化学键知识详解
化学键知识点总结
化学键知识点总结
化学键知识点总结
一、化学键的分类
化学键是分子中原子之间相互作用的结果,它可以把两个或多个原子联结在一起形成分子或晶体结构。
化学键可以根据原子之间的相互作用方式分为五类:原子键、共价键、离子键、分子间键及非共价键。
1. 原子键:原子之间由共用电子而形成的键,也称单原子键,只存在于少量元素的某些化合物中,如H2、Cl2等;
2. 共价键:是指电子对在原子之间共享,由共享电子对形成的键,是最常见的化学键,如HCl、H2O、CH4等;
3. 离子键:是指离子之间由相互作用形成的键,一般是金属离子与非金属离子结合而形成的,如NaCl、CaCl2等;
4. 分子间键:是指分子之间相互作用形成的键,是化学键中最特殊的一种,如氢键、氯键等;
5. 非共价键:是指原子之间由于氢原子存在而形成的键,是一种较弱的化学键,如氨基酸分子之间的氢键等。
二、共价键的类型
共价键是指原子之间共享电子而形成的键,是最常见的化学键。
它可以根据电子对的数量进行分类:
1. 单键:是指原子之间的电子对数为1的共价键,如H-Cl、H-Br 等;
2. 双键:是指原子之间的电子对数为2的共价键,如Cl-Cl、O=O等;
3. 三键:是指原子之间的电子对数为3的共价键,如N#N、C#N 等;
4. 多键:是指原子之间的电子对数超过3的共价键,如C≡N、C≡C等。
知识讲解_化学键(基础)
化学键要点一、离子键1.定义:带相反电荷离子之间的相互作用称为离子键。
要点诠释:原子在参加化学反应时,都有通过得失电子或形成共用电子对使自己的结构变成稳定结构的倾向。
例如Na 与Cl2反应过程中,当钠原子和氯原子相遇时,钠原子的最外电子层的1个电子转移到氯原子的最外电子层上,使钠原子和氯原子分别形成了带正电荷的钠离子和带负电荷的氯离子。
这两种带有相反电荷的离子通过静电作用,形成了稳定的化合物。
我们把带相反电荷离子之间的相互作用称为离子键。
2.成键的粒子:阴阳离子。
3.成键的性质:静电作用。
阴阳离子间的相互作用(静电作用)包括:①阳离子与阴离子之间的吸引作用;②原子核与原子核之间的排斥作用;③核外电子与核外电子之间的作用。
4.成键原因:通过电子得失形成阴阳离子。
5.成键条件:(1)活泼金属与活泼的非金属化合时,一般都能形成离子键。
如IA、ⅡA族的金属元素(如Li、Na、K、Mg、Ca等)与ⅥA、ⅦA族的非金属元素(如O、S、F、Cl、Br、I等)之间化合。
(2)金属阳离子(或铵根离子)与某些带负电荷的原子团之间(如Na+与OH-、SO42-等)含有离子键。
6.存在离子键的物质:强碱、低价态金属氧化物和大部分盐等离子化合物。
7.离子键的形成过程的表示:要点二、共价键1.定义:原子间通过共用电子对所形成的相互作用称为共价键。
要点诠释:从氯原子和氢原子的结构分析,由于氯和氢都是非金属元素,这两种元素的原子获得电子难易的程度相差不大,原子相互作用的结果是双方各以最外层的一个电子组成一个电子对,电子对为两个原子所共用,在两个原子核外的空间运动,从而使双方最外层都达到稳定结构,这种电子对,就是共用电子对。
共用电子对受两个核的共同吸引,使两个原子结合在一起。
我们把这种原子间通过共用电子对所形成的相互作用称为共价键。
2.成键元素:一般存在于非金属元素原子之间。
要点诠释:某些不活泼的金属和非金属元素原子(如AlCl3)之间也存在共价键。
(完整版)化学键知识点
离子键一 离子键与离子化合物 1.氯化钠的形成过程: 2.离子键(1)概念:带相反电荷离子之间的相互作用称为离子键。
(2)实质:(3)成键微粒:阴、阳离子。
(4)离子键的形成条件:离子键是阴、阳离子间的相互作用,如果是原子成离子键时,一方要容易失去电子,另一方要容易得到电子。
①活泼金属与活泼的非金属化合时,一般都能形成离子键。
如第IA 、ⅡA 族的金属元素(如Li 、Na 、K 、Mg 、Ca 等)与第ⅥA 、ⅦA 族的非金属元素(如O 、S 、F 、Cl 、Br 、I 等)化合时,一般都能形成离子键。
②金属阳离子与某些带负电荷的原子团之间(如Na +与OH -、SO 4-2等)形成离子键。
③铵根离子与酸根离子(或酸式根离子)之间形成离子键,如NH 4NO 3、NH 4HSO 4。
【注意】①形成离子键的主要原因是原子间发生了电子的得失。
②离子键是阴、阳离子间吸引力和排斥力达到平衡的结果,所以阴、阳离子不会无限的靠近,也不会间距很远。
3.离子化合物(1)概念:由离子键 构成的化合物叫做离子化合物。
(2)离子化合物主要包括强碱[NaOH 、KOH 、B a (O H )2等]、金属氧化物(K 2O 、Na 2O 、 MgO 等)和绝大数盐。
【注意】离子化合物中一定含有离子键,含有离子键的化合物一定是离子化合物。
二 电子式1.电子式的概念在元素符号周围,用“·”或“×”来表示原子的最外层电子的式子叫电子式。
(1)原子的电子式:元素周围标明元素原子的最外层电子,每个方向不能超过2个电子。
当最外层电子数小于或等于4时以单电子分步,多于4时多出部分以电子对分布。
例如:(2)简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子的符号表示,如: Na+、Li+、Mg+2、Al+3等。
(3)简单阴离子的电子式:不但要画出最外层电子数,而且还应用括号“[ ]”括起来,F并在右上角标出“-n”电荷字样。
高中化学化学键知识点【推荐】
高中化学化学键知识点【推荐】一、化学键的基本概念1. 原子与分子原子:物质的基本单位,由原子核和核外电子组成。
分子:两个或更多原子通过化学键连接在一起的稳定粒子。
2. 化学键的定义化学键是原子之间为达到更稳定状态而形成的强烈的相互作用力。
3. 化学键的形成化学键的形成是为了使原子达到更加稳定的电子排布,通常是接近于稀有气体的电子排布。
二、化学键的分类1. 离子键定义:通过正负离子之间的电荷吸引力形成的化学键。
通常形成于活泼金属和活泼非金属之间。
离子键没有方向性和饱和性。
离子化合物在熔融状态下能导电。
2. 共价键定义:通过原子间的共享电子对形成的化学键。
分类:非极性共价键:电子对均匀地分布在两个原子之间,如氢气(H2)。
极性共价键:电子对偏向电负性较大的原子,如水(H2O)。
特点:共价键有方向性和饱和性。
共价化合物的熔点一般较低。
3. 金属键定义:金属阳离子和自由电子之间的强烈相互作用。
金属键导致金属具有良好的导电性、导热性和延展性。
4. 配位键定义:一个原子提供孤电子对,另一个原子提供空轨道,形成的键。
特点:配位键常见于过渡金属的配合物中。
三、化学键的性质1. 键长键长是指两个原子核之间的平均距离。
2. 键能键能是指断开1摩尔化学键所需的能量。
3. 键角键角是指连接在中心原子上的两个原子之间的键与中心原子形成的角度。
四、化学键与物质性质的关系1. 熔点、沸点离子化合物:由于离子键的强度大,熔点和沸点一般较高。
共价化合物:由于共价键的强度相对较小,熔点和沸点一般较低。
2. 导电性离子化合物:在固态下不导电,但在熔融状态或水溶液中能导电。
共价化合物:大多数共价化合物在固态和液态下不导电。
3. 溶解性离子化合物:通常易溶于水,因为水分子可以与离子形成水合层。
共价化合物:溶解性取决于其与溶剂分子的相互作用。
五、化学键的实际应用1. 药物设计药物分子通过与生物体内的分子形成特定的化学键,来发挥其生理作用。
化学键知识点
化学键知识点work Information Technology Company.2020YEAR离子键一离子键与离子化合物1.氯化钠的形成过程:2.离子键(1)概念:带相反电荷离子之间的相互作用称为离子键。
(2)实质:(3)成键微粒:阴、阳离子。
(4)离子键的形成条件:离子键是阴、阳离子间的相互作用,如果是原子成离子键时,一方要容易失去电子,另一方要容易得到电子。
①活泼金属与活泼的非金属化合时,一般都能形成离子键。
如第IA、ⅡA族的金属元素(如Li、Na、K、Mg、Ca等)与第ⅥA、ⅦA族的非金属元素(如O、S、F、Cl、Br、I等)化合时,一般都能形成离子键。
②金属阳离子与某些带负电荷的原子团之间(如Na+与OH-、SO4-2等)形成离子键。
③铵根离子与酸根离子(或酸式根离子)之间形成离子键,如NH4NO3、NH4HSO4。
【注意】①形成离子键的主要原因是原子间发生了电子的得失。
②离子键是阴、阳离子间吸引力和排斥力达到平衡的结果,所以阴、阳离子不会无限的靠近,也不会间距很远。
3.离子化合物(1)概念:由离子键构成的化合物叫做离子化合物。
(2)离子化合物主要包括强碱[NaOH、KOH、B a(O H)2等]、金属氧化物(K2O、Na2O、MgO等)和绝大数盐。
【注意】离子化合物中一定含有离子键,含有离子键的化合物一定是离子化合物。
二电子式1.电子式的概念在元素符号周围,用“·”或“×”来表示原子的最外层电子的式子叫电子式。
(1)原子的电子式:元素周围标明元素原子的最外层电子,每个方向不能超过2个电子。
当最外层电子数小于或等于4时以单电子分步,多于4时多出部分以电子对分布。
例如:(2)简单阳离子的电子式:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子的符号表示,如: Na+、Li+、Mg+2、Al+3等。
(3)简单阴离子的电子式:不但要画出最外层电子数,而且还应用括号“[ ]”F括起来,并在右上角标出“-n”电荷字样。
化学键 知识点
化学键知识点一、知识概述《化学键》①基本定义:化学键就是把原子结合在一起的作用力。
就好比把几个小伙伴用绳子绑在一起,绳子起到的连接作用就类似化学键。
原子们也不会自己胡乱散开,就是这个力在起作用,它能使原子形成分子或者晶体等各种物质。
②重要程度:在化学学科里那可是相当重要的东西,可以说整个化学世界的构建都离不开它。
物质的性质、反应等好多东西都和化学键有关系。
③前置知识:得先对原子结构有个基本的认识,知道原子有原子核、电子之类的东西,这样才能更好地明白化学键是怎么把原子连在一起的。
④应用价值:在工业上可以解释很多反应过程,像合成氨为啥要特定条件就和化学键有关。
日常生活中有些东西为啥结实或者不稳定,像塑料和陶瓷的性质区别,也和化学键脱不了干系。
二、知识体系①知识图谱:化学键在化学学科里位于物质结构这个大的版块。
它就像建筑物里的连接材料一样,连接原子构建物质结构。
②关联知识:和元素周期表、反应热等知识都有关联。
比如元素周期表中位置相近的元素,它们形成化学键的方式和强度可能会有相似性。
反应热就涉及到化学键的断裂和形成释放或者吸收能量。
③重难点分析:重难点在于种类多(后面会说有共价键、离子键等)而且性质复杂。
掌握的关键在于理解它是原子之间的一种作用,而且不同类型的原子之间形成化学键特点不同。
④考点分析:在化学考试中那是家常菜啊。
可以直接考查概念,比如让你区分共价键和离子键;也可以在推断题或者实验题中涉及,像通过反应现象推断化学键的断裂和形成。
三、详细讲解【理论概念类】①概念辨析:化学键是原子间强烈的相互作用。
噢可别小看这个作用,这是很强力的连接。
而且这个作用是相邻原子间的,不是离老远的原子。
比如说水H₂O,氧原子和氢原子间有化学键连着,它们紧紧靠在一起。
②特征分析:它具有方向性和饱和性。
方向性就像搭积木,怎么搭有一定规矩。
饱和性就是一个原子能成键的数目有限,就像一个人的双手只能牵有限数量的伙伴,像碳原子最外层4个电子,它一般就形成4个化学键。
化学键知识点归纳总结
化学键知识点归纳总结化学键是化学物质中原子之间的相互连接,是构成化合物的基本单位。
化学键的形成涉及原子中的电子与其他原子之间的相互作用。
以下是化学键的一些主要知识点的总结:1.电子共享键:电子共享是指两个非金属原子共享一对电子,形成共价键。
共价键通常形成于两个原子中原子轨道上的电子进行重叠或混成的过程中。
共价键形成的分子通常稳定,并具有共享电子对的特点。
共价键的角度和长度可以由VSEPR理论和实验测定。
2.极性共价键:如果一个原子对共价键中的电子具有较高的电负性,那么它将吸引共享电子对更多,并形成一个偏离平衡位置的极性共价键。
极性共价键会导致分子的非均匀电子密度分布,从而引起分子的极性。
3.离子键:离子键是形成于金属和非金属之间的电子转移过程中。
金属原子通常失去外层电子成为阳离子,而非金属原子通常接受这些电子成为阴离子。
阳离子和阴离子之间的电吸引力形成了离子键。
离子键通常较强,但易溶于极性溶剂。
4.金属键:金属键形成于金属原子之间。
金属原子失去它们外层电子形成正离子(阳离子),而剩下的电子形成了一种特殊的电子"海"。
金属离子通过这个"海"与周围离子相互连接,形成了金属键。
金属键通常很强,但易导电和易形变。
5.氢键:氢键是在氢原子与带有强电负性原子(如氮、氧、氟)的分子中形成的一种相互作用力。
氢键是非共价键,其形成是由于氢原子与带有孤电子对的原子之间的相互吸引力。
氢键通常较弱,但在分子间的相互作用中具有重要的功能,如在水分子中形成三维网状结构。
6.自由基键:自由基键是一种非常不稳定的共价键,自由基是一个具有非成对电子的分子或原子。
自由基键容易断裂和重新形成,对于许多化学反应和自然过程(如DNA损伤和氧化反应)起重要作用。
7.范德华力:范德华力是指非化学键或相互作用,包括静电作用力、诱导作用力和分散作用力。
这种力对于许多物质的物理和化学性质都具有重要影响,如分子间的吸引力、气体的压缩性和液体的表面张力。
化学键的基本知识与定义(名词解释)
化学键的基本知识与定义(名词解释)
1三中心两电子键:采用三个原子共用一对电子的方式成键,称为三中心两电子键。
2化学键:将分子中的原子结合在一起的作用力称为化学键。
3共价键:两个或多个原子通过共用电子对而产生的一种化学键称为共价键。
电负性相差在0~0.6个单位之间形成共价键;电负性相差在0.6~1.7个单位之间的形成极性共价键。
共价键有方向性和饱和性。
4金属键:使金属原子结合成金属晶体的化学键称之为金属键。
金属键无方向性和饱和性。
5离子键:依靠正、负离子间的静电引力而形成的化学键称为离子键,又称为电价键。
一般说来,两种原子电负性相差在1.7个单位以上形成离子键。
6配价键:共用电子对由一个原子提供的共价键称为共价配键或配价键。
用A→B 表示,A是电子提供者,B是电子接受者。
7 σ键:在化学上,将两个轨道沿着对称轴方向重叠形成的键叫σ键。
σ键的特点是(i)比较牢固;(ii)σ键能围绕对称轴自由旋转。
8 π键:侧面交叠形成的键称为π键。
π键的特点是(i)容易断裂;(ii)不能绕轴自由旋转。
高考化学化学键知识点总结
高考化学化学键知识点总结一、化学键的定义与分类在化学的世界里,化学键就像是连接原子的桥梁,将一个个微小的原子组合成各种各样的物质。
化学键是指相邻原子之间强烈的相互作用。
化学键主要分为离子键、共价键和金属键三大类。
离子键是由阴阳离子之间的静电作用形成的。
当活泼金属(如钠、钾等)与活泼非金属(如氯、氟等)相遇时,金属原子容易失去电子形成阳离子,非金属原子容易得到电子形成阴离子。
阴阳离子通过静电吸引力结合在一起,就形成了离子键。
离子化合物通常具有较高的熔点和沸点,在熔融状态或水溶液中能够导电。
共价键则是原子之间通过共用电子对形成的。
当两个非金属原子相遇时,它们都有获得电子的倾向,于是双方会各拿出一部分电子形成共用电子对,从而使双方都达到稳定结构。
共价键又分为极性共价键和非极性共价键。
如果共用电子对不偏向任何一方,形成的就是非极性共价键,比如氢气分子(H₂)中的共价键。
而如果共用电子对偏向某一方原子,形成的就是极性共价键,比如氯化氢分子(HCl)中的共价键。
金属键存在于金属单质或合金中。
金属原子失去部分或全部外层电子形成金属阳离子,这些阳离子“沉浸”在自由电子的“海洋”中,它们之间的相互作用就形成了金属键。
金属具有良好的导电性、导热性和延展性,这都与金属键的特性有关。
二、离子键离子键的形成通常发生在活泼金属元素(如钠、钾、钙等)和活泼非金属元素(如氟、氯、氧等)之间。
以氯化钠(NaCl)的形成为例,钠原子的最外层电子数为 1,容易失去这个电子形成带正电荷的钠离子(Na⁺);氯原子的最外层电子数为 7,容易得到一个电子形成带负电荷的氯离子(Cl⁻)。
钠离子和氯离子通过静电作用相互吸引,形成了稳定的离子键,从而构成了氯化钠晶体。
离子键的强度取决于离子所带的电荷数和离子间的距离。
离子所带电荷数越多,离子键越强;离子间距离越近,离子键越强。
离子化合物在固态时,离子不能自由移动,所以不能导电。
但在熔融状态或水溶液中,离子能够自由移动,从而能够导电。
化学键知识总结
化学键知识总结一、经典共价键理论(八电子规则)基本思想:当n s、n p原子轨道充满电子,会成为八电子构型,该电子构型是稳定的,所以在共价分子中,每个原子都希望成为八电子构型(H原子为2电子构型)。
二、近代价键理论1.经典价键理论遇到许多困难:(1) 两个电子配对后为什么不相互排斥?(2) 在有些化合物中,中心原子周围的价电子总数超过8, 为什么仍然稳定存在?(3) 根据静电理论,原子核对成键电子对的吸引只具有共价键能的5%,那么大部分共价键能从何而来?(4) 经典共价键理论不能解释共价键的方向性和饱和性!2.近代价键理论的内容(1) 两个原子形成一个共价键时,两个原子必须各提供一个未成对电子(即单电子)且它们的自旋方向相反。
(2) 两个原子形成共价键时,其成键轨道能量要相近。
例如H2中1s~1s轨道成键;HF中H的1s与F的2p轨道成键等。
(3) 共价键的形成在尽可能的范围内一定要采取在电子云密度最大方向上进行重叠(即获得最大的键能,使分子处于最稳定的状态)−−解决了共价键的方向性。
但必须注意的是,由于s电子云是球形的,所以s-s形成的共价键无方向性。
3.共价键的特点(1) 饱和性:一个原子有几个未成对电子,就可以和几个自旋相反的电子配对,形成共价键。
(2) 方向性:s-s原子轨道的重叠无方向性,s-p、p-p、p-d原子轨道的重叠都有方向性。
(3) 共价键的类型a.σ键:沿着键轴的方向,发生“头碰头”原子轨道的重叠而形成的共价键,称为σ键。
b.π键:原子轨道以“肩碰肩”的方式发生重叠而形成的共价键,称为π键。
4.杂化轨道理论(1) 问题的提出:a.基态C原子只有2个单电子,为何可以与4个H原子形成CH4分子?即如何来解决共价键的饱和性呢?b.水分子中的∠HOH = 104.5︒,与根据2个H原子的1s原子轨道与O原子的2p x、2p y原子轨道重叠,形成90︒角不符。
即如何来解决共价键的方向性?(2) Pauling 的杂化轨道理论−−解决共价键的饱和性和方向性内容:由不同类型的原子轨道混合起来,重新组成能量相等的新的轨道的过程,称为原子轨道杂化。
化学键类型详解
化学键类型详解化学键是将两个或多个原子结合在一起形成分子的力量。
它们在化学反应和物质的性质中起着至关重要的作用。
根据不同的形成机制,化学键主要可以分为共价键、离子键和金属键。
本文将从这三种主要化学键的形成、特点以及例子等方面进行详细探讨。
一、共价键1.1 共价键的定义共价键是指两个原子通过共享电子对而形成的化学键。
在这种情况下,两个原子的外层电子相互影响,从而形成一个稳定的系统。
共价键常见于非金属元素之间,例如氢气(H₂)、氧气(O₂)和水(H₂O)等分子。
1.2 共价键的类型共价键可以根据共享电子对的数量分为单键、双键和三键。
单键:指两个原子之间共享一个电子对,例如氢气的形成。
双键:指两个原子之间共享两个电子对,最常见的例子是氧气(O₂)。
三键:指两个原子之间共享三个电子对,如氮气(N₂)。
1.3 共价键的性质方向性:共价键具有很强的方向性。
两个原子之间的键角会影响分子的几何形状,进一步影响物理和化学性质。
电导率:通常共价化合物在固态下不导电。
但某些分子如石墨,因其特殊结构,可以导电。
熔点和沸点:共价化合物一般具有较低的熔点和沸点,因为分子之间的范德华力较弱。
1.4 例子分析以水分子(H₂O)为例,它由一个氧原子与两个氢原子通过共价键相连。
氧原子与氢原子共享电子对,使水分子的形状呈现出弯曲结构,这对于水的极性特性及其溶解能力有着重要影响。
二、离子键2.1 离子键的定义离子键是指一个原子将一个或多个电子完全转移给另一个原子,从而形成带正电和负电的离子。
这种静电引力使得离子之间结合在一起。
离子键通常发生在金属与非金属元素之间,例如钠氯(NaCl)。
2.2 离子键的形成过程当金属与非金属接触时,金属原子的外层电子容易被其他元素吸引,而非金属则倾向于接受这些电子。
例如,在钠氯反应中,一个钠原子失去一个电子形成Na⁺,而一个氯原子获取这个电子形成Cl⁻。
由此两者通过静电引力结合在一起,生成盐晶体。
高熔沸点:由于离子间强烈的静电引力,离子化合物相对具有较高的熔点和沸点。
知识点什么是化学键
知识点什么是化学键化学键是指在化学物质中由原子之间相互作用形成的一种连接。
它是构成分子和晶体等大分子化合物的基础,起到维持化学物质结构和性质的重要作用。
化学键的形成和存在使得化学物质能够具有不同的性质和反应特性。
一、离子键离子键是由正离子和负离子之间的电荷吸引力形成的。
在离子键中,正离子失去了一个或多个电子,形成正电荷,而负离子获得了一个或多个电子,形成负电荷。
这些正负电荷之间的相互吸引形成了强大的电荷吸引力,从而形成了离子键。
离子键常见于金属和非金属元素间的化合物。
二、共价键共价键是由原子之间共享电子形成的。
在共价键中,原子通过共享一对或多对电子使得每个原子都能够维持稳定的电子配置。
共价键的强度主要取决于所共享电子对的数量和结构。
共价键常见于非金属元素的化合物,如水、氨等。
三、金属键金属键是金属中的金属离子通过电子云的共享形成的。
由于金属中的原子具有略带正电荷的金属离子和自由漂浮的电子云,因此金属原子之间的电子可以在整个晶体中自由传导。
金属键的强度较弱,但是金属化合物具有良好的导电性和热导性。
四、共价键与极性共价键可以根据电子对的共享程度来划分为极性和非极性共价键。
非极性共价键是指电子对在共享过程中不产生电荷偏移,电子云均匀分布在两个原子之间。
而极性共价键则是指电子云在共享过程中对其中一个原子的吸引力更大,使得电子云在共享键中呈现分布不均匀的状态。
五、氢键氢键是一种特殊的化学键,它是氢原子作为质子与非金属原子中的电负性较高的原子(如氮、氧、氟等)形成的。
氢键的形成取决于氢原子与非金属原子之间的极性相互作用。
氢键的强度较弱,但是具有重要的生物学和化学意义,在生物大分子的三维结构和分子间的相互作用中起到重要的作用。
总结:化学键是化学物质中原子之间形成的连接,在化学物质的结构和性质中具有重要的作用。
常见的化学键有离子键、共价键、金属键和氢键等。
了解和理解化学键的特点和性质,对于深入了解化学物质的性质和反应机制具有重要的意义。
化学键知识点概括
化学键一、化学键1、概念:化学键是指使离子或原子之间结合的作用。
或者说,相邻的原子或原子团强烈的相互作用叫化学键。
注意:不是所有的物质都是通过化学键结合而成。
惰性气体就不存在化学键。
2、分类:金属键、离子键、共价键。
3、意义:①解释绝大部分单质和化合物的形成:绝大部分单质和化合物都是离子或者原子通过化学键的作用形成的。
②解释化学变化的本质:化学变化的本质就是反应物化学键的断裂和生成物化学键的形成过程。
原子重新组合就是通过反应物原子间化学键的断裂,然后又重新形成新的化学键的过程。
二、离子键:带相反电荷离子间的相互作用称为离子键。
1、概念:使阴阳离子结合成化合物的静电作用,叫做离子键。
2、成键微粒:阴阳离子3、本质:静电作用4、成键过程:阴阳离子接近到某一定距离时,吸引和排斥达到平衡,就形成了离子键。
5、成键条件:活泼金属(IA IIA)与活泼非金属(VIA VIIA)之间的化合物。
6、结果:形成离子化合物。
离子化合物就是阴阳离子通过离子键而形成的化合物。
离子晶体就是阴阳离子通过离子键而形成的晶体。
7、范围:典型的金属与典型的非金属之间容易形成离子键。
特别是位于元素周期表中左下方的金属与右上方的非金属元素之间。
例如:氧化钾、氟化钙、氢氧化钠、硝酸钾、氯化钾三、共价键:1、概念:原子通过共用电子对形成的相互作用。
2、本质:静电作用3、方式:原子间通过共用电子对形成静电作用。
4、条件:非金属元素的原子之间容易形成共价键。
5、结果:形成共价单质或共价化合物。
共价单质是指同种元素的原子通过共价键所形成的单质。
共价化合物是由不同种元素的原子通过共价键所形成的化合物。
6、范围:共价单质有H2、B、C、N2、O2、O3、F2、Si、P、S、Cl2、Br2、I2.共价化合物主要有非金属氢化物、非金属的氧化物、酸、非金属的氯化物。
7、类型:极性键:共用电子对发生偏移的共价键。
主要存在于不同元素的原子之间所形成的共价键。
化学键知识点归纳总结
化学键知识点归纳总结一、化学键的基本概念1.1 化学键的定义化学键是原子或离子之间通过电子的相互作用形成的强烈吸引力,它将原子或离子结合成分子或晶体。
化学键的存在是物质稳定性的基础。
1.2 化学键的分类化学键主要分为以下几类:离子键:由正负离子之间的静电吸引力形成。
共价键:由原子间共享电子对形成。
金属键:金属原子之间的自由电子形成的键。
分子间作用力:包括范德华力和氢键,虽然不属于传统意义上的化学键,但对分子间相互作用有重要影响。
二、离子键2.1 离子键的形成离子键通常形成于金属和非金属之间。
金属原子失去电子形成阳离子,非金属原子获得电子形成阴离子,阳离子和阴离子通过静电吸引力结合在一起。
2.2 离子键的特点高熔点和沸点:由于离子键的强度较大,离子化合物通常具有高熔点和沸点。
导电性:在熔融状态或水溶液中,离子可以自由移动,因此离子化合物具有导电性。
易溶于水:许多离子化合物易溶于水,因为水分子可以有效地分离和稳定离子。
2.3 离子键的实例NaCl(氯化钠):钠失去一个电子形成Na⁺,氯获得一个电子形成Cl⁻,两者通过离子键结合。
CaCO₃(碳酸钙):钙失去两个电子形成Ca²⁺,碳酸根离子(CO₃²⁻)通过离子键与钙离子结合。
三、共价键3.1 共价键的形成共价键通常形成于非金属原子之间,通过共享电子对来实现电子的稳定配置。
3.2 共价键的类型单键:共享一对电子,如H₂(氢气)。
双键:共享两对电子,如O₂(氧气)。
三键:共享三对电子,如N₂(氮气)。
3.3 共价键的特点方向性:共价键具有明确的方向性,决定了分子的几何结构。
饱和性:每个原子能形成的共价键数量有限,取决于其未成对电子的数量。
极性:根据共享电子对的偏移情况,共价键可分为极性共价键和非极性共价键。
3.4 共价键的实例H₂O(水):氧原子与两个氢原子通过极性共价键结合。
CO₂(二氧化碳):碳原子与两个氧原子通过双键结合,形成线性分子。
化学键知识点
1、离子键:①定义:带相反电荷离子之间的相互作用。
②成键微粒:阴、阳离子。
③成键实质:静电作用。
注:a阴、阳离子间的静电作用不能片面的理解为静电吸引,而是包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。
b阴、阳离子相距较远时,相互间的吸引起主导作用,阴、阳离子相互靠近时,排斥作用逐渐增强。
当阴、阳离子靠近到某一定距离时,吸引和排斥达到平衡,就形成了离子键。
④成键条件:活泼的金属元素和活泼的非金属元素化合时,容易形成离子键。
2、离子化合物:由离子键构成的化合物叫做离子化合物。
主要包括以下三类:①强碱:如NaOH KOH Ba(OH)2等。
②绝大多数盐:如NaCl Na2CO3 ZnSO4等。
③金属氧化物:如:Na2O Al2O3K2O等。
小结:Ⅰ离子键的形成与电子的得失并无必然的联系,如:NH3+HCl===NH4ClBa2-+SO42-===BaSO4↓Ⅱ活泼金属与活泼非金属形成并不一定全是离子化合物,如AlCl3是共价化合物。
Ⅲ非金属元素之间也可以形成离子化合物,如铵盐都是离子化合物。
3、共价键:①定义:原子间通过共用电子对所形成的相互作用叫共价键。
②成键微粒:原子。
③成键的条件:同种或不同种非金属元素原子结合时一般形成共价键。
④共价键的分类:a 非极性键b极性共价键规律:非极性键存在于非金属单质(如N2、O2 )、某些离子化合物(如Na2O2)、某些共价化合物(如H2O2)中;极性键存在于共价化合物和某些离子化合物(如NaOH、NH4Cl 、k2SO4)中。
离子化合物中一定有离子键,可能有共价键;共价化合物中只有共价键,没有离子键。
4、共价化合物:只含有共价键的化合物叫共价化合物。
化学键知识点归纳总结
高中化学必修2知识点归纳总结 第一章 物质结构 元素周期律第三节 化学键知识点一化学键的定义一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。
相邻的(两个或多个)离子或原子间的强烈的相互作用。
【对定义的强调】(1)首先必须相邻。
不相邻一般就不强烈 (2)只相邻但不强烈,也不叫化学键 (3)“相互作用”不能说成“相互吸引”(实际既包括吸引又包括排斥) 一定要注意“相邻..”和“强烈..”。
如水分子里氢原子和氧原子之间存在化学键,而两个氢原子之间及水分子与水分子之间是不存在化学键的。
二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。
三、类型:离子键化学键 共价键 极性键 非极性键知识点二离子键和共价键一、离子键和共价键比较二、非极性键和极性键知识点三离子化合物和共价化合物离子键为主,该化合物也称为离子化合物(3)只有..当化合物中只存在共价键时,该化合物才称为共价化合物。
(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外)注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。
(2)含金属元素的化合物不一定是离子化合物,如A1C13、BeCl2等是共价化合物。
二、化学键与物质类别的关系知识点四电子式和结构式的书写方法一、电子式:1.各种粒子的电子式的书写:(1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。
例如:(2)简单离子的电子式:①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。
②简单阴离子:书写简单阴离子的电子式时不但要画出最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”电荷字样。
例如:氧离子、氟离子。
③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。
化学键基础知识
化学键基础知识一、离子键1、概念:2、成键微粒:3、成键实质:静电作用力(包括和)4、形成规律:一般情况下,由元素和元素的原子相结合形成的化学键是离子键。
二、离子化合物:1、概念:含有的化合物2、形成规律:一般情况下,由元素和元素的原子相结合形成的化合物是离子化合物。
(和除外)3,表示方法:●用电子式表示离子化合物NaCl MgCl2KF Na2SNa2O Na2O2NaOH NH4ClCaC2 Mg(OH)2KBr Mg3N2OH-NH4+O22-●用电子式表示离子化合物的形成过程NaCl :CaCl2 :Na2S:思考:1、活泼金属元素和活泼非金属元素一定形成离子键吗?2、仅由非金属元素组成的物质中一定不含离子键吗?三、共价键1、概念:原子之间通过形成的。
2、成键微粒:3、成键实质:静电作用力4、形成规律:一般情况下,由元素和元素的原子相结合形成的化学键是共价键。
四、共价化合物1、概念:只含的化合物。
2、形成规律:一般情况下,由元素和元素的原子相结合形成的化合物是共价化合物。
(除外)3、表示方法:●用电子式表示共价化合物HCl HFH2Cl2N2O2H2O H2SNH3CH4CO2CS2H2O2HClOCCl4●用电子式表示共价化合物的形成过程HClH2ON2CO2Cl2NH34、判断化合物中某原子是否达到8电子稳定结构的方法:思考:1、共价化合物是否只存在于共价化合物中?举例说明。
五、共价键的极性和分子的极性1、极性键和非极性键:依据共用电子对是否发生偏移,可将共价键分为两类,其中共用电子的,叫非极性键;共用电子的,叫极性键。
判断方法:●非极性键:由原子形成的共价键●极性键:由原子形成的共价键2、非极性分子和极性分子依据分子内电荷分布是否均匀,电荷分布的是非极性分子。
电荷分布的是极性分子。
判断巧法:依据分子结构,看合力是否为零●非极性键:电荷分布均匀,极性可以抵消。
即合力为零,如:CO2、CH4、CS2●极性键:电荷分布不均匀,极性不可以抵消。
化学键知识点精讲【推荐】
化学键知识点精讲【推荐】一、化学键的定义化学键是指原子之间通过共享或转移电子,以达到相对稳定的电子排布而形成的强烈相互作用力。
化学键分为两大类:共价键和离子键。
二、共价键1. 共价键的形成共价键是两个原子通过共享一对电子而形成的化学键。
共享电子对的原子可以是同种元素的原子,也可以是不同种元素的原子。
2. 共价键的类型(1)非极性共价键:两个原子通过共享电子对,电子对在两个原子之间均匀分布,形成非极性共价键。
例如,氢气(H2)中的HH键。
(2)极性共价键:两个原子通过共享电子对,但由于电负性差异,电子对偏向电负性较大的原子,形成极性共价键。
例如,水(H2O)中的HO键。
3. 共价键的性质(1)饱和性:一个原子的未成对电子数目有限,因此一个原子能形成的共价键数目有限。
(2)方向性:共价键具有方向性,共享电子对在原子间形成一定的空间排布。
(3)能量:共价键的键能越大,共价键越稳定。
三、离子键1. 离子键的形成离子键是一个原子通过得失电子,形成正离子和负离子,然后正负离子之间通过电荷相互吸引而形成的化学键。
2. 离子键的类型(1)典型离子键:如氯化钠(NaCl)中的Na+和Cl之间的键。
(2)配位离子键:如硫酸铜(CuSO4)中的Cu2+与SO42之间的键。
3. 离子键的性质(1)无方向性:离子键没有方向性,正负离子在空间中随机排列。
(2)饱和性:一个离子能吸引的异性离子数目有限,因此离子键具有饱和性。
(3)能量:离子键的键能较大,通常大于共价键的键能。
四、金属键金属键是指金属原子之间通过自由电子的共享而形成的化学键。
金属键具有以下特点:1. 金属原子之间的键没有方向性和饱和性。
2. 金属键中的自由电子可以在金属晶体中自由移动,导致金属具有良好的导电性和导热性。
3. 金属键的键能相对较小,因此金属易于变形。
五、氢键氢键是一种特殊的分子间作用力,它是指一个分子中的氢原子与另一个分子中的电负性较大的原子(如氧、氮)之间的作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学键一、化学键1.化学键(1)化学键的定义及分类(2)化学反应的本质:反应物的旧化学键断裂与生成物的新化学键形成。
2.离子键、共价键的比较易错提醒:(1)物质中不一定含有化学键,如单原子分子He等稀有气体分子中不含化学键。
(2)并非活泼金属与活泼非金属互相化合一定形成离子键,如AlCl3中没有离子键,只有共价键。
(3)非金属元素的两个原子之间一定形成共价键,但多个非金属原子间可以形成离子键,如NH4Cl。
(4)存在离子键的化合物一定是离子化合物,但存在共价键的化合物不一定是共价化合物,如NaOH、Na2O2等。
3.电子式的书写方法(1)概念:在元素符号周围用“·”或“×”来表示原子的最外层电子的式子。
(2)书写方法(3)用电子式表示化合物的形成过程①离子化合物如NaCl:。
②共价化合物如HCl:+―→4.化学键与化合物的关系易错提醒:(1)有化学键变化的不一定是化学变化。
如NaCl晶体从溶液中析出只有化学键的形成,没有化学键的断裂,HCl溶于水电离成H+和Cl-等,只有旧化学键的断裂没有新化学键的形成,二者都没有发生化学变化。
(2)存在离子键的化合物一定是离子化合物。
(3)离子化合物中一定存在离子键,可能存在共价键,如NaOH、Na2O2、(NH4)2SO4等。
(4)共价化合物中只有共价键,一定没有离子键。
(5)熔化时导电的化合物一定是离子化合物;溶解时导电,不能判别。
(6)全部由非金属元素组成的化合物也可能是离子化合物,如NH4Cl、NH4NO3等铵盐,铵根离子和酸根离子之间以离子键结合。
由金属元素和非金属元素形成的化合物也可能是共价化合物,如AlCl3。
(7)非金属单质只有共价键(稀有气体除外)。
5.化学键对物质性质的影响(1)对物理性质的影响:金刚石、晶体硅、石英、金刚砂等物质硬度大、熔点高,就是因为其中的共价键,破坏时需消耗很多的能量。
NaCl等部分离子化合物中也有很强的离子键,故其熔点也较高。
(2)对化学性质的影响:N2分子中有很强的共价键,故在通常状况下,N2很稳定,H2S、HI等分子中的共价键较弱,故它们受热时易分解。
二、8e-稳定结构的判断(1)特殊排除法:若分子中含有H、B、Be等元素,一定不满足8电子稳定结构,要学会运用这一规律迅速判断。
(2)经验规律法:凡符合最外层电子数+|化合价|=8的元素的原子皆为8电子结构。
(3)试写电子式、结构式法:判断某化合物中的某元素最外层是否达到8电子稳定结构,应从其结构式或电子式结合原子最外层电子数进行判断,如①H2O,氧原子最外层有6个电子,H2O中每个氧原子又与两个氢原子形成两个共价键,所以H2O中的氧原子最外层有6+2=8个电子,但H2O中的氢原子最外层有2个电子;②N2,氮原子最外层有5个电子,N与N之间形成三个共价键,所以N2中的氮原子最外层达到8电子稳定结构。
三、分子间作用力和氢键1 分子间作用力(1)概念:分子间存在一种把分子聚集在一起的作用力,又称范德华力。
(2)主要特征①分子间作用力存在于由共价键形成的多数共价化合物和绝大多数气态、液态、固态非金属单质分子之间。
但像二氧化硅、金刚石等由共价键形成的物质,微粒之间不存在分子间作用力。
②只有分子间充分接近时才有分子间的相互作用力,如固体和液体物质中。
③分子间作用力的能量远远小于化学键。
④由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。
(3)变化规律一般来说,对于组成与结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点也越高。
例如:熔、沸点:I2>Br2>Cl2>F2。
2 氢键(1)定义:分子间存在的一种比分子间作用力稍强的相互作用。
(2)氢键的形成条件:分子中具有H—F、H—O、H—N等结构条件的分子间才能形成氢键。
氢键不属于化学键,其强度比化学键弱得多,但它比分子间作用力稍强,通常把氢键看作是一种较强的分子间作用力。
(3)氢键对物质物理性质的影响:氢键的形成加强了分子间作用力,使物质的熔沸点升高,如HF、H2O、NH3的沸点都比它们各自同族元素的氢化物高。
又如乙醇的沸点也比乙烷的沸点高出很多。
此外,如NH3、C2H5OH、CH3COOH,由于它们能与水形成氢键,使得它们在水中的溶解度较其他同类物质大。
【典题精练】考点1、考查化学键概念的辨析例1.下列有关化学键的叙述,正确的是()A.离子化合物中一定含有离子键B.单质分子中均不存在化学键C.离子化合物中一定不含非极性共价键D.含共价键的化合物一定是共价化合物考点2、考查化学键类型的判断例2.下列化合物中,含有非极性共价键的离子化合物是()A.CaC2B.N2H4 C.Na2O D.NH4NO3方法技巧:化学键类型的判断方法(1)从物质构成角度判断(2)从物质类别角度判断考点3、考查电子式的书写与判断例3.下列有关表述错误的是()A .IBr 的电子式:··I ······Br ······ B .HClO 的结构式为H—O—Cl C .HIO 各原子都满足8电子结构 D .MgO 的形成过程可以表示为:·Mg·+·O ·····―→Mg 2+[··O ······]2-误区警示:电子式书写常见的五大误区 (1)漏写未参与成键的电子,如:N 2:N ⋮⋮N ,正确应为∶N ⋮⋮N ∶(2)化合物类型不清楚,漏写或多写[ ]及错写电荷数,如:NaCl :Na +··Cl ······;HF :H +[··F ······]-,正确应为NaCl :Na +[··Cl ······]-,HF :H ··F ······。
(3)错写分子中原子的结合方式,如HClO 中H 应与O 相结合,而错写。
(4)误合并离子,如Na 2S 的电子式错写成。
(5)“―→”与“===”表示意义不清 如用电子式表示MgCl 2的形成过程应为―→[··Cl ·····×]-Mg 2+[·×Cl ······]-,易误写成:===[··Cl ·····×]-Mg 2+[·×Cl ······]-。
考点4、考查8e -稳定结构的判断例4.下列物质中所有原子均满足最外层8电子稳定结构的化合物是( ) A .PCl 5 B .P 4C .CCl 4 D .NH 3方法指导:8电子结构的判断方法 (1)经验规律法①凡符合最外层电子数+|化合价|=8的皆为8电子结构。
②原子序数≤5的原子不能形成8电子稳定结构。
(2)试写结构法判断某化合物中的某原子最外层是否达到8电子稳定结构,应从其结构式或电子式结合原子最外层电子数进行判断,如①COCl 2可根据结构式判断各原子均为8电子稳定结构。
②N 2,写出其电子式··N ⋮⋮N ··,判断两氮原子均满足8电子稳定结构。
考点5、考查离子化合物与共价化合物的判断 例5.下列说法正确的是 ( ) A .共价化合物中可能含有离子键B .区别离子化合物和共价化合物的方法是看其水溶液是否能够导电C .离子化合物中只含有离子键D .离子化合物在熔融状态下能电离出自由移动的离子,而共价化合物不能 方法指导:判断离子化合物和共价化合物的三种方法考点6、考查化学键的断裂与形成例6.下列化学反应中,既有离子键、极性键、非极性键断裂,又有离子键、极性键、非极性键形成的是( ) A .2Na 2O 2+2H 2O===4NaOH +O 2↑ B .Mg 3N 2+6H 2O===3Mg(OH)2↓+2NH 3↑ C .Cl 2+H 2OHClO +HClD .NH 4Cl +NaOH=====△NaCl +NH 3↑+H 2O名师归纳:物质变化过程中化学键的变化 (1)化学变化过程化学键变化:既有断裂又有形成。
解释:化学反应的实质是反应物中旧化学键的断裂和生成物中新化学键的形成。
举例:H 2+F 2===2HF ,H—H 键、F—F 键均被破坏,形成H—F 键。
(2)物理变化过程(只讨论溶解或熔化) ①离子化合物。
化学键变化:只有离子键断裂。
解释:离子化合物溶解或熔化时,离子键被破坏,电离出自由移动的阴、阳离子,但无化学键的形成。
②共价化合物。
a.溶解过程。
化学键变化:共价键可能被破坏,也可能不被破坏。
解释:b.熔化过程。
化学键变化:共价键可能被破坏,也可能不被破坏。
解释:③单质。
化学键变化:共价键可能被破坏,也可能不被破坏。
解释:考点7、考查分子间作用力和氢键例7.下列现象与氢键有关的是()①NH3的熔、沸点比PH3的熔、沸点高②小分子的醇、羧酸可以和水以任意比互溶③冰的密度比液态水的密度小④水分子高温下很稳定A.①②③④B.①②③C.①②D.①③名师归纳:化学键、分子间作用力和氢键的对比。