系;切线长定理.【专题】图形的全等;与圆有关的位置关系;推理能力.【答案】C【分析】设⊙O与正方形ABCD的边CD切于E,与BC切于F,连接OE,OF,得到四边形OECF是正方形,求得CF=CE=OE=OF,∠OEM=∠OFN=∠EOF=90°,根据全等三角形的性质得到EM=NF,得到OE=2,于是得到结论.【解答】解:设⊙O与正方形ABCD的边CD切于E,与BC切于F,连接OE,OF,则四边形OECF是正方形,∴CF=CE=OE=OF,∠OEM=∠OFN=∠EOF=90°,∵∠MON=90°,∴∠EOM=∠FON,∴△OEM≌△OFN,∴EM=NF,∴CM+CN=CE+CF=4,∴OE=2,∴⊙O的面积为4π,故选:C.【点评】本题考查了切线的性质,正方形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.22.如图,边长为2的正方形ABCD的四个顶点分别在扇形OEF的半径OE、OF和上,且点A是线段OB的中点,则的长为A.B.C.D.【考点】正方形的性质;弧长的计算.【专题】矩形菱形正方形;与圆有关的计算;解直角三角形及其应用;几何直观.【答案】D【分析】连接OC,求出OB长,根据勾股定理求出OC,求出∠DOA,根据弧长公式求出即可.【解答】解:连接OC,∵四边形ABCD是正方形,∴AD=AB=BC=2,∠ABC=∠DAB=90°=∠DAO,∵A为OB的中点,∴OB=2AB=4,在Rt△OBC中,由勾股定理得:OC===2,∵A为OB的中点,AB=AD=2,∴OA=AD=2,∵∠DAO=90°,∴∠DOA=∠ADO=45°,∴的长为=π,故选:D.【点评】本题考查了正方形的性质,勾股定理,弧长公式,等知识点,能求出OC长和∠DOA的度数是解此题的关键.23.如图,若△ABC内接于半径为2的⊙O,且∠A=60°,连接OB、OC,则边BC的长为A.B.C.2D.2【考点】三角形的外接圆与外心.【专题】等腰三角形与直角三角形;圆的有关概念及性质.【答案】D【分析】过点O作OD⊥BC于点D,由垂径定理得出BD=CD,由圆周角定理得出∠BOC=120°,由等腰三角形的性质得出∠OBC=∠OCB=30°,再由直角三角形的性质求出BD的长,进而得出答案.【解答】解:过点O作OD⊥BC于点D,如图所示:则BD=CD,∵△ABC内接于半径为2的⊙O,且∠A=60°,∴∠BOC=2∠A=120°°,CO=BO=2,∴∠OBC=∠OCB=30°,∴OD=OB=1,BD=OD=,∴BC=2BD=2.故选:D.【点评】此题主要考查了三角形的外接圆与外心、垂径定理、圆周角定理、等腰三角形的性质、直角三角形的性质,正确运用垂径定理是解题关键.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O 于点F.连接CF,若CE=2DE,则tan∠DFC的值为A.B.C.D.【考点】平行四边形的性质;圆周角定理;切线的性质;解直角三角形.【专题】方程思想;圆的有关概念及性质;运算能力;推理能力.【答案】A【分析】DE=x,则CE=2x,先根据勾股定理计算AD的长,证明△AGD∽△AFB,则=,可得BF的长,最后利用等角的三角函数相等可得结论.【解答】解:如图,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴=,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.故选:A.【点评】本题考查切线的性质、平行四边形的性质、圆的有关性质、勾股定理等知识,学会转化的思想,把问题转化为方程解决,添加辅助线是解题的关键,属于中考常考题型.25.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=A.100°B.40°C.80°D.70°【考点】相交两圆的性质.【专题】与圆有关的计算.【答案】D【分析】在优弧AB上取一点E,连接AE,BE,AO1,BO1.利用圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.【点评】本题考查圆周角定理,圆内接四边形的性质,相交两圆的性质等知识,教育的关键是学会添加常用辅助线,属于中考常考题型.26.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO 交圆于E,EM=6,则圆的半径为A.4B.2C.D.【考点】垂径定理的应用.【专题】与圆有关的计算;应用意识.【答案】D【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+2,解得:x=,所以圆的半径长是.故选:D.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+2成立,知道这三个量中的任意两个,就可以求出另外一个.27.如图,点D、E分别是⊙O的内接△ABC的AB、AC边上的中点,若⊙O的半径为2,∠A=45°,则DE的长等于A.B.C.1D.【考点】三角形中位线定理;三角形的外接圆与外心.【专题】圆的有关概念及性质;推理能力.【答案】B【分析】连接OB,OC,根据圆周角定理得到∠BOC=2∠A=90°,根据等腰直角三角形的性质得到BC=OB=2,由三角形的中位线定理即可得到结论.【解答】解:连接OB,OC,∵∠A=45°,∴∠BOC=2∠A=90°,∵OB=OC=2,∴BC=OB=2,∵D、E分别是⊙O的内接△ABC的AB、AC边上的中点,∴DE是△ABC的中位线,∴DE=BC==,故选:B.【点评】本题考查了三角形的外接圆和外心,直角三角形的性质,圆周角定理,三角形的中位线的性质,正确的作出辅助线是解题的关键.28.如图,已知⊙O1与⊙O2的半径分别为2和1,且两圆外切,点A为⊙O1上一点,∠AO1O2=30°,点P为线段O1O2上的一个动点,过P作O1A的平行线l,如果在⊙O2上有且仅有2个点到直线l的距离为,则O1P的取值范围是A.<O1P≤B.<O1P<3C.<O1P≤D.<O1P<【考点】相切两圆的性质.【专题】圆的有关概念及性质;与圆有关的计算;应用意识.【答案】D【分析】过点O2作O2B⊥直线l于B.求出两种特殊情形的O1P的值即可判断.【解答】解:过点O2作O2B⊥直线l于B.当O2B=1+=时,⊙O2上有且只有一个点到直线l的距离为,∵AO1∥PB,∴∠BPO2=∠AO1P=30°,∴PO2=2O2B=,∴O1P=O1O2﹣O2P=3﹣=,当O2B′=1﹣=时,同法可得P′O2=2O2B′=此时O1P′=3﹣=,观察图象可知:<O1P<,故选:D.【点评】本题考查相切两圆的性质,平行线的性质,解直角三角形等知识,解题的关键是性质寻找特殊位置解决问题,属于中考常考题型.29.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=1 cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.A.1B.12C.3D.6【考点】圆锥的计算.【专题】与圆有关的计算;推理能力.【答案】C【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×1=2πcm,设圆锥的母线长为R,则:=2π,解得R=3.故选:C.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.30.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连接AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有A.1个B.2个C.3个D.4个【考点】圆的综合题.【答案】D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形30°角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM =∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=r,则可得EF=2EN=r,即可得S四边形AEBF:S扇形BEMF=:=3:π,④正确.【解答】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME,∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=r,∴EF=2EN=r,∴S四边形AEBF:S扇形BEMF=:=3:π,故④正确;综上所述,结论正确的是①②③④共4个.故选:D.【点评】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.二、填空题31.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升10或70cm.【考点】垂径定理的应用.【专题】圆的有关概念及性质.【答案】见试题解答内容【分析】分两种情形分别求解即可解决问题;【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.32.如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为4﹣.【考点】正方形的性质;扇形面积的计算.【专题】与圆有关的计算.【答案】见试题解答内容【分析】连接BG,CG得到△BCG是等边三角形.求得∠CBG=∠BCG=60°,推出∠DCG=30°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=60°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣=4﹣,故答案为:4﹣.【点评】本题考查了扇形的面积,正方形的性质,等边三角形的判定和性质,正确的识别图形是解题的关键.33.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【考点】等边三角形的性质;圆心角、弧、弦的关系.【专题】压轴题.【答案】见试题解答内容【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可.【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.【点评】本题考查的是圆心角、弧、弦的关系及勾股定理和最值.本题容易出现错误的地方是对点P的运动状态不清楚,无法判断什么时候会使周长成为最大值.34.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.【考点】角平分线的性质;等边三角形的判定与性质;圆周角定理;切线的判定与性质;扇形面积的计算;锐角三角函数的定义.【专题】计算题.【答案】见试题解答内容【分析】连接OT、OD、过O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圆的切线,得出等边三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面积和扇形OTD的面积.相减即可求出答案.【解答】解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,。

2020-2021中考数学与圆的综合有关的压轴题及详细答案

2020-2021中考数学与圆的综合有关的压轴题及详细答案

2020-2021中考数学与圆的综合有关的压轴题及详细答案一、圆的综合1.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧»BE的长.【答案】(1)证明见解析(2)4 3【解析】分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.2.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=°时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.3.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.4.如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连结DC、DA、OA、OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA.(2)若AB=2,求阴影部分的面积.【答案】(1)证明见解析;(2)4339π-.【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD,于是可判断四边形OADC为菱形,则BD垂直平分AC,∠4=∠5=∠6,易得OA=OC,∠2=∠3,所以OB=OC,可判断点O 为△ABC的外心,则可判断△ABC为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC,CD=OA=OB,则根据“SAS”证明△BOC≌△CDA;(2)作OH⊥AB于H,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=33BH=33,OB=2OH=233,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S扇形AOB-S△AOB进行计算即可.详解:(1)证明:∵O是△ABC的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠6,∴△BOC≌△CDA(AAS)(2)由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB∴AB=AC∴△ABC是等边三角形∴O是△ABC的内心也是外心∴OA=OB=OC设E为BD与AC的交点,BE垂直平分AC.在Rt△OCE中,CE=12AC=12AB=1,∠OCE=30°,∴23∵∠AOC=120°,∴=AOB AOB S S S -V 阴影扇 =21202313()2360323π-⨯⨯ =4339π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.5.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面的半径.【答案】10cm【解析】分析:先过圆心O 作半径CO ⊥AB ,交AB 于点D 设半径为r ,得出AD 、OD 的长,在Rt △AOD 中,根据勾股定理求出这个圆形截面的半径.详解:解:过点O 作OC ⊥AB 于D ,交⊙O 于C ,连接OB ,∵OC ⊥AB∴BD=12AB=12×16=8cm 由题意可知,CD=4cm ∴设半径为xcm ,则OD=(x ﹣4)cm在Rt △BOD 中,由勾股定理得:OD 2+BD 2=OB 2(x ﹣4)2+82=x 2解得:x=10.答:这个圆形截面的半径为10cm .点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.6.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2021年中考数学核心考点强化突破-与圆有关的证明与计算(原卷+解析版)

2021年中考数学核心考点强化突破-与圆有关的证明与计算(原卷+解析版)

与圆有关的证明与计算(原卷+解析版)原卷类型1 与圆有关的性质有关的证明与计算1.在平面直角坐标系中,点O 为坐标原点,A ,B ,C 三点的坐标分别为A(2,0),B(4,0),C(0,5),点D 在第一象限内,且∠ADB =45°.线段CD 的长的最小值为____.2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠C .(1)求证:CB ∥PD ;(2)若BC =3,s in P =35,求⊙O 的直径. 解:(1)证明:∵∠C =∠P ,∠1=∠C ,∴∠1=∠P.∴CB ∥PD.类型2 与圆的切线有关的证明与计算3.已知:如图,P 是⊙O 外一点,过点P 引圆的切线PC(C 为切点)和割线PAB ,分别交⊙O 于A ,B ,连接AC ,BC.(1)求证:∠P CA =∠PBC ;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长4.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D.(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.5.已知:如图,AC是⊙O的直径,圆心为点O,过A,C两点分别作⊙O的切线,过圆心O的直线分别交这两条切线于B,D两点.(1)求证:四边形ABCD是平行四边形;(2)若AB,CD分别过⊙O上的点E,F,判断四边形AECF的形状,并证明你的结论;(3)若⊙O的半径为3,BC=23,求图中四边形ABCD被⊙O割后余下图形(阴影部分)的面积.答案解析类型1与圆有关的性质有关的证明与计算1.在平面直角坐标系中,点O为坐标原点,A,B,C三点的坐标分别为A(2,0),B(4,0),C(0,5),点D在第一象限内,且∠ADB=45°.线段CD的长的最小值为.2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠C.(1)求证:CB ∥PD ;(2)若BC =3,sin P =35,求⊙O 的直径. 解:(1)证明:∵∠C =∠P ,∠1=∠C ,∴∠1=∠P.∴CB ∥PD.(2)连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.又∵CD ⊥AB ,∴BC ︵=BD ︵.∴∠P =∠CAB ,∴sin ∠CAB=35,即BC AB =35.又知,BC =3,∴AB =5.∴⊙O 直径为5.类型2 与圆的切线有关的证明与计算3.已知:如图,P 是⊙O 外一点,过点P 引圆的切线PC(C 为切点)和割线PAB ,分别交⊙O 于A ,B ,连接AC ,BC.(1)求证:∠PCA =∠PBC ;(2)利用(1)的结论,已知PA =3,PB =5,求PC 的长.解:(1)证明:连接OC ,OA ,∵OC =OA ,∴∠ACO =∠CAO.∵PC 是⊙O 的切线,C 为切点,∴PC ⊥OC.∴∠PCO =90°,∠PCA +∠ACO =90°.在△AOC 中,∠ACO +∠CAO +∠AOC =180°,∵∠AOC =2∠PBC ,∴2∠ACO +2∠PBC =180°.∴∠ACO +∠PBC =90°.∵∠PCA +∠ACO =90°,∴∠PCA =∠PBC.(2)∵∠PCA =∠PBC ,∠P =∠P ,∴△PAC ∽△PCB.∴PC PA =PB PC,即PC 2=PA·PB.∵PA =3,PB =5,∴PC =3×5=15.4.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D.(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∠FEO =90°,∴∠EOC=2∠B=90°,∴EF∥OD,又∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM=CMGM=2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG =2GM= 2.5.已知:如图,AC是⊙O的直径,圆心为点O,过A,C两点分别作⊙O的切线,过圆心O的直线分别交这两条切线于B,D两点.(1)求证:四边形ABCD是平行四边形;(2)若AB,CD分别过⊙O上的点E,F,判断四边形AECF的形状,并证明你的结论;(3)若⊙O的半径为3,BC=23,求图中四边形ABCD被⊙O割后余下图形(阴影部分)的面积.解:(1)证明:∵AC为⊙O的直径,∴OA=OC,∵BC,AD分别是⊙O的切线,∴∠OCB=∠OAD =90°,∵∠AOD=∠COB,∴△AOD≌△COB,∴OB=OD,∴四边形ABCD是平行四边形;(2)四边形AECF是矩形.∵四边形ABCD是平行四边形,∴CF∥AE,∴∠ACF=∠CAE,∵AC=AC,∴△AFC≌△CEA,∴AE=CF,∴四边形AECF是平行四边形,∵AC是直径,∴∠AEC=90°,∴四边形AECF是矩形;(3)连接EO.∵⊙O的半径为3,∴AC=6,∵BC=23,∴∠BAC=30°,∴∠COE=60°,所以S 阴影=2(S △ABC -S △AOE -S 扇形OBC )=2(12×6×23-12×3×332-3π2)=1523-3π.。

2021年全国各省市中考真题汇总:圆的压轴(解析版)

2021年全国各省市中考真题汇总:圆的压轴(解析版)

2021年全国各省市中考真题汇总:圆的压轴1.(2021•威海)如图,AB是⊙O直径,弦CD⊥AB,垂足为点E.弦BF交CD于点G,点P在CD延长线上,且PF=PG.(1)求证:PF为⊙O切线;(2)若OB=10,BF=16,BE=8,求PF的长.2.(2021•湖北)如图,AB为⊙O直径,D为⊙O上一点,BC⊥CD于点C,交⊙O于点E,CD与BA的延长线交于点F,BD平分∠ABC.(1)求证:CD是⊙O的切线;(2)若AB=10,CE=1,求CD和DF的长.3.(2021•本溪)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长.4.(2021•襄阳)如图,直线AB经过⊙O上的点C,直线BO与⊙O交于点F和点D,OA与⊙O交于点E,与DC交于点G,OA=OB,CA=CB.(1)求证:AB是⊙O的切线;(2)若FC∥OA,CD=6,求图中阴影部分面积.5.(2021•黄石)如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连接OP,交⊙O于点D,交AB于点E.(1)求证:BC∥OP;(2)若E恰好是OD的中点,且四边形OAPB的面积是16,求阴影部分的面积;(3)若sin∠BAC=,且AD=2,求切线PA的长.6.(2021•枣庄)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作⊙O的切线与AC的延长线交于点P.(1)求证:DP∥BC;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.7.(2021•呼和浩特)已知AB是⊙O的任意一条直径.(1)用图1,求证:⊙O是以直径AB所在直线为对称轴的轴对称图形;(2)已知⊙O的面积为4π,直线CD与⊙O相切于点C,过点B作BD⊥CD,垂足为D,如图2.求证:①BC2=2BD;②改变图2中切点C的位置,使得线段OD⊥BC时,OD=2.8.(2021•娄底)如图,点A在以BC为直径的⊙O上,∠ABC的角平分线与AC相交于点E,与⊙O相交于点D,延长CA至M,连结BM,使得MB=ME,过点A作BM 的平行线与CD的延长线交于点N.(1)求证:BM与⊙O相切;(2)试给出AC、AD、CN之间的数量关系,并予以证明.9.(2021•大庆)如图,已知AB是⊙O的直径.BC是⊙O的弦,弦ED垂直AB于点F,交BC于点G.过点C作⊙O的切线交ED的延长线于点P(1)求证:PC=PG;(2)判断PG2=PD•PE是否成立?若成立,请证明该结论;(3)若G为BC中点,OG=,sin B=,求DE的长.10.(2021•包头)如图,在锐角三角形ABC中,AD是BC边上的高,以AD为直径的⊙O交AB于点E,交AC于点F,过点F作FG⊥AB,垂足为H,交于点G,交AD于点M,连接AG,DE,DF.(1)求证:∠GAD+∠EDF=180°;(2)若∠ACB=45°,AD=4,tan∠ABC=2,求HF的长.11.(2021•永州)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.(1)求证:CD是⊙O的切线;(2)求证:AC2=2AD•AO;(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.12.(2021•包头)如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.(1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;(2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC于点F,若AB=4BP,求证:4EF=3AB;(3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB=6a,MP=a,△ABC的面积为S,△BCP的面积为S2,求S1﹣S2的值(用1含a的代数式表示).13.(2021•绥化)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若弦MN垂直于AB,垂足为G,,MN=,求⊙O的半径;(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长.14.(2021•贺州)如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.(1)求证:AE平分∠BAC;(2)若∠B=30°,求的值.15.(2021•齐齐哈尔)如图,AB为⊙O的直径,C为⊙O上的一点,AE和过点C的切线CD互相垂直,垂足为E,AE与⊙O相交于点F,连接AC.(1)求证:AC平分∠EAB;(2)若AE=12,tan∠CAB=,求OB的长.16.(2021•张家界)如图,在Rt△AOB中,∠ABO=90°,∠OAB=30°,以点O 为圆心,OB为半径的圆交BO的延长线于点C,过点C作OA的平行线,交⊙O于点D,连接AD.(1)求证:AD为⊙O的切线;(2)若OB=2,求弧CD的长.17.(2021•通辽)如图,AB是⊙O的直径,过点A作⊙O的切线AC,点P是射线AC 上的动点,连接OP,过点B作BD∥OP,交⊙O于点D,连接PD.(1)求证:PD是⊙O的切线;(2)当四边形POBD是平行四边形时,求∠APO的度数.18.(2021•玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.19.(2021•鄂州)如图,在Rt△ABC中,∠ABC=90°,O为BC边上一点,以O为圆心,OB长为半径的⊙O与AC边相切于点D,交BC于点E.(1)求证:AB=AD;(2)连接DE,若tan∠EDC=,DE=2,求线段EC的长.20.(2021•安顺)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.参考答案1.(1)证明:连接OF,∵PF=PG,∴∠PFG=∠PGF,∵∠BGE=∠PGF,∴∠PFG=∠BGE,∵OF=OB,∴∠OFB=∠OBF,∵CD⊥AB,∴∠BGE+∠OBF=90°,∴∠PFG+∠OFB=90°,∵OF是⊙O半径,∴PF为⊙O切线;(2)解:连接AF,过点P作PM⊥FG,垂足为M,∵AB是⊙O直径,∴∠AFB=90°,∴AB2=AF2+BF2,∵OB=10,∴AB=20,∵BF=16,∴AF=12,在Rt△ABF中,tan B=,cos B=,在Rt△BEG中,,,∴GE=6,GB=10,∵BF=16,∴FG=6,∵PM⊥FG,PF=FG,∴MG=FG=3,∵∠BGE=∠PFM,∠PMF=∠BEG=90°,∴△PFM∽△BGE,∴,即,解得:PF=5,∴PF的长为5.2.(1)证明:连接OD,∵BD平分∠ABC.∴∠ABD=∠DBC,又∵OB=OD,∴∠OBD=∠ODB,又∵BC⊥CD,∴∠C=90°,∴∠DBC+∠BDC=90°,∴∠ODB+∠BDC=90°,即OD⊥DC,∴CD是⊙O的切线;(2)解:连接AE交OD于点H,∵AB为⊙O直径,∴∠AEB=90°,∴∠HEC=90°,∵BC⊥CD,OD⊥DC,∴∠ODC=∠C=90°,∴四边形HECD是矩形,∴DH=CE=1,HE=CD,∠EHD=90°,HE∥CD,∴OD⊥AE,∴AH=HE,∵AB=10,∴OA=OD=5,∴OH=OD﹣DH=5﹣1=4,∴AH=,∴HE=AH=3,∴CD=HE=3,∵HE∥CD,∴△OAH~△OFD,∴,∴,∴DF=.3.证明(1)连接OE,∵OA=OE,∴∠OEA=∠OAE,在Rt△ABC中,∠ACB=90°,∴∠BAC+∠B=90°,∵BF=EF,∴∠B=∠BEF,∵∠OAE=∠BAC,∴∠OEA=∠BAC,∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:连接DE,∵OC=9,AC=4,∴OA=OC﹣AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE===6,∴cos∠DAE===,在Rt△ABC中,cos∠BAC==,∵∠BAC=∠DAE,∴=,∴AB=5,∴BE=AB+AE=5+8=13,∵OD=OE,∴∠ODE=∠OED,∵EF是⊙O的切线,∴∠FEO=90°,∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,∴∠FEB=∠OED,∴∠B=∠FEB=∠OED=∠ODE,∴△FBE∽△ODE,∴=,∴=,∴BF=.4.(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∵OC是⊙O的半径,∴AB是⊙O的切线;(2)解:∵OF是⊙O的直径,∴∠DCF=90°,∵FC∥OA,∴∠DGO=∠DCF=90°,∴DG⊥CD,∴DG=CD=×6=3,∵OD=OC,∴∠DOG=∠COG,∵OA=OB,AC=CB,∴∠AOC=∠BOC,∴∠DOE=∠AOC=∠BOC=×180°=60°,在Rt△ODG中,∵sin∠DOG=,cos∠ODG=,∴OD===2,OG=OD•cos∠DOG=2×=,∴S阴影=S扇形ODE﹣S△DOG=﹣××3=2π﹣.5.(1)证明:∵PA,PB是⊙O的切线,∴PA=PB,∵OA=OB,∴OP⊥AB,∵AC是直径,∴∠ABC=90°,∴BC⊥AB,∴BC∥OP.(2)解:∵OE=DE,AB⊥OD,∴AO=AD,∵OA=OD,∴AD=OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,设OE=m,则AE=BE=m,OA=2m,OP=4m,∵四边形OAPB的面积是16,∴•OP•AB=16,∴×4m×2m=16,∴m=2或﹣2(舍弃),∴OE=2,AB=4,OA=2m=4,∵OD⊥AB,∴=,∴∠AOD=∠BOD=60°,∴∠AOB=2∠AOD=120°,∴S阴=S扇形OAB﹣S△AOB=﹣×4×2=﹣4.(3)解:在Rt△AOE中,sin∠CAB==,∴可以假设OE=x,则OA=OD=3x,DE=2x,AE===2x,在Rt△ADE中,AD2=AE2+DE2,∴(2)2=(2x)2+(2x)2,∴x=1或﹣1(舍弃),∴OE=1,OA=3,AE=2,∵PA是切线,∴PA⊥OA,∴∠OAP=90°,∴∠CAB+∠BAD=90°,∠APO+∠PAE=90°,∴∠CAB=∠APO,∴sin∠APE=sin∠CAB==,∴PA=3AE=6.6.解:(1)连接OD,∵DP是⊙O的切线,∴DO⊥DP,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∴=,∵BC是圆的直径,∴∠BAC=90°,∴∠BAD=45°,∴∠BOD=90°,∴OD⊥BC,∴DP∥BC;(2)∵DP∥BC,∴∠ACB=∠P,∵=,∴∠ACB=∠ADB,∴∠P=∠ADB,∵OD=OC,∴∠ODC=45°,∴∠CDP=45°,∴△ABD∽△DCP;(3)∵AB=5cm,AC=12cm,∠BAC=90°,∴BC=13cm,在Rt△COD中,CD=,在Rt△BOD中,BD=,∵△ABD∽△DCP,∴=,∴=,∴CP=.7.(1)证明:如图,设P是⊙O上点A,B以外任意一点,过点P作PP′⊥AB,交⊙O于点P′,垂足为M,若M与圆心O不重合,连接OP,OP′,在△OPP'中,∵OP=OP′,∴△OPP'是等腰三角形,又PP′⊥AB,∴PM=MP′,则AB是PP'的垂直平分线,若M与圆心O重合,显然AB是PP'的垂直平分线,这就是说,对于圆上任意一点P,在圆上都有关于直线AB的对称点P',因此⊙O是以直径AB所在直线为对称轴的轴对称图形;(2)①证明:设⊙O半径为r,由πr2=4π可得r=2,∴AB=4,连接AC,则∠BCA=90°,∵C是切点,连接OC,∴OC⊥CD,∵BD⊥CD,∴OC∥BD,∴∠OCB=∠DBC,而∠OCB=∠OBC,∴∠DBE=∠OBC,又∵∠BCA=∠BDC=90°,∴△ACB∽△CDB,∴,∴BC2=AB•BD=4BD,∴;②证明:由①证明可知∠CBD=∠OBC,与切点C的位置无关,又OD⊥BC,∴BD=OB,又∵△OCB是等腰三角形,∴BC与OD互相垂直平分,又∠BDC=90°,∴四边形BOCD是边长为2的正方形,∴.8.证明:(1)∵BC是直径,∴∠BAC=90°,∴∠ABE+∠AEB=90°,∵BD平分∠ABC,∴∠ABD=∠DBC,∵MB=ME,∴∠MBE=∠MEB,∴∠MBE+∠EBC=90°,∴∠MBC=90°,∴MB⊥BC,∴BM与⊙O相切;(2)AC2=CN•AD,理由如下:∵∠ACD=∠ABD,∠DBC=∠DAC,∴∠DCA=∠DAC,∴AD=DC,∵BC是直径,∴∠BDC=90°,∴∠BCD+∠DBC=90°,∵AN⊥BC,∴∠N+∠DCB=90°,∴∠N=∠DBC,∴∠N=∠DBC=∠DCA=∠DAC,∴△DAC∽△ACN,∴,∴AC2=CN•AD.9.解:(1)连接OC,∵OC=OB,∴∠OCB=∠OBC,∵CP是⊙O的切线,∴∠OCP=90°,∵弦ED垂直AB于点F,AB是⊙O的直径,∴∠GFB=90°,∴∠FGB=∠PCG,∵∠FGB=∠FGB,∴∠PCG=∠PGC,∴PC=PG;(2)如图1,连接EC、CD,∵ED⊥AB,AB是圆O的直径,∴=,∴∠ECB=∠BCD,∵PG=PC,∴∠PCG=∠PGC,∵∠CGP=∠E+∠ECB,∠GCP=∠PCD+∠BCD,∴∠PCD=∠E,∴△PCD∽△PEC,∴=,∴PC2=PE•PD,∵PC=PG,∴PG2=PD•PE;(3)如图2,连接OG,EO,∵G为BC中点,∴OG⊥BC,在Rt△BOG中,OG=,sin B=,∴OB=5,BG=2,∵GF⊥OB,∴∠B+∠FGB=90°,∠B+∠BOG=90°,∴∠GOF=∠FGB,∴△FGB∽△GOB,∴,∴=,∴FB=4,∴OF=1,在Rt△EOF中,OF=1,EO=5,∴EF=2,∴ED=4.10.(1)证明:由题可知∠AGF=∠ADF(同弧所对的圆周角相等),∵GF⊥AB,AD为圆的直径,∴∠AGF+∠GAE=90°,∠ADF+∠FAD=90°,∴∠GAE=∠FAD,∴∠GAE+∠DAE=∠FAD+∠DAE,即∠GAD=∠EAF,∵四边形AEDF是圆的内接四边形,∴∠EAF+∠EDF=180°,∴∠GAD+∠EDF=180°.(2)解:如图,连接OF,∵AD是圆的直径,且AD是△ABC的高,GF⊥AB,∴∠AED=∠ADB=∠AHM=∠AFD=90°,∴△AHM∽△ADB,∴=,∵tan∠ABC==2,∴=2,∵∠ACB=45°,∴∠DAC=∠ADF=∠AFO=45°,∴∠AOF=90°,∵在Rt△AHM与Rt△FOM中:∠AMH=∠FMO(对顶角),∴△AHM∽△FOM,∴==2,∵AD=4,∴OF=OA=2,∴=2,解得OM=1,AM=OA﹣OM=1,设HM=x,则AH=2x,在△AHM中有:AH2+HM2=AM2,即(2x)2+x2=1,解得x1=,x2=﹣(舍去),∴AH=,∵OF=OA=2,∴AF=2,在Rt△AHF中,有:AH2+HF2=AF2,即()2+HF2=(2)2,解得HF=,或HF=﹣(舍去),故HF的长为.11.证明:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=2∠OAC,∵AC平分∠BAE,∴∠BAE=2∠OAC,∴∠BAE=∠BOC,∴CO∥AD,∵∠D=90°,∴∠DCO=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)∵AC平分∠BAE,∴∠BAC=∠CAD,∵AB是⊙O的直径,∴∠BCA=90°,∵∠D=90°,∴∠D=∠BCA,∴△BAC∽△CAD,∴,∴AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.(3)∵∠CAB、∠CBM的角平分线交于点Q,∴∠QAM=∠CAB,∠QBM=∠CBM,∵∠Q是△QAB的一个外角,∠CBM是△ABC的一个外角,∴∠Q=∠QBM﹣∠QAM=(∠CBM﹣∠CAM),∠ACB=∠CBM﹣∠CAM,∴∠Q=∠ACB,∵∠ACB=90°,∴∠Q=45°,同理可证:∠P=45°,∴∠P=∠Q.12.解:(1)如图1,连接BD,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,在△BAP和△BCD中,,∴△BAP≌△BCD(SAS),∴BP=BD,∠ABP=∠CBD,∵∠ABP+∠PBC=60°,∴∠CBD+∠PBC=60°,即∠PBD=60°,∴△BDP是等边三角形,∴∠BPD=60°,∵BC是⊙O的直径,∴∠BPC=90°,∴∠CPD=∠BPC﹣∠BPD=90°﹣60°=30°;(2)如图2,连接AP交BC于D,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=60°,∵BP=CP,∴AD⊥BC,BD=CD=BC=AB,∴AD=AB•sin∠ABC=AB•sin60°=AB,∵AB=4BP,∴BP=AB,∴PD===AB,∴PD=AD,即点P是AD的中点,∵EC=3BE,∴BE=BC,BC=4BE,∵BD=BC,∴BE=BD,即点E是BD的中点,∴EP是△ABD的中位线,∴EF∥AB,∴△CEF∽△CBA,∴===,∴4EF=3AB;(3)如图3,过点A作AD⊥BC于点D,过点P作PE⊥BC于点E,交AC于点F,作PH⊥AC于点H,由(2)得:AD=AB=3a,∠ACB=60°,BC=AC=AB=6a,∵∠CMP=150°,∴∠PMF=180°﹣∠CMP=180°﹣150°=30°,∵∠CHP=90°,∴PH=PM•sin∠PMF=a•sin30°=a,MH=PM•cos∠PMF=a•cos30°=a,∵EF⊥BC,∴∠CEF=90°,∴∠CFE=90°﹣∠ACB=90°﹣60°=30°,∴∠CFE=∠PMF,∴PF=PM=a,∴FH=PF•cos∠PFH=a•cos30°=a,∵AM=2MC,∴CM=AC=×6a=2a,∴CF=CM++MH+HF=5a,∴EF=CF•sin∠ACB=5a•sin60°=a,∴PE=EF﹣PF=a﹣a=a,∴S1﹣S2=S△ABC﹣S△BCP=BC•AD﹣BC•PE=BC•(AD﹣PE)=×6a×(3a﹣a)=a2.13.(1)证明:如图1,连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接OM,∵AB⊥MN,且AB为⊙O的直径,MN=,∴MG=MN=,设⊙O的半径为r,则OM=r,AB=2r,∵,∴AG=AB=r,∴OG=OA﹣AG=r,在Rt△OGM中,根据勾股定理得,OG2+MG2=OM2,∴(r)2+()2=r2,∴r=1,即⊙O的半径为1;(3)如图3,作∠ABC的平分线交AC于F,在△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=(180°﹣∠BAC)=72°,∴∠ABF=∠CBF=∠ABC=36°=∠BAC,∴AF=BF,设AF=BF=x,在△BCF中,∠CBF=36°,∠C=72°,∴∠BFC=180°﹣36°﹣72°=72°=∠C,∴BC=BF=x,由(2)知,⊙O的半径为1,∴AB=AC=2,∴CF=AC﹣AF=2﹣x,∵∠CBF=∠CAB,∴∠C=∠C,∴△BCF∽△ACB,∴,∴,∴x=﹣1或x=﹣﹣1(舍),∴BC=﹣1,连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BC=,∵DE⊥AC,∴∠DEC=90°=∠ADC,∵∠C=∠C,∴△DEC∽△ADC,∴,∴,∴CE=.14.(1)证明:连接OE,∵BC是⊙O的切线,∴OE⊥BC,即∠OEB=90°,∵∠C=90°,∴OE∥AC,∴∠OEA=∠EAC,∵OE=OA,∴∠OEA=∠OAE,∴∠OAE=∠EAC,即AE平分∠BAC;(2)解:∵AD为⊙O的直径,∴∠AED=90°,∵∠OAE=∠EAC,∠C=90°,∴△DAE∽△EAC,∴=,∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∴∠DAE=∠BAC=30°,∵cos∠DAE=,cos30°=,∴==.15.(1)证明:连接OC,∵CD为⊙O的切线,∴OC⊥DE,∵AE⊥DE,∴OC∥AE,∴∠EAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,即AC平分∠EAB;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠CAB=,∠EAC=∠OAC,∴tan∠EAC=,即=,∴=,解得:EC=4,在Rt△AEC中,AC===8,∵tan∠CAB==,∴BC=8,在Rt△ABC中,AB===16,∴OB=8.16.解:(1)连接OD,∵∠OAB=30°,∠B=90°,∴∠AOB=60°,又∵CD∥AO,∴∠C=∠AOB=60°,又∵OC=OD,∴△COD是等边三角形,∴∠COD=60°,∴∠AOD=180°﹣60°﹣60°=60°,又∵OB=OD,AO=AO,∴△AOB≅△AOD(SAS),∴∠ADO=∠ABO=90°,又∵点D在⊙O上,∴AD是⊙O的切线;(2)由题意得,⊙O的半径OB=2=OC,∠COD=60°,根据弧长公式可得,=.17.(1)证明:连接OD,∵PA切⊙O于A,∴PA⊥AB,即∠PAO=90°,∵OP∥BD,∴∠DBO=∠AOP,∠BDO=∠DOP,∵OD=OB,∴∠BDO=∠DBO,∴∠DOP=∠AOP,在△AOP和△DOP中,∴△AOP≌△DOP(SAS),∴∠PDO=∠PAO,∵∠PAO=90°,∴∠PDO=90°,即OD⊥PD,∵OD过O,∴PD是⊙O的切线;(2)解:由(1)知:△AOP≌△DOP,∴PA=PD,∵四边形POBD是平行四边形,∴PD=OB,∵OB=OA,∴PA=OA,∵∠PAO=90°,∴∠APO=∠AOP=45°.18.(1)证明:连结OD,如图所示:∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,即DF是⊙O的切线;(2)设半径为r,等边△ABC的边长为a,由(1)可知:AD=r,则CD=a﹣r,BE=a﹣2r在Rt△CFD中,∠C=60°,CD=a﹣r,∴CF=,∴BF=a﹣,又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴a﹣(a﹣r)=2(a﹣2r),解得:a=3r,即r=,∴⊙O的半径r与等边△ABC的边长a之间的数量关系为:r=.19.(1)证明:∵∠ABC=90°,∴AB⊥OB,又∵AB经过半径⊙O的外端点B,∴AB切⊙O于点B,又∵⊙O与AC边相切于点D,∴AB=AD.(2)解:如图,连接BD,∵BE为⊙O的直径,∴∠BDE=90°,∴∠CDE+∠ADB=90°,又∵AB=AD,∴∠ADB=∠ABD,∴∠CDE+∠ABD=90°,∵∠ABC=90°,∴∠ABD+∠EBD=90°,∴∠EBD=∠EDC,又∵,∴,即,∵DE=2,∴BD=4,,又∵∠C=∠C,∠EBD=∠EDC,∴△CDE∽△CBD,∴,设CE=x,则DC=2x,∴,∴x1=0(舍去),,即线段EC的长为.20.解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档