蜗壳及尾水管设计

合集下载

水轮机的蜗壳、尾水管讲述

水轮机的蜗壳、尾水管讲述

三、蜗壳的主要参数
1、断面型式与断面参数 (1) 金属蜗壳:圆形。结构参数:座环外
径、内径、导叶高度、蜗壳断面半径、蜗 壳外缘半径
(2) 混凝土蜗壳:“T”形。便于施工和减小其径 向尺寸,降低厂房土建投资有四种型式:
(i) n=0:平顶蜗壳。特点:接力器布置方便, 减小下部混凝土,但水流条件不太好。
2g
h 25 )
作用:(1)、汇集转轮出口水流,排往下 游。
(2)、当H2>0时,利用这一高度水流 所具有的位能。
(3)、回收转轮出口水流的部分动能。
二、尾水管的动能恢复系数
尾水管H2取决于水轮机的安装高程,与尾水管
的性能无关;衡量尾水管性能好坏的标志是恢
由此可以绘出蜗壳平面图单线图。 其步骤为: (a) 确定φ0 和VC ;
(b) 求Fc、ρmax、Rmax; (c) 由φi确定Qi 、 Fi、ρi、Ri。
第二节 尾水管的作用、型式及其主要 尺寸确定
尾水管是反击式水轮机的重要过流部件。 其型式、尺寸影响、厂房基础开挖、下部 块体混凝土尺寸。尾水管尺寸越大,η越 高,工程量及投资增大。合理确定是非常 重要的。
(1) 金属蜗壳:φ0=340°~350°,常取 345°
φ0大,过流条件好,但平面尺寸增大,厂 房尺寸加大。金属蜗壳的流量小,尺寸小, 一般取较大包角;从构造上讲,最后 100°内,断面演变成为椭圆。
(2)、混凝土蜗壳:Q大,为减小平面尺寸, φ0=180°~270°,一般取180°,一 部分水流未进入蜗形流道,从而减小了蜗 壳进口断面尺寸,这部分水流直接进入导 叶,为非对称入流,加重了导叶的负担, 因此在非蜗形流道处,固定导叶断面形状 常需特殊设计。
四、蜗壳的水力计算

蜗壳的作用、型式、主要尺寸的选择与计算

蜗壳的作用、型式、主要尺寸的选择与计算
2、蜗壳的断面形式
➢混凝土蜗壳:梯形断面
➢m≥n:减低厂房高度, 缩短主轴长度
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
• 混凝土蜗壳进口断面形状选择:
(1)δ一般为20°~30°, 常取δ=30°;
(2)当n=0时,γ=10°~15°,
b/a=1.5~1.7,可达 2.0;
2、金属蜗壳的水力计算
通过任一断面i 的流量为: Qi Qmaxi / 360
( i :从蜗壳鼻端至断面i 的包角)
又 Vu C Vc 的假定
∴断面半径
i
Qi
Vc
Qmax i 360Vc
断面中心矩: ai ra i 断面外半径:Ri ra 2i
对进口断面,将 i 代入0 公式
Q0 , ,0 , a即0和得R0。值
面和断面单线图。
已知条件:Hr、Qmax、b0、 Da、Db,蜗壳类型,
0、Vc 。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
1、蜗壳中的水流运动 V Vr Vu
(1)径向分速度 V:r
Vr
Qmax
Dab0
constant
(水流必须均匀地、 轴对称地进入导水机构)
(3)当m>n时,γ=10°~20°,
(b-n)/a=1.2~1.7,可达1.85;
(4)当m≤n时,γ=25°~35°,
(b-m)/a=1.2~1.7,可达1.85;
中间断面形状的确定: 直线过渡或抛物线过渡。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
3、蜗壳的包角 0:从蜗壳鼻端至蜗壳进口断面
可求出对应每一个Ri中间断面的尺寸 ai ,ni ,mi及

水电站混凝土蜗壳设计探析

水电站混凝土蜗壳设计探析

水电站混凝土蜗壳设计探析摘要:水电站为了提高运行稳定性、增加经济效益,经常会对混凝土蜗壳展开有效设计。

本文将从某水电站的工程概况出发,对其混凝土蜗壳的设计进行分析与探究,希望为相关人员提供一些帮助和建议,更好地设计水电站的蜗壳。

关键词:蜗壳设计;混凝土蜗壳;水电站引言在水轮机中,蜗壳是十分重要的一个过流部件,设计的蜗壳质量高低会对水电机组整体工作效率产生直接影响,并且关系到水电站布置的科学性与合理性,这要求水电站应结合自身实际情况,寻找设计混凝土蜗壳的依据,展开有效的蜗壳设计。

因此,研究设计混凝土蜗壳的策略具有一定现实意义。

一、工程概况某水电站安装了300MW水轮发电混流式机组,共计六台,安装的水轮机高程是128米,水头设计为113米,额定转速为每分钟106r,额定流量是每秒295立方米,额定出力为305MW,直径为6米。

其蜗壳的进口直径是7.3米,甩负荷压力的最大值是1.91兆帕,静水压力最大值为1.39兆帕。

水电站中的一些机组设备通过世界银行进行贷款,借助国际招标工作,最终由相关企业承包并建造。

在该水电站中,水轮发电的机组主要通过下机架进行支承,并将软垫层敷设于钢蜗壳的外部。

所有内水的压力都能被钢蜗壳承担,内水压力的设计值是1.92兆帕,蜗壳混凝土结构仅能够承受楼板、水轮发电机等上部结构产生的重力荷载。

二、水电站机组的荷载按照水电站布置的整体规定,连接机组和引水压力钢管的形式为一管一机。

蜗壳的进口内径是7.1米,压力钢管的直径是7.7米,把连接段设置到钢蜗壳和钢管间。

蜗壳钢板的厚度为20毫米至40毫米,厂房轴线和机组中心线存在11.5度的夹角。

此钢蜗壳具有较为复杂的混凝土结构受力情况与尺寸体型,在设计结构过程中,对围岩的压力、内外水的压力、发电机组的荷载、结构的自重、风罩传递的荷载等基本荷载类型均有涉及,水轮机的总重量是10500千牛,发电机的总重量是18600千牛。

三、设计混凝土蜗壳的混凝土结构在设计时,钢蜗壳断面使用了全埋型圆断面,安装的机组高程为128米,段长是26米,低于124米高程的部分宽23米,高出的部分宽25米。

金属蜗壳水力计算和尾水管设计

金属蜗壳水力计算和尾水管设计

金属蜗壳的水力计算在选定包角ϕ0及进口断面平均流速v 0后,根据设计流量Q r ,即可求出进口断面面积F 0。

由于要求水流沿圆周均匀地进入导水机构,蜗壳任一断面ϕi 通过的流量Q ϕ应为 Q Q ir ϕϕ=360(7—6)于是,蜗壳进口断面的流量为 Q Q r 00360=ϕ(7—7)进口断面的面积为F Q v Qv r 00000360==ϕ (7—8) 圆形断面蜗壳的进口断面半径为 ρπϕπmax ==F Q v r00360 (7—9)采用等速度矩方法计算蜗壳内其它断面的参数。

取蜗壳中的任一断面,其包角为ϕi ,如图7—15所示,通过该断面的流量为Q v bdr u r R aiϕ=⎰(7—10)因v r K u =,则v K r u =/,代入式(7—10)得: Q Kbrdr r R aiϕ=⎰(7—11) 式中:r a ──座环固定导叶的外切圆 半径;R i ──蜗壳断面外缘到水轮机轴线半径;r ──任一断面上微小面积到水轮机轴线的半径: b ──任一断面上微小面积的高度。

一、圆形断面蜗壳的主要参数计算对圆形断面的蜗壳,断面参数b 从图7—15中的几何关系可得b r a i i =--222ρ() (7—12) 式中:ρi ──蜗壳任一断面的半径;a i ──任一断面中心到水轮机轴线距离。

图7—15 金属蜗壳的平面图和断面图水轮机轴r aa ir R id rρibv uv rviϕ将式(7—12)代入式(7—11),并进行积分得:Q K a a i i i ϕπρ=--222() (7—13) 由式(7—6)与式(6-13)得ϕπρi r i i i KQ a a =--72022 () (7—14) 令C KQ r=720 π,称为蜗壳系数,则有ϕρi i i i C a a =--()22 (7—15)或 ρϕϕi i ii a C C =-⎛⎝ ⎫⎭⎪22(7—16)以上两式中的蜗壳系数C 可由进口断面作为边界条件求得。

第3章 水轮机结构(蜗壳及尾水管)课件

第3章  水轮机结构(蜗壳及尾水管)课件
B5很大时,加隔墩d5=(0.1~0.15) B5
顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
断面半径:
max

Fc


Qmax 0 3600 VC
从轴心线到蜗壳外缘半径:
Rmax ra 2 max
(ii) 中间断面( i )
Qi
i
i
360
Q max 0
Qi Qmaxi Fi Vu 3600Vc
Q max i 360 0 VC
板衬砌防渗(H 最大达Leabharlann 80m)2. 金属蜗壳

第3章 水轮机结构(蜗壳及尾水管)(参考研究)

第3章  水轮机结构(蜗壳及尾水管)(参考研究)

Ri ra 2i
由此可以绘出蜗壳平面图单线图。其步骤为:
(i) 确定φ0 和VC ; (ii) 求Fc、ρmax、Rmax; (iii) 由φi确定Fi、ρi、Ri。
14
(2) 混凝土蜗壳的水力计算(半解析法)
15
(1) 按进口流速求进口断面积;
(2) 根据水电站具体情况选择断面型式,并确定断面尺 寸,使其 F Fc
第四节 水轮机蜗壳的形式及尺寸确定
一、蜗壳的功用及型式 (一) 功用
蜗壳是水轮机的进水部件,把水流以较小的水头 损失,均匀对称地引向导水机构,进入转轮。设 置在尾水管末端。 (二) 型式 混凝土蜗壳和钢蜗壳。
1
1. 混凝土蜗壳
适用于低水头大流量 的水轮机。 H≦40m, 钢筋混凝土 浇筑,“T”形断面。 当H>40m时,可用钢 板衬砌防渗(H 最大达 80m)
21
2. 肘管: 90°变断面的弯管,进口为圆形断面,出口为 矩形断面。F进/F出=1.3
❖ 曲率半径R小——离心力大——压力、流速分布 不均匀—hw大。R=(0.6~1.0)D4
❖ 为减小转弯处的脱 流及涡流损失,肘 管出口收缩断面 (口扩散段: ❖ 矩形扩散管,出口宽度B5, ❖B5很大时,加隔墩d5=(0.1~0.15) B5 ❖顶板 α=10°~13°,底板水平。
(3) 选择顶角与底角点的变化规律(直线或抛物线),以 虚线表示并画出1、2、3…….等中间断面。
(4) 测算出各断面的面积,绘出:F = f(R)关系曲线。
(5) 按
Fi
Qi Vu
Qm axi
360 0Vc
绘出F = f(Φ)直线。
(6) 根据φi确定Fi、Ri及断面尺寸,绘出平面单线图。

第三节 下部块体结构

第三节 下部块体结构

第三节下部块体结构水电站厂房下部块体结构指水轮机层以下的厂房部分,它的形状及尺寸主要取决于水力系统的布置。

中、低水头的水电站的各种机电设备中,过流部件的尺寸相对较大,因此,下部结构的尺寸一般决定了主厂房的长度与宽度。

对于图16-3所示水电站,下部块体结构即高程116. 00 m以下部分,而水力系统包括压力钢管、蝴蝶阀、蜗壳、水轮机、尾水管、尾水闸门及它们的附属设备。

一、水轮机、蜗壳及尾水管的布置同一座水电站上,一般安装相同型号的机组,但有时却由于订货或其他原因不得已安装不同型号的机组。

图16-3所示水电站即属后者,其#3,#4水轮机是天津发电设备厂的HL-200-LJ-250型,转速250 r/min,而#1,#2机是杭州发电机厂的HL-009-LJ-250型。

安装不同型号的机组常给设计、安装、运行、检修带来一些额外的麻烦。

水轮机安装高程是厂房的一个控制性标高。

反击式水轮机的安装高程主要取决于气蚀。

确定安装高程时下游尾水位常取一台机满发时的尾水位。

若水电站建成后下游河床可能会被冲刷而导致水位降低的话,设计下游尾水位还要相应降低。

图16-3所示水电站采用竖轴混流式水轮机,其安装高程(113.70 m)为一台机满发时的下游尾水(115.50 m)加上允许吸出高度H,再加上导叶高度的一半。

厂址的地形地质条件有时也会影响水轮机的安装高程。

例如,基岩座落较深时,适当降低安装高程可使得厂房的基础安置在完好基石上。

引水式厂房内的混流式水轮机一般采用钢蜗壳,其几何尺寸由水轮机厂家提供。

钢蜗壳常埋人混凝土中以防止振动,并由混凝土承受部分不均衡的作用力。

蜗壳上要设进人孔供检修时使用。

进人孔常设在蝴蝶阀下游明钢管上,也可设在蜗壳顶部,从水轮机层地坪向下开孔进人。

竖轴水轮机常采用肘形尾水管,其几何尺寸也由水轮机厂家给出,但可在一定范围内修改(需征得厂家同意),以满足厂房布置的特殊需要。

如图16-3中,为了在尾水管之上布置副厂房,尾水管水平段长度由原来的11. 25 m增至15. 10 m,出口高度也略有增加。

蜗壳及尾水管尺寸

蜗壳及尾水管尺寸

蜗壳平面单线图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
4、混凝土蜗壳的水力计算
蜗壳及尾水管的尺寸
作业
已知某轴流式水轮机的参数如下:设计水头hr=38.1m,设 计水头下的最大Q0=54.7m3/s,转轮标称直径D1=3.3m,水轮机导 叶高度b0=0.4D1,座环外径Da=5.3m, 座环内径Da=4.5m。此外, 因水电站条件限制,厂房布置场地比较狭窄,要求选择蜗壳型 式时考虑缩小机组段长度。试计算蜗壳的断面及平面尺寸,并 绘出平面单线图。
蜗壳及尾水管的尺寸
一、蜗壳的断面型式
金属蜗壳 混凝土蜗壳
蜗壳及尾水管的尺寸
蜗壳的中间断面
蜗壳及尾水管的尺寸
二、蜗壳的参数
1、尺寸参数
蜗壳的尺寸参数
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳的进口 断面
鼻端
蜗壳的包角
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳包角
蜗壳及尾水管的尺寸
二、蜗壳的参数
3、进口流速
混凝土
进口流速与水头关 系曲线
金属
进口流速系数与水头关系曲线蜗壳及尾来自管的尺寸三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
蜗壳平面单线图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
厂房蜗壳层平面图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
2、计算原理

蜗壳及尾水管尺寸

蜗壳及尾水管尺寸
蜗壳及尾水管的尺寸
一、蜗壳的断面型式
金属蜗壳 混凝土蜗壳
蜗壳及尾水管的尺寸
蜗壳的中间断面
蜗壳及尾水管的尺寸
二、蜗壳的参数
1、尺寸参数
蜗壳的尺寸参数
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳的进口 断面
鼻端
蜗壳的包角
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳包角
蜗壳及尾水管的尺寸
二、蜗壳的参数
蜗壳平面单线图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
4、混凝土蜗壳的水力计算
蜗壳及尾水管的尺寸
作业
已知某轴流式水轮机的参数如下:设计水头hr=38.1m,设 计水头下的最大Q0=54.7m3/s,转轮标称直径D1=3.3m,水轮机导 叶高度b0=0.4D1,座环外径Da=5.3m, 座环内径Da=4.5m。此外, 因水电站条件限制,厂房布置场地比较狭窄,要求选择蜗壳型 式时考虑缩小机组段长度。试计算蜗壳的断面及平面尺寸,并 绘出平面单线图。
3、进口流速
混凝土
进口流速与水头关 系曲线
金属
进口流速系数与水头关系曲线
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
蜗壳平面单线图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
厂房蜗壳层平图
蜗壳及尾水管的尺寸
三、蜗壳水力计算
2、计算原理

水电站水轮机尾水管、蜗壳和机墩施工质量控制——以六堡水电站为例

水电站水轮机尾水管、蜗壳和机墩施工质量控制——以六堡水电站为例

蜗 壳 顶板 受 力 比较 复 杂 , 计 钢 筋 直 径较 大 而 且 排 间距 较 设
小, 两层钢筋 , 进水 口水下墙 、 机墩 预埋 钢筋 较多 , 安装难 度较
大 。注意机墩下部钢筋和蜗壳顶盖钢筋焊接 ,顶盖重量 大 、 受 力复杂 , 浇筑前检查 排架 、 模板 的强度和刚度 , 确保施 工安全 。 同时顶盖施工要与周边 同步互相协调 , 保证整体性 和连接性 。
点和 值得 借鉴 的施 工 经 验 。
关 键 词 : 电站 ; 壳 : 水 管机 墩 施 工 水 蜗 尾 di 03 6/i n10 — 5 4 0 2 6 2 o: . 9 .s. 6 85 . 1. . 5 1 9 js 0 2 00
1 六 堡 水 电 站 施 工
水管钢筋与间墙钢筋焊接 ,检查尾水排水预埋管安装位置是否
参 考文 献 :
埋与机座座环底部连接 的螺 栓 , 待砼有一定 的强度后 , 再安装
座环 , 座环底部和转轮室套壁 内采用人工 捣插 侧面敲击 , 外壁 用振捣器振动等方法使机座壁 内砼密实 , 足设计要求。 满
机墩上部 的下 支架 基础螺栓预留孑 和定子基础预 留螺栓 L
孔, 待下支架 和定 子调 试检测合格后 , 采用细石砼 , 3 掺 %的彭
2 结 语
电 快报 .0 96. 2 0 ()
『 唐红. 2 1 小型 水 电站 技 术 改造 中应 注 意 的 几 个 f题 [. 肃 水 - J甘 I ]
利 水 电技 术 .0 61. 2 0 () f 赵 林明 , 陈辉 , 3 ] 徐 王利 英 , . 轮 机 尾 水 管 压 力 脉 动 分 析 等 水
已不 正常 , 则应检查站用配 电屏 的负荷 开关 、 接触器 、 熔断器 , 检查所用变高压熔 断器等情况 , 对发现的问题作相应处理 。③ 检查冷却控制箱各 负荷开关 、 接触器 、 断器 、 熔 热继 电器等工作 状态是否正常 , 若有问题 , 即处理或手动复归 。 立

水电站教程课件 第二章 水轮机的蜗壳、尾水管及空化空蚀

水电站教程课件 第二章 水轮机的蜗壳、尾水管及空化空蚀

表 2-1
混凝土蜗壳断面尺寸
混凝土蜗壳 形式
断面尺寸 参数
特点
对称式 (m=n)
b/a =1.20~1.85; γ=0°~35°
水力性能好, 常采用
下伸式
上伸式
(m>n)
(m<n)
(b-m)/a=1.20~1.85;
(b-n)/a=1.20~1.85; b/a≤2.00 ~2.20(需缩短
机组间距时取大值);
42
下部分时预先装好蜗形的模板,模板拆除后即成蜗壳。为加强
蜗壳的强度需在混凝土中配钢筋,又称钢筋混凝土蜗壳。混凝
土蜗壳与座环或固定导叶的联接要有足够的拉筋。
(二) 蜗壳的断面形状及包角
1.金属蜗壳
金属蜗壳断面采用圆形断面形状,便于铸造和焊接,水力
性能好,强度高。断面面积和半径随着由进口到尾部流量的减
小而减小,约在最后 90°的尾部,由于圆断面面积小到不能和 座环蝶形边连接,因此这部分断面形状由圆过渡到椭圆。
图 2-3 混凝土蜗壳
蜗壳的末端(称为鼻端),通常和座环的某个固定导叶连接在一起。从鼻端到蜗壳进口断面之
间的中心角 φ0,称为蜗壳的包角(逆时针),如图 2-4 所示,图中 Da、Db 分别为座环固定导叶外 径和内径。
三、蜗壳的水力计算
蜗壳水力计算的目的,是确定蜗壳各断面的几何形状和尺寸,并绘制蜗壳平面和断面单线图。 这是水电站厂房布置设计中的一项重要工作。
44
蜗壳设计是在已知水轮机额定水头 Hr 及其相 应的最大引用流量 Q、导叶高度 b0、座环固定导 叶外径 Da 和内径 Db,以及选定蜗壳进口断面形
状、包角 φ0 和平均流速 v0 的情况下进行的。根据
(3)铸焊蜗壳:与铸造蜗壳一样,适用于

水轮机选型及蜗壳尾水管设计

水轮机选型及蜗壳尾水管设计
(5) 辅助曲线的绘制:以效率η 为纵坐标,出力N为横坐标,用 表中的数据,对每个水头绘制一条工作特性曲线。见图1。
图1
图2
(6) 运转综合特性曲线的绘制
以水头为纵坐标,出力为横坐标,绘出坐标系。 见图2。 在图2上绘出几个特征水头的水平线。 在图1上选取几个整数效率值,画出水平线,与辅 助曲线形成一些交点。
B,即为H<Hr时的出力限
制线。
2. 出力限制线的绘制
① 根据表中三个水头下所得到的出力,可以在运转综合特 性曲线上绘出三个点。连接着三个点即可得到斜向阴影 线。
② 在高水头下,水轮机的出力受发电机最大限制出力的限
制,作竖向阴影线N=Nf。 ③ 整个出力限制线由两部分组成:N=Nf的竖直线段和三个
M n1
N ηM Q'1
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η N
Q'1
Q'1
5%出力限制 线
① 为了保证绘制运转综合特性曲线的精确性,在H、 N网格上至少绘出三个水头,其中包括Hmax、Hmin 和Hr(或Hav)。对每一个水头,计算出对应的n'1。 ② 在轮系综合特性曲线上绘制n'1的水平线,并查出其 与等效率线交点的坐标(η M, Q'1); ③ 计算出原型水轮机的效率; ④ 按照公式N=9.81Q'1D12H3/2η 计算水轮机的出力;
三、所需要的有关资料
1. 水轮机产品技术资料:系列型谱、生产厂家、产品目 录、模型综合特性曲线。 2. 水电站技术资料:河流梯级开发方案、水库的调节性 能、水电站布置方案、地形、地质、水质、泥沙情况、 总装机容量、水电站运输、安装技术条件;水文资料: 特征流量及特征水头、下游水位流量关系曲线。 3. 水电站有关经济资料:机电设备价格、工程单价、年 运行费等。 4. 电力系统资料:系统负荷构成,水电站的作用及运行 方式等。

蜗壳及尾水管的水力计算

蜗壳及尾水管的水力计算

第二章 蜗壳及尾水管的水力计算第1节 蜗壳水力计算一.蜗壳尺寸确定水轮机的引水室是水流进入水轮机的第一个部件,是反击式水轮机的重要组成部分。

引水室的作用是将水流顺畅且轴对称的引向导水机构。

引水室有开敞式、罐式和蜗壳式三种。

蜗壳式是反击式水轮机中应用最普遍的一种引水室。

它是用钢筋混凝土或者金属制造的封闭式布置,可以适应各种水头和流量的要求。

水轮机的蜗壳可分为金属蜗壳和混凝土蜗壳两种。

1.蜗壳形式蜗壳自鼻端到进口断面所包围的角度称为蜗壳的包角,水头大于40m 时一般采用混凝土蜗壳,包角;当水头较高时需要在混凝土中布置大量的钢筋,造价可能比混凝土蜗壳还要高,同时钢筋布置过密会造成施工困难,因此多采用金属蜗壳,包角。

本电站最高水头为174m ,故采用金属蜗壳。

2.座环参数根据水轮机转轮直径D 1查[1].P 128页表2—16得: 座环出口直径:()()mm D b 27252600180019001800200026002850=+---=座环进口直径:()()mm D a 32503100180019001800200031003400=+---=蜗壳常数K =100(mm )、r =200(mm ) 3.蝶形边锥角ɑ取4.蝶形边座环半径()m k D r a D 725.11.0225.32=+=+=5.蝶形边高度h()m k b h 29.055tan 1.0276.0tan 20=+=+=ϕ 6.蜗壳圆形断面和椭圆形断面界定值s()m h s 51.055cos 29.055cos ==7.座环蝶形边斜线L()m hL 354.055sin ==8.座环蝶形边锥角顶点至水轮机轴线的距离()m a h r r D 522.155tan 29.0725.1tan 1=+=+=二.蜗壳进口断面参数计算1.蜗壳进口流量Q 0的计算由HLD10运转综合特性曲线查得: Pr =35833.3(kW)、Hr =158.75(m )、ηT =0.905)/(4.25905.075.15881.93.3583381.93s m H P Q T r r r =⨯⨯==η)/(3.244.25360345360300s m Q Q r =⨯==ϕ 2.蜗壳进口断面面积F 0的计算)(2.2113.242000m v Q F ===根据水头查设计手册图2—21得:v 0=11m/s 3.蜗壳进口断面半径ρ0的计算)(84.014.32.200m F ===πρ4.进口断面圆心至水轮机中心线的距离α0查[1].P128表2—16金属蜗壳座环尺寸系列得:k =0.1m 、D a =3.25m 、D b =2.725m)(5.229.084.0725.1222200m h r a D =-+=-+=ρ5.蜗壳系数C 的计算()230020200202000=--=⇒--=ρϑρϑa a C a a C6.进口断面外半径R 0()m a R 34.384.05.2000=+=+=ρ三.蜗壳圆形断面参数计算1. 蜗壳圆形断面参数计算:见表2—1表2—1 蜗壳圆形断面计算表四.蜗壳椭圆形断面参数计算1.蜗壳椭圆形断面参数计算:见表2—2表2—2蜗壳椭圆形断面计算表四.蜗壳单线图的绘制HLD10蜗壳单线图见附图4第2节尾水管尺寸的计算一.尾水管基本尺寸的确定1.尾水管型式的选择水流在转轮中完成了能量交换后,将通过尾水管流向下游,这是尾水管的基本作用。

第二章 水轮机的蜗壳、尾水管及气蚀

第二章 水轮机的蜗壳、尾水管及气蚀
背面一直下降至最低点K点处(pk),然后回升至出口p2
如果K点的压力降 低至汽化压力,则 将发生翼型气蚀
K点的最低压力pk 是研究翼型气蚀的 控制参数
对K点的压力进行 研究
通过研究叶片上的压力分布情况,得 到叶片上压力最低点(一般为叶片背面 靠近转轮叶片出口处)K点的压力为:
pk


蜗壳单线图,为厂房设计提供依据。
已知:
H r ,Qm ax, b0 , Da , Db ,0 ,Vc
1.水流在蜗壳中的运动规律
水流进入蜗壳后,形成一种旋转运动(环流),之 后进入导叶,水流速度分解为径向分速Vr、圆周分 速Vu。
进入座环时,按照均匀轴 对称入流的要求,Vr=常数。
Vr

Qm a x
pa


Hs

(Wk2 W22 2g
第二章 水轮机的蜗壳、尾水管及气蚀
§2.1 蜗壳的型式及主要参数选择
一、蜗壳设计的要求
蜗壳是反击式水轮机的重要引水部件,对水轮机的效率及 运行安全稳定性有很大影响,通常对蜗壳设计提出如下要求:
(1)过水表面应光滑、平顺,水力损失小; (2)保证水流均匀、轴对称地进入导水机构; (3)水流进入导水机构前应具有一定的环量; (4)具有合理的断面形状和尺寸; (5)具有必要的强度及合格的材料。
转轮获得能量:
EA

E1
E2A

H1
(H2
2V22 )
2g
2.
设尾水管时: E1 (H1
pa )

E2B

H2

p2


2V22
2g
根据2-2至5-5断面能量方程:

蜗壳、尾水管

蜗壳、尾水管

绘制蜗壳单线图 1、蜗壳的型式型式:由于水电站特征水头大于40米,所以选用断面形状为圆形的金属蜗壳。

2、蜗壳主要参数的选择(主要参考《水力机械》第二版,水利水电出版社) 依据《水力机械》第二版P98知圆断面金属蜗壳的进口断面的包角︒︒=345ϕ; 蜗壳进口断面的流量s m 3.373453609.38360Q Q 3max c =⨯==︒︒ϕ,设计水头=46.2m 。

查《水力机械》第二版P99图4—30(a)曲线得C V =6.15m/s 。

依据水轮机的型号HL220—LJ —225知《水力机械》第二版P162的附表五得:当水轮机的转轮直径D 1=2250mm 时,金属蜗壳的座环外径为mm 3850D a =,座环内径为mm 3250D b =。

因此此金属蜗壳的座环外半径为a r =1925mm , 金属蜗壳座环的内半径为b r =1625mm 。

座环示意图如图所示:3、蜗壳的水力计算(1)对于蜗壳进口断面:依据《水力机械》第二版P100计算如下:断面的面积:2c c c 065.615.63.37V F m Q ===断面的半径:390.114.3065.6max ===πρcF m 从轴中心线到蜗壳外缘的半径:m r a 705.4390.12925.12R max max =⨯+=+=ρ (2)、对于中间任一断面(规范)设i ϕ为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处: 0i i max Q =/360Q ϕ() i a i R =r +2ρ i m a x i C =Q /360V ρϕπ()分别取i ϕ为0003075.....345、列表计算如下:i ϕ ρi Ri0.000 0.000 1.925 15.000 0.290 2.504 30.000 0.410 2.744 45.000 0.502 2.929 60.000 0.579 3.084 75.000 0.648 3.221 90.000 0.710 3.344 105.000 0.767 3.458 120.000 0.819 3.564 135.000 0.869 3.663 150.000 0.916 3.757 165.000 0.961 3.847 180.000 1.004 3.932 195.000 1.045 4.014 210.000 1.084 4.093 225.000 1.122 4.169 240.000 1.159 4.243 255.000 1.195 4.314 270.000 1.229 4.383 285.000 1.263 4.451 300.000 1.296 4.516 315.000 1.328 4.580 330.000 1.359 4.643 345.000 1.3894.705尾水管单线图的绘制根据前面已知的资料,结合水轮机的型号HL220—LJ —225,参考《水力机械》第二版可知:选用水轮机的标称直径为1 2.25D m =,当水轮机的出口直径21D D >的混流式水轮机,由《水力机械》第二版表4-17知: 当11D m =hL 5B 4D 4h 6h 1L 5h 2.64.52.7201.351.350.6751.821.22当1 2.25D m =时,h L 5B 4D 4h 6h 1L 5h 5.8510.1256.123.0383.0381.5194.0952.745为了减少尾水管的开挖深度,采用弯肘形尾水管,弯肘形尾水管由进口直段、肘管和出口扩散段三部分组成。

蜗壳及尾水管复杂空间曲面三维布筋方法及应用

蜗壳及尾水管复杂空间曲面三维布筋方法及应用

蜗壳及尾水管复杂空间曲面三维布筋方法及应用刘会波;杨新军;李军;吕昌伙【摘要】The spiral case and tailrace conduit in hydropower stations are constituted of complex space surfaces and the struc-ture is extremely complicated. Thus the reinforced bar design under two-dimensional environment is labor and time consuming. According to the above problems, considering the shape of reinforced bar and the concrete surface is similar, the lateral reinforce-ment design based on sectional method and axial reinforcement design based on discrete reconstruction method are presented re-spectively aiming at the curved transition section, based on the thought of "three-dimensional reinforcement design, two-di-mensional drawing". The engineering practices show that the presented methods could realize three-dimensional reinforcement design of spiral case and tailrace conduit with high efficiency and good drawing quality and it has reference for other reinforcement design of structures with complex shape.%水电站蜗壳及尾水管由复杂空间曲面构成,体型结构十分复杂,二维配筋设计工作量大,效率低。

蜗壳尾水管设计

蜗壳尾水管设计

蜗壳的型式及主要参数选择一、蜗壳的作用及型式(一) 作用保证把来自压力水管的水流以较小的水流损失,均匀、轴对称地引入导水机构,使转轮四周所受的水流作用力均匀;使水流产生一定的旋转量(环量),以满足转轮的需要。

(二) 型式1. 混凝土蜗壳适用于低水头大流量的水轮机。

H≦40m, 钢筋混凝土浇筑,“T”形断面。

当H>40m时,可用钢板衬砌防渗(H 达80m)2. 金属蜗壳● 当H>40m时采用金属蜗壳。

其断面为圆形,适用于中高水头的水轮机。

● 钢板焊接:H=40~200m,钢板拼装焊接。

● 铸钢蜗壳:H>200m时,钢板太厚,不易焊接,与座环一起铸造而成的铸钢蜗壳,其运输困难。

● 二、蜗壳的主要参数● 1.断面型式与断面参数。

● 金属蜗壳:圆形结构参数:座环外径、内径、导叶高度、蜗壳断面半径、蜗壳外缘半径● 混凝土蜗壳:“T”形。

(1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n :上伸式(4) n=0:平顶蜗壳中间断面:蜗壳顶点、底角点的变化规律按直线或抛物线确定。

2.蜗壳包角● 蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0(1) 金属蜗壳:φ0=340°~350°,常取345°(2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一大部分水流直接进入导叶,为非对称入流,对转轮不利)(2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一大部分水流直接进入导叶,为非对称入流,对转轮不利)尾水管的作用、型式及其主要尺寸确定一、尾水管的作用(1) 汇集转轮出口水流,排往下游。

(2) 当Hs>0时,利用静力真空。

(3) 利用动力真空Hd。

二、尾水管型式及其主要尺寸● 尾水管的作用是排水、回收能量。

其型式、尺寸影响、厂房基础开挖、下部块体混凝土尺寸。

水轮机蜗壳、尾水管

水轮机蜗壳、尾水管

通过研究叶片上的压力分布情况(课本图224),得到叶片上压力最低点(一般为叶片背 面靠近转轮叶片出口处)K点的压力为:(相对

Qmax 360
0
Qmax——水轮机的单机最大引用流量。
Vc↑→Fc↓→hw↑; Vc↓→Fc↑→hw↓;
一般由Hr—VC曲线确定VC。(课本图2-8)
三、水流在蜗壳中的运动规律
水流进入蜗壳后,形成一种旋转运动(环 流),之后进入导叶。水流速度分解为Vr、 Vu(课本图2-9)。
3、出口扩散段
矩形扩散管,出口宽度B5=肘管出口宽度 B6
顶板 α=10°~13°,L2 = L-L1=(2~ 3)D1 底板水平,B5很大时,加隔墩。
4、尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重 要因素。
h=h1+h2+h3+h4 h1,h2由转轮结构确 定,h4肘管高度确定,不易变动。h取决于h3。 h3大→hw小→ηw大→开挖加大,工程投资大;
四、蜗壳的水力计算
水力计算的目的:确定蜗壳各中间断面的 尺寸,绘出蜗壳单线图,为厂房设计提供 依据。已知:
H r,Q m,a b 0 x ,D a,D b,0,V c
及断面型式下进行(Db座环内径)。 按Vu=Const假定计算(也可按
Vur=Const)
1、金属蜗壳水力计算

(2)
动力真空:
Hd
2v22 5v52
2g
h25
有尾水管后转轮出口(2—2)能量损失:(换掉E2
中P2)
E2 H2(2v2 22g5v5 2h25)H222g v2 2
5v2 5/2gh25
3、尾水管的作用

蜗壳计算

蜗壳计算

第二节 蜗壳计算一、 蜗壳形式、进口断面参数选择1、蜗壳形式选择由于应力强度的限制,钢筋混凝土的蜗壳只能在40m 水头以下的电站中采用,而对于40m 以上水头的电站来说,只能采用金属蜗壳。

根据原始资料,本次设计电站的最大水头为110m ,故应选择金属蜗壳。

2、蜗壳进口断面参数选择 (1) 包角ϕ的选择混凝土蜗壳包角ϕ通常选择在270~180之间,而金属蜗壳的包角通常在350~340之间,故选取包角345ϕ︒=。

(2) 选择进口断面平均流速0v增大平均流速v-可以在保证流量的前提下减小蜗壳尺寸,但过大的0v 又会增加损失从而降低效率,故应尽量合理选择。

v-=K H =0.79﹡.6103=8.05(m/s ) 参【1】P119K 为蜗壳的流速系数,与水头有关,查得0.79 参【2】P120 图(5-14) H 为水轮机设计水头。

(3) 确定进口断面的流量0Q 计算公式如下: 2000111360360T QQ Q D H ϕϕ==限 =251.5 m 3/s 参考【2】P 124ϕ0为进口断面的包角。

(4)计算进口断面面积0F 计算公式如下: 00v Q F ==251.5/8.05=31.24 ㎡/s (5)计算进口断面半径0ρ计算公式如下:πρ00F ==π4.231=3.15 m 参考【2】P 124(6)确定座环内外径a D 、b Dmr m K m D mD b a 4.015.06.68.7==== 参考【2】P 128表2-16(7) 确定碟形边锥角α由座环工艺决定,一般取55α︒=。

(8)计算碟形边高度h 计算公式如下:202s i n 22b h ktg r αα=++ (m)=0.9 m 010b b D ⨯= =5*0.27=1.35(9)计算碟形边半径0r计算公式如下:k D r a+=20=3.9+0.15=4.05 m 固定导叶外切圆半径ra :r a=D a /2=7.8/2=3.9(10)确定进口断面的中心距0a计算公式如下: 22000h r a -+=ρ =22.905.135.04-+=7 m(11) 计算进口断面的外半径0R 计算公式如下:000ρ+=a R =7.35+3.15=10.15 m(12)计算蜗壳系数C 计算公式如下:202000ρϕ--=a a C 参考【2】P 124公式2-5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜗壳及尾水管设计
(1)蜗壳水力计算
从蜗壳鼻端至蜗壳进口断面0-0之间的夹角称为蜗壳的包角,常用φ0表示,蜗壳的鼻端即位于蜗壳末端连接在一起的那一个特殊固定导叶的出水边,一般采用φ0=345°
蜗壳进口断面平均流速V c是决定蜗壳尺寸的主要参数。

V c值根据水轮机设计水头Hr从图中查得V c=4.5 m/s
1主要参数
H r=31.0 m Q max=13.17 m3/s D a=2.42m 包角φ0=345 D a/2=2.42/2=1.21 m
2 蜗壳计算表
水轮机蜗壳单线图
(2)尾水管设计
根据以往经验,弯肘形尾说管不但可以减少开挖深度,而且具有良好的水力性能
尾水管尺寸表
弯肘型尾水管有进口直锥段.中间肘管段和出口扩散段和出口扩散段三部分组成.
A 进口直锥段
混流式水轮机单边扩散角009~7=θ,这里取 80.
B 中间弯肘段
是一段900转弯的变截面弯管,进口断面为圆形,出口断面为矩形.
C 出口扩散段是一段水平放置,两侧平行,顶板上翘的矩形扩散管.起顶板仰角一般取0013~10=α,这里取13.
应用第三种比例情况进行尺寸计算:
h=2..6×1.4=3.64 m L=4.5×1.4=6.30 m B 5=2.72*1.4=3.808m D 4=1.35×1.4=1.89 m h 4=1.35×1.4=1.89 m
h 6=0.675×1.4=0.945m
L 1=0.94×1.4=2.548 m h 5=1.22×1.4=1.708m
尾水管高度指水轮机底环平面至尾水管底版的高度.
h=2.6*D 1=2.6*1.4=3.64m 满足最低要求,宽度B= 3.808m,同样满足要求. 尾水管长度
指机组中心线至尾水管出口断面的距离. L=(3.5~4.5)D 1 这里取4 则L=4*1.4=5.6m。

相关文档
最新文档