红外光谱分析77952
红外光谱(IR)分析
4. 空间效应: (1)环状化合物的环张力效应:环张力越大,羰 基C=O频率越高。 环张力 四元环 五元环 六元环 (2)空间位阻效应:空间位阻使羰基与双键之间 的共轭受限制,故使C=O频率增高。 5. 氢键效应:氢键的形成,通常可使伸缩振动 频 率向低波数方向移动。
6. 振动偶合效应:当两个基团靠得很近时,产 生振动相互作用,使吸收峰发生分裂。
第三章 红 外 吸 收 光 谱 法
Infrared Absorption Spectrometry
§1 关于红外光谱
红外光谱在可见光区域微波区之间,其波长范 围约为0.75~1000m。
分为三个区: ◆近红外区 0.75~2.5m; ◆中红外区 2.5~25 m; ◆远红外区 25~1000 m
若分子由N个原子组成,则 需3N个坐标(自由度)确定N个原子位置; 分子自由度总数=平动、振动、转动自由度 总和 故 3N=平动自由度+转动自由度+振动自由度 即 振动自由度=3N-(平度自由度+转动自由度) 问题:怎样确定一个分子的平动自由度和 转动自由度?
(1) 平动自由度:分子的质心可沿x、y、z三 个坐标轴方向移动,故平动自由度=3。
2. 共轭效应(C效应):该效应使共轭体系具有 共平面性,电子云密度平均化,造成双键略有 伸长,单键略有缩短。故双键的吸收峰频率向 低波数方向移动。
例. C=O C=O 1715 cm-1 1685~1665 cm-1
3. 中介效应(M效应): 例. C=O 在1680cm-1附近。 若用诱导效应看,则电负性大的N原子应使 C=O键力常数增加,吸收峰位应大于1715cm-1; 但实际情况相反,这是因中介效应造成的。 即N原子上的孤对电子与C=O的电子发生重 叠(p- 共轭),使电子云密度平均化,造成C=O 键力常数降低,故使吸收峰频率移向低波数。
红外光谱分析77952
红外光谱分析77952公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、基本原理1、基本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。
设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。
2、红外光谱的几种振动形式主要的基本可以分为两大类:伸缩振动和弯曲振动。
红外光谱分析ppt
非对称分子:有偶极矩,红外活性。
2015年11月5日
16
广西大学16林学院 张一甫
2.3 红外光谱图的三要素
1) 峰位
分子内各种官能团的特征吸收峰只出现在红外光波谱的一定范围,如: C=O的伸缩振动一般在1700 cm-1左右。
收某些频率的辐射,并转化为分的振动或转动能量,引起
偶极矩的净变化,产生的分子振动和转动能级从基态到激
发态的跃迁,从而形成的分子吸收光谱称为红外光谱。又
2015年11月5日
5
广西大学林学院 张一甫
表1:红外光区的划分
区域名称
近红外区
泛频区
中红外区
基本振动区
波长(µm)
0.75-2.5 2.5-25
波数(cm-1)
13158-4000 4000-400
能级跃迁类型
OH、NH、CH键 的倍频吸收
分子振动/伴随转动
远红外区
分子转动区
25-300
400-10
分子转动
红外光区分成三个区:近红外区、中红外区、远红外区。
其中中红外区是研究和应用最多的区域,一般说的红外光谱就是指中红
外区的红外光谱。 波长与波数的关系:
(cm1)
正已烷的 红外光谱图
2015年11月5日
10
广西大学林学院 张一甫
2.2 多原子分子的振动
对于多原子分子,由于一个原子同时与几个其它原子形成化学键, 振动相互牵连,不易直观加以解释,但可以把它的振动分解为许多简单 的基本振动,即简正振动。一般分成两类:伸缩振动和变形振动。
a. 伸缩振动(νs νas )
红外光谱分析
一、基本概念
基团频率又分为四个区域: (1) 4000 2500 cm-1 X—H伸缩振动区(X=O,N ,C,S) (2) 2500 1900 cm-1 三键,累积双键伸缩振动区 (3) 1900 1200 cm-1 双键伸缩振动区C=O、C=N、 C=C等 (4) 1200 670 cm-1 C-O、C-X伸缩振动,C-H、NH弯曲振动等
2930 cm-1 反对称伸缩振动 2890 cm-1
3000 cm-1 以 下
(3)不饱和碳原子上的=C—H( C—H )
苯环上的C—H =C—H C—H 3030 cm-1 3010 2260 cm-1 3300 cm-1
3000 cm-1 以上
一、基本概念
2.双键伸缩振动区(1200 1900 cm-1 )
(3)查找基团频率,推测分子可能的基团; (4)查找红外指纹区,进一步验证基团的相关峰;
三、光谱分析举例 已知某化合物的分子式为C4H6O2,测 得红外光谱如图,试推测其结构。
三、光谱分析举例
解:1、由分子式计算不饱和度U = (2*4+2-6)/2= 2 2、分析特征区:a、3 070cm-1有弱的不饱和C—H伸缩振 动吸收,与1 650cm-1的vc=c 谱带对应表明有烯键存在, 谱带较弱,是被极化了的烯键。 b、1765cm-1强吸收谱带表明有羰基存在,结合最强吸收 谱带1 230cm-1和1 140cm-1的C-O-C吸收应为酯基。 这个化合物属不饱和酯,根据分子式有如下结构: (1) CH2=CH-COO-CH3 丙烯酸甲酯 (2) CH3-COO-CH=CH2 醋酸乙烯酯
指纹区(1350 650 cm-1 ) ,较复杂。 C-H,N-H的变形振动;
红外光谱分析原理
红外光谱分析原理
红外光谱分析是一种常用的无损检测方法,用于确定化学物质的结构和组成。
其原理基于分子的光谱吸收特性,通过测量样品在不同波长红外辐射下的吸收光谱,来识别样品中的化学键和官能团。
红外光谱分析使用的是红外辐射,其波长范围为0.78至1000
微米,对应的频率范围为12800至10波数。
样品与红外辐射
相互作用后,会吸收一部分光谱,形成一个特定的吸收带。
每个分子都有一个独特的红外吸收谱图,因此通过比较样品的红外吸收谱和已知物质的红外谱图数据库,可以确定样品的成分。
红外光谱分析所测量的是样品对不同波长红外辐射的吸收强度。
红外辐射在与样品相互作用时,其能量与样品的分子振动模式相互转移。
不同官能团和化学键的振动会在红外光谱上表现出不同的吸收带,从而反映出样品的化学组成和结构信息。
常见的红外光谱吸收带包括相对于振动的拉伸、弯曲和扭转等模式。
一般来说,红外光谱的吸收带呈现为峰的形式,峰的位置和形状可以提供有关样品成分和结构的信息。
例如,C-H键的伸缩振动在波数范围2800至3000波数之间,C=O键的伸
缩振动在1650至1800波数之间。
红外光谱分析可以应用于各种领域,包括化学、制药、环境监测等。
它是一种快速、准确、无损的分析方法,能够对样品进行定性和定量分析。
此外,红外光谱仪的设备也逐渐变得便携化和小型化,使得红外光谱分析更加便捷和实用。
红外光谱谱图分析
4.芳香族 (1) n (=CH) 3100-3000 (2)苯环骨架振动1600-1450 (3)=C-H非平面变角(或面外弯曲)
900-690, (表1) (4)=C-H非平面变角的倍频和合频
2000-1660(图12, 图12 a)
表1 苯环上=C-H非平面变角振动频率
邻位H的数目 5 4 3
3.基频、倍频、合频、费米共振
倍频:又称泛频:基频的二倍或更高倍数频 率的光谱(图5)。
合频:二个或更多的基频的组合频率光谱。
费米共振:分子的非谐性引起基频和倍频 (或合频) 间(两者波数接近)的共振,导 致在两者附近出现两条较强的谱线(图6)
基频、倍频、合频 (图5)
费米共振(图6)
二.有关基团的特征频率(cm-1 以
图13 2-甲基-1-戊醇的红外光谱
图13a IRTutor, IRTutor1.1, Xexanol, 1-己醇, 3rd P.2 of 4
图14 4-乙基苯酚
6.醚类
(1)C-O-C nas(C-O-C)
1300- 1000
(2)=C-O-C nas (C-O-C)
1275-1200
共振
1.红外及拉曼光谱基本原理
(图1, 图2,图2a,图3)
红外光谱属于振动光谱,振动光谱又属于 分子光谱 分子光谱:1电子光谱:紫外可见 分子荧光
2振动光谱:红外光谱 拉曼光谱 3转动光谱:远红外,转动拉曼光谱 *振动光谱中包括近、中、远红外光谱
图1
分子能级跃迁示意图
能级
v2
v1
转动能级跃迁
v0
4. -N=C=S n as 1990-2130; -C=C=C- n as 1950-1930;
红外光谱分析全解
分子的运动可分为平动、转动、振动和分子内电子的运动.每种运动状 态都属于一定的能级.因此,分子的总能量可以表示为:
E = E0 +Et + Er + Ev + Ee
E0是分子内在的能量,不随分子运动而改变,即所谓的 零点能.Et、Er、Ev和Ee分别表示分子的平动、转动、振 动和电子运动的能量.由于分子平动Et的能量只和温度的变 化直接相关,在分子平动时不会产生光谱.这样,与光谱有关 的能量变化主要是Er、Ev、Ee三者,每一种能量也都是量 子化的.
500
〔3谱带的强度:与样品的厚度、种类及其含 量有关,与偶极矩变化有关.IR可对某一基团定 量分析. 〔4谱带的形状:与结晶程度及相对含量有关. 结晶差说明晶体结构中键长与键角有差别,引 起振动频率有一定变化范围,每一谱带形状就 不稳定.可用半高宽表示〔width at half full
maximum, WHFM>.
电子的能级最大,从基态 到激发态的能级间隔Ee = 1~20eV;分子振动能级间隔 Ev = 0.05~1.0eV,分子转动能 级间隔Er =0.001~0.05eV.电 子跃迁所吸收的辐射是在可 见光、紫外和X射线区,分子 转动能级跃迁所吸收的辐射 是在远红外与微波区.分子的 振动能级跃迁所吸收的辐射 主要是在中红外区.
摇摆
:1306~1303cm-1 (w)
扭曲
:1250cm-1(w)
s:强吸收,m:中等强度吸收,w,弱吸收
上述每种振动形式都具有其特定的振动频率,也即
有相应的红外吸收谱带,其中伸缩振动的频率高于弯曲
振动.
高岭石{Al4[Si4O10]<OH>8 }红外吸收光谱
透 过 率 /%
红外光谱分析
峰强度的表示方法:用摩尔吸收系数表示
决定峰强度的因素:震动过程中偶极矩的变化,能 级跃迁的几率 对于倍频峰来说, 跃迁几率很低,结果峰强反 而很弱。 对于基频峰来说,主要决定于振动过程中偶极矩 的变化,而偶极矩 与以下几个因素有关 1 原子的电负性 2 化学键的振动形式 3 分子的对称性 4 基频峰,倍频峰和组频峰 5 氢键的形成 6 与偶极矩大的基团共轭
影响红外吸收谱带位移的因素
• • • • • • • 诱导效应与共轭效应 键应力效应(张力效应) 空间效应 氢键效应 振动的偶合与费米共振 物态变化的影响 溶剂的影响
红外吸收谱带
当用一束具有连续波长的红外光照射物质时,该物
质的分子就会吸收一定波长的红外光的光能,并转化为 分子的振动能量和转动能量。以波长或波数横坐标,以 百分透过率或吸收率为纵坐标,记录其吸收曲线,即得 到该物质的红外吸收光谱。
振动的偶合与费米共振
如果一个分子的两个基 团位置很靠近,它们的振动 频率几乎相同,并且有对称 性,其相应的特征吸峰常发 生分裂,使谱带在一分为二,原谱带位置的高频和 低频的一侧各处现一条谱带 当分子中的一个基团振动的倍频和合频与另一 个基团的振动频率相近,并具有相同的对称性时, 也能产生共振使谱带分裂,并使强度很弱的倍频或 合频谱带异常的增强这种现象就是费米共振
• 基本概念 红外光谱,通常是指有机物质在 4000~400cm-1红外线的照射下,选择 性的吸收其中某些频率后,用红外光 谱仪记录所形成的吸收谱带。
• 影响红外吸收峰的因素
红外吸收峰的位置 与分子振动能级跃迁间能关系 红外吸收峰的数目 与分子振动自由度的关系
红外吸收峰的强度 与分子偶极矩间的关系
原子间的距离
红外光谱识谱的一般程序
红外光谱分析
红外光谱分析简介红外光谱分析是一种用来研究物质的化学组成和分子结构的分析方法。
通过测量样品对特定波长的红外辐射的吸收情况,可以获得关于样品中官能团和化学键的信息。
红外光谱分析广泛应用于化学、材料科学、药学以及生物科学等领域。
原理红外光谱分析是基于物质分子与特定波长的红外光相互作用的原理。
红外光的频率范围在可见光和微波之间,对应的波长范围为0.78-1000 μm。
物质分子吸收红外辐射的能量与分子振动和转动有关。
不同官能团和化学键的振动和转动模式对应不同的红外光谱峰。
仪器原理红外光谱仪是用来获得红外光谱的仪器。
一般由光源、样品室、光学系统和检测器组成。
光源通常使用红外灯或红外激光器,产生红外光。
样品室用于放置样品,通常使用红外透明的材料制成,如钾溴化物(KBr)窗片。
光学系统用于收集经过样品的红外光并分离不同波长的光。
检测器用于测量通过光学系统的红外光的强度。
样品制备在进行红外光谱分析之前,需要对样品进行适当的处理和制备。
一般情况下,样品制备包括以下几个步骤:1.清洗:将样品表面的杂质和污垢去除,以避免对测量结果的干扰。
2.粉碎:将固体样品研磨成细粉末,以提高样品的均匀性和透明度。
3.混合:对于含量较低的样品,可以将其与适量的基质混合,以提高测量的灵敏度和准确性。
4.压片:将粉碎的样品和基质混合均匀后,使用压片机将其压制成透明薄片。
数据解析红外光谱的数据解析主要包括以下几个步骤:1.基线校正:去除光谱中的基线漂移,使得光谱能够更好地展示样品的吸收特征。
2.峰鉴定:通过与已知化合物的红外光谱进行比对,确定光谱中各个峰的对应官能团或化学键。
3.峰强度分析:根据光谱峰的高度或面积,可以估算出样品中不同官能团或化学键的相对含量。
4.结构分析:根据官能团和化学键的信息,推测样品的分子结构和化学组成。
应用领域红外光谱分析在许多领域有着广泛的应用,包括但不限于:1.化学分析:通过红外光谱分析,可以对化学品进行定性和定量分析,同时也可以用于分析反应过程中的中间产物和副产物。
红外光谱分析77952
红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、基本原理1、基本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4μ)或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。
设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。
2、红外光谱的几种振动形式主要的基本可以分为两大类:伸缩振动和弯曲振动。
(1)伸缩振动(υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱分析二十世纪初叶,Coblentz 发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、基本原理1、基本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1 列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
表1 常用的有机光谱及对应的微观运动红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25 μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4 μ) 或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C 为光速(3×1010cm/s) 。
设υ为波数,其含义是单位长度(1cm) 中所含的波的个数,并应具有以下关系:波数(cm-1) =104/ 波长( μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%) 表示。
2、红外光谱的几种振动形式主要的基本可以分为两大类:伸缩振动和弯曲振动。
(1)伸缩振动( υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。
它的吸收频率相对在高波数区。
(2)弯曲振动( δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。
它的吸收频率相对在低波数区。
4000cm -1(高) 400cm -1(低)3、红外光谱吸收峰主要的几种类型(1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。
(2)倍频峰:出现在基频峰波数二倍处。
如基频为900cm-1,倍频为-11800cm-1。
4、红外光谱吸收峰的强度红外吸收强度取决于振动时偶极矩变化的大小。
因此,分子中含有杂原子时,其红外吸收一般都较强;反之,两端取代基差别不大的碳-碳键的红外吸收则较弱。
基团的极性越大,吸收峰越强。
如羰基特征峰在整个图谱中一般总是最强峰之一。
二、红外光谱吸收频率与分子结构的关系伸缩振动和弯曲振动都是基团内部原子间化学键的振动。
键的振动波数又与原子的质量成反比,与键的刚度成正比。
例如,C-H 基的折合质量比C-C基小,因此C-H伸缩振动波数高于C-C的伸缩振动波数。
键的刚度即力常数的大小取决于键的性质。
单键(C-H,SP3杂化)的力常数:~5×105达因/ 厘米双键(=C-H,SP2杂化)的力常数:~10 ×105达因/ 厘米5三键(≡C-H,SP杂化)的力常数:~15×105达因/ 厘米因此当原子折合质量相同时,键的伸缩振动波数随力常数增大而(即S成份增多而增加)增加:υ ≡CH >υ=CH > υ-CH,υC=O > υC-O 弯曲振动与伸缩振动的方向性是不相同的。
同一种化学键二者振动所需能量大小刚好相反,故弯曲振动波数大小的顺序与伸缩振动波数相反:δ -CH > δ=CH >δ≡CH表 2 饱和碳氢、烯氢和炔氢键的波数 (cm -1)三、影响官能团红外光谱吸收频率的因素1、电子效应(1) 诱导效应 推电子诱导效应(+ I) ,烷基为推电子基团。
吸电子诱导效应 (-I) , 氰基和氟为吸电子基团。
OO O 例: CH 3CH 2 C OC 2H 5N CCH 2 C OC 2H 5RCF -1 υ C=O 1728cm -1 1751cm -1 -1 ~推电子基团使得羰基氧原子上电子云密度增加,偶极增大,振动能量下降,羰基吸收峰往低波数移动;吸电子基团使得羰基氧原子上 电子云密度降低,振动能量升高,羰基峰波数往高波数移动。
诱导效应是沿化学键直接起作用的,它与分子的几何形状无关。
(2) 中介效应氧、氮和硫等原子有孤电子对,能与相邻的不饱和基团共轭,为了 与双健的π电子云共轭相区分,称其为中介效应 (M)。
此种效应使不饱 和基团的振动波数降低,而自身连接的化学键振动波数升高。
最典型的例子是酰胺的羰基吸收。
酰胺分子由于中介效应降低了羰基的双键性,吸收频率移向低波 数。
一般酰胺羰基的振动频率不超过 1690cm -1。
N-H 键变成=N-H ,伸 缩振动波数升高。
酰胺胺基的振动频率比一般胺基的振动频率要高。
R C NH 2 O+R C NH 2(3)共轭效应羰基与双键共轭,π电子离域增大,使其双键性降低,亦振动频率降低,向低波数移动。
酮羰基的吸收频率一般为1715cm-1。
α、β不饱和酮的羰基吸收频率一般为1675cm-1,芳酮羰基的吸收频率一般为1690cm-1,均低于1715cm-1。
电子效应是一个很复杂的因素,因而判断官能团的吸收频率应该是几种效应的综合结果。
前面举例的卤代酮分子中,诱导效应大于中介效应,即诱导效应起主导作用;酰胺分子中则是共轭效应大于诱导效应,即共轭效应起主导作用。
2、空间效应(1)环的张力环状化合物由于碳的键角发生变化而使键长发生改变,从而使键的振动波数升高或降低。
一般而言,环的张力加大时,环上基团的吸收频率上升。
H HH H H-1 -1 υ-CH 2925cm -1 3050cm -1 环的张力对环外双键的影响:因为环的键角越小,环外双键碳的s 成分增多,使双键伸缩振动所需能量增加,吸收频率升高。
= CH 2 =CH 2 =CH 2 =CH 2-1 -1 -1 -1 υC=C 1650cm -1 1660cm -1 1680cm -1 1750cm -1 环的张力对环内双键的影响:环变小,张力增大,环内双键p 成分增加,键长变长,振动波数减小。
而环外的=C-H键由于s 成分增加,键长变短,振动波数增加。
-1 -1υC=C 1639cm-1 1623cm -1 1566cm-1 -1=CH 3017cm-1 3040cm -1 3060cm(2) 空间障碍 分子中的大基团在空间的位阻作用,迫使邻近基团间的键角变小 或共轭体系的共平面性被偏离或被破坏时,振动波数发生变化。
-1 -1υC=O 1663cm -1 1686cm -1 1693cmⅠ为典型的α、β不饱和酮,Ⅲ的邻位均被立体位阻大的甲基取 代,羰与双键的共轭体系被破坏, 羰基的振动频率升至 1693cm ,Ⅱ介 于Ⅰ和Ⅲ之间。
(3) 氢键的影响 无论是分子间或分子内形成氢键,均使化学键的力常数降低,吸 收频率向低波数移动。
醇羟基: 游离态 二聚体 多聚体-1 -1 -1 υ-OH 3610-3640cm -1 3500-3600cm -13200-3400cm -1 四、红外光谱的应用 用红外光谱鉴定化合物,其优点是简便,快速,用量少,气体、 固体、液体均可检测。
1、化合物的鉴定(1) 同质异晶体 化学结构完全相同而晶形不同的化合物, 由于分子在不同晶体的晶 格中排列方式不一样, 因此对光的散射和折射不同, 致使同质异晶体的 固相红外光谱有差异。
(2) 几何异构体 对称反式异构体中的双键处于分子对称中心,在分子振动中键的偶 极矩变化极小, 因此在光谱中不出现双键吸收峰, 顺式异构体无对称中 心,偶极矩有改变,故有明显的双键特征峰,以此可区分顺、反异构体。
(3) 构象异构体CH 3CH 3CH 3 Ⅱ) CH 3Ⅲ) COCH COCH 33同一种化学键在不同的构象异构体中的振动频率是不一样的,以构象固定的六元环上的C—Y键为例,平展的C—Y 键伸缩振动频率高于直立键,原因在于直立的C—Y 键垂直于环的平面,其伸缩振动作用于碳上的复位力小;平展的C—Y 键伸缩振动使环扩张,复位力大,故振动频率高。
(4)互变异构体有机化学中经常碰到互变异构现象,如β-双酮有酮式和烯醇式二种,红外光谱可区分。
酮式υC=O1730cm-1烯醇式υ C=O1650cm-12、定量分析当入射光照射样品时,样品分子会选择性地吸收某些入射光,使透射光(或反射光)强度变弱,这是红外光谱所以能形成的依据。
红外定量分析是研究样品的量(包括浓度和厚度)与吸收入射光之间的联系。
利用红外光谱的谱峰强度(或面积),可计算出被测样品的含量,对一些难于用溶剂溶解的固体样品,特别是许多不溶不熔的高分子材料,红外光谱具有它的独特之处。
红外光谱仪光源样品干涉仪检测器数据处理五、红外光谱图解析1、红外吸收波段红外谱图按波数可分为以下六个区,结合最常见的基团讨论如下:(1)4000-2500cm-1这是X-H(X包括C、N、O、S等)伸缩振动区。
a、羟基(醇和酚的羟基)羟基的吸收于3200-3650cm-1范围。
羟基可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收的位置、形状、强度都有重要影响。
游离(无缔合)羟基仅存在于气态或低浓度的非极性溶剂的溶液中,其红外吸收在较高波数(3610-3640cm-1),峰形尖锐,当羟基在分子间缔合时,形成以氢键相连的多聚体,键力常数k 值下降,因而红外吸收位置移向较低波数(3300cm-1附近),峰形宽而钝。
羟基在分子内也可形成氢键,使羟基红外吸收移向低波数,羧酸内由于羰基和羟基的强烈缔合,吸收峰的底部可延续到~2500cm-1,形成一个很宽的吸收带。
当样品或溴化钾晶体含有微量水分时,会在~3300cm-1附近出现吸收峰,如含水量较大,谱图上在~1630cm-1处也有吸收峰(羟基无此峰),若要鉴别微量水与羟基,可观察指纹区内是否有羟基的吸收峰,或将干燥后的样品用石蜡油调糊作图,或将样品溶于溶剂中,以溶液样品作图,从而排除微量水的干扰。
游离羟基的吸收因在较高波数(~3600cm-1),且峰形尖锐,因而不会与水的吸收混淆。
b、胺基胺基的红外吸收与羟基类似,游离胺基的红外吸在3300—3500cm-1范围,缔合后吸收位置降低约100cm-1。
伯胺有两个吸收峰,因NH2 有两个N-H键,它有对称和非对称两种伸缩振动,这使得它与羟基形成明显区别,其吸收强度比羟基弱,脂肪族伯胺更是这样。
仲胺只有一种伸缩振动,只有一个吸收峰,其吸收峰比羟基的要尖锐些。