高一数学《1.1集合的概念(二)》.ppt
合集下载
人教A版高中数学必修一:1.1.1集合的含义与表示第二课时课件(人教A版必修1)(2)

2.用描述法表示下列集合: (1)所有正偶数组成的集合; (2)方程x2+2=0的解的集合; (3)不等式4x-6<5的解集; (4)函数y=2x+3的图象上的点集. 解:(1)文字描述法:{x|x是正偶数}. 符号描述法:{x|x=2n,n∈N*}. (2){x|x2+2=0,x∈R}. (3){x|4x-6<5,x∈R}. (4){(x,y)|y=2x+3,x∈R,y∈R}.
2.用集合所含元素的_共__同__特__征__表示集合的方 法称为描述法.具体的方法是:在花括号内先写上 表示这个集合元素的一般符号及取值(或变化)范围, 再画一条竖线,在竖线后写出这个集合中元素所具 有的共同特征.
自主探究
1.集合{x|x>1}与集合{y|y>1}是否表示同一集合? 答:虽然两个集合的代表元素不同,但实质上它 们均表示大于1的所有实数,故是同一集合. 2.下面三个集合:①{x|y=x2+1};②{y|y=x2+ 1};③{(x,y)|y=x2+1}.它们各自的含义是什么?它 们是不是相同的集合? 答:集合①{x|y=x2+1}的代表元素是x, 满足条件y=x2+1中的x∈R,
(2)元素具有怎样的属性?当题目中用了其他字 母来描述元素所具有的属性时,要去伪存真,而不 能被表面的字母形式所迷惑.
用描述法表示集合时,若需要多层次描述属性 时,可选用逻辑连接词“且”与“或”等连接;若描述 部分出现元素记号以外的字母时,要对新字母说明 其含义或指出其取值范围.
(3)集合语言的转化 集合语言是现代数学的基本语言,也就是用集 合的有关概念和符号来叙述问题的语言.集合语言 与其他语言的关系以及它的构成如下:
3.用列举法表示大于2小于15的偶数全体为 ________.
答案:{4,6,8,10,12,14} 4.已知集合A={-1,0,1},集合B={y|y=|x|, x∈A},则B=________. 解析:∵|-1|=1,|0|=0,|1|=1,故B={0,1}. 答案:{0,1}
集合的概念ppt课件

例: 表示 以内所有素数构成的集合,则4 ___ ,3____ .
新课引入
概念深化
四、常用数集及其记法
非负整数集 (自然数集)
正整数集
整数集 有理数集 实数集
或
Natural number
Zahlen quotient Real number
N*或N+ N Z Q R
新课引入
应用举例
五、集合的表示方法
×√ (2)较小的数.
新课引入
牛刀小试
2022年8月底,我们踏入了心仪的校园,找到了自己的班级.下列现象能 否构成一个集合,并说明理由?
(1)你所在班级中的全体学生; (2)你所在班级中比较高的同学; (3)你所在班级中身高超过178cm的同学; (4)学习成绩比较好的同学.
能 不能 能 不能
新课引入
遍性的特点
新课引入
布置作业
•作业1: 习题1.1第2,3,4题 •作业2: 《课时练习册》第一节内容 •作业3: 元素与集合的关系有多少种?如何表示?类似的,集合与集合之间的关系又 有多少种?如何表示?请同学们通过预习课本来解答.
新课引入
结束语
谢谢观看!
元素
新课引入
概念形成
一、概念 元素:一般地,我们把研究对象统称为元素.
集合:把一些元素组成的总体叫做集合(简称为集).
我们通常用大写拉丁字母
表示集合,用小
写拉丁字母
表示集合中的元素.
康托尔(Georg Cantor,1845~ 1918) 德国数学 家, 集合论创始 人, 他于1895年 谈到“集合”一词.
1.列举法: 把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集 合的方法.
人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高一数学集合的概念PPT课件 图文

-P4回答下列问题 • 1.集合的概念 • 2.集合的表示法 • 3.元素和集合之间的关系 • 4.元素的性质 • 5.重要数集
观察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
A={2,4成,6,8,10}, 其中集合中的2元,素4为,8,10
(2)所有直角三角形,可表示为 A={x/x是直角三角形}
注:“{}”本身包含“所有”“全体” 的意义,在{}内元素应去除“所 有”“全体”的字样.
33..集元合素元与集素合的之性间质的:关系
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
1. 定 义
一般地, 把一些能够确定的 不同对象看成一个整体, 就说这个整体是由这些对 象的全体构成的 集合.
集合中每个对象叫做这个
集合的元素.
2. 集合的表示法
集合常用大写字母A,B, C...表示,且用“{}” 括起来.
元素则常用小写字母a,b, c,...表示.
例如 (1)2,4,6,8,10可表示
如果a不是集合A的元素,就
说a不属于集合A,记作a A.
例如:A={1,3,5,7},则
1∈ A,3∈ A,2 A
4.集合中元素的性质 (1)确定性:集合中的元素必须是 确定的.
(2)互异性:集合中的元素必须
是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
例:判断下列说法是否正确
× 1.著名的科学家构成一个集合 × 2.很小的数构成一个集合 √ 3.身高超过1.80米的学生构成一个集合 × 4.{1,2,2,3}集合中有4个元素
观察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
A={2,4成,6,8,10}, 其中集合中的2元,素4为,8,10
(2)所有直角三角形,可表示为 A={x/x是直角三角形}
注:“{}”本身包含“所有”“全体” 的意义,在{}内元素应去除“所 有”“全体”的字样.
33..集元合素元与集素合的之性间质的:关系
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
1. 定 义
一般地, 把一些能够确定的 不同对象看成一个整体, 就说这个整体是由这些对 象的全体构成的 集合.
集合中每个对象叫做这个
集合的元素.
2. 集合的表示法
集合常用大写字母A,B, C...表示,且用“{}” 括起来.
元素则常用小写字母a,b, c,...表示.
例如 (1)2,4,6,8,10可表示
如果a不是集合A的元素,就
说a不属于集合A,记作a A.
例如:A={1,3,5,7},则
1∈ A,3∈ A,2 A
4.集合中元素的性质 (1)确定性:集合中的元素必须是 确定的.
(2)互异性:集合中的元素必须
是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
例:判断下列说法是否正确
× 1.著名的科学家构成一个集合 × 2.很小的数构成一个集合 √ 3.身高超过1.80米的学生构成一个集合 × 4.{1,2,2,3}集合中有4个元素
2024-2025学年高一数学必修第一册(配湘教版)教学课件1.1.1第2课时表示集合的方法

2-
(2)使 y=
有意义的实数 x 组成的集合;
2-
≥
0,
解 要使该式有意义,需有
解得 x≤2,且 x≠0.
≠ 0,
故此集合可表示为{x|x≤2,且 x≠0}.
(3)200以内的正奇数组成的集合;
解 {x|x=2k+1,x<200,k∈N}.
(4)方程x2-5x-6=0的解组成的集合.
解 {x|x2-5x-6=0}.
x∈R可省略不写,如集合D={x∈R|x<20}也可表示为D={x|x<20}.
(5)多层描述时,应当准确使用“且”“或”等表示元素之间关系的词语,如
{x|x<-1或x>1}.
(6)“{
}”有“所有”“全体”的含义,如所有实数组成的集合可以用描述法表
示为{x|x是实数},但如果写成{x|x是所有实数}、{x|x是全体实数}、{x|x是
(3)一次函数 y=x-1 与
解 方程 y=x-1 与
2
4
y=- x+ 的图象的交点构成的集合.
3
3
2
4
y=-3x+3可分别化为
=
- = 1,
则方程组
的解是
2 + 3 = 4
=
x-y=1 与 2x+3y=4,
7
,
5
2 所求集合可表示为
,
5
7 2
,
5 5
.
规律方法
列举法应用的解题策略
(1)一般地,当集合中元素的个数较少时,可采用列举法;当集合中元素较多
(1)写清该集合中元素的代表符号,如{x|x>1}不能写成{x>1}.
(2)使 y=
有意义的实数 x 组成的集合;
2-
≥
0,
解 要使该式有意义,需有
解得 x≤2,且 x≠0.
≠ 0,
故此集合可表示为{x|x≤2,且 x≠0}.
(3)200以内的正奇数组成的集合;
解 {x|x=2k+1,x<200,k∈N}.
(4)方程x2-5x-6=0的解组成的集合.
解 {x|x2-5x-6=0}.
x∈R可省略不写,如集合D={x∈R|x<20}也可表示为D={x|x<20}.
(5)多层描述时,应当准确使用“且”“或”等表示元素之间关系的词语,如
{x|x<-1或x>1}.
(6)“{
}”有“所有”“全体”的含义,如所有实数组成的集合可以用描述法表
示为{x|x是实数},但如果写成{x|x是所有实数}、{x|x是全体实数}、{x|x是
(3)一次函数 y=x-1 与
解 方程 y=x-1 与
2
4
y=- x+ 的图象的交点构成的集合.
3
3
2
4
y=-3x+3可分别化为
=
- = 1,
则方程组
的解是
2 + 3 = 4
=
x-y=1 与 2x+3y=4,
7
,
5
2 所求集合可表示为
,
5
7 2
,
5 5
.
规律方法
列举法应用的解题策略
(1)一般地,当集合中元素的个数较少时,可采用列举法;当集合中元素较多
(1)写清该集合中元素的代表符号,如{x|x>1}不能写成{x>1}.
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
【课件】集合的概念(第2课时集合的表示)2022-2023学年高一数学人教A版(2019)必修第一册

特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示
集合的方法称为描述法。
问题8:描述法应注意的问题是什么?
提示:竖线前面是代表元素,竖线后面是表示代表元素的共
同特征。
二、探究本质 得出新知
问题9:两种表示法的适用条件是什么?各有什么优缺点?
提示:(1)列举法通常适用于有限集,其优点是可以明确集合
中的具体元素及元素的个数.对具有特殊规律的无限集,也可以
用列举法,但必须把元素间的规律表示清楚后才能用省略号.
(2)描述法是用集合中元素的共同特征来表示集合,它的一般
表示方法是在大括号内竖线左边写上代表元素的字母,竖线的右
边是只有集合内的元素才具备的特征.
三、举例应用,掌握方法
例1.用列举法表示下列集合.
1.1 集合的概念
第2课时 集合的表示
一、创设情境 引入新课
上节课我们用了几个大写字母表示数集,但是这不能体
现出集合中的具体元素是什么,并且还有大量的非常用集
合不能用大写字母来表示,事实上表示一个集合关键是确
定它包含哪些元素,为此我们有必要学习集合的表示方法
还有哪些,分别适用于哪些情况。
二、探究本质 得出新知
(3)全体三角形所构成的集合.
四、学生练习 加深理解
,n∈N*,且n≤5};
+2
解:(1){x|x=
(2)第一、三象限内点的特征是横、纵坐标符号相同,
因而可写成{(x,y)|xy>0,且x∈R,y∈R};
(3){x|x是三角形}.
五、归纳小结 提高认识
知识方面
你收获到
了什么?
获取知识的思想方法方面
(2)区分a与{a}:{a}表示一个集合,该集合只有一个元素.
高一数学课件:人教版高一数学上学期第一章第1.1节集合-(2).ppt(共13张PPT)

• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
人教高中数学A版必修一《集合的概念》集合与常用逻辑用语PPT

集合的性质
(1)给定的集合,它的元素必须是确定的(确定性) 例题:判断下列几个集合的对错 ① {1~10 之间的所有偶数} 解:{1~10 之间的所有偶数}={2,4,6,8,10 },是集合。 由此可知:2,4,6,8,10是这个集合的元素,并且1,3,5,7,9 ,…不是它的元素; ② {较小的数} 解:{较小的数}不能构成集合,因为组成它的元素是不确定的.
常用数集
1、全体非负整数组成的集合称为非负整数集(或自然数集),记作N;
形式为:{0,1,2,3,4......}
2、全体正整数组成的集合称为正整数集,记作N*或N+;
形式为:{1,2,3,4......}
3、全体整数组成的集合称为整数集,记作Z;
形式为:{......-4,-3,-2,-1,0,1,2,3,4......}
列举法练习
例:用列举法表示下列集合: (1)小于10 的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合 思考: (1)你能用自然语言描述集合{0,3,6,9}吗? (2)你能用列举法表示不等式 x-7<3的解集吗?
集合的表示方法
当集合无法用列举法完全表示出来时,又该采取什么方法呢?
集合的性质
(3)给定集合中的所有元素顺序可随意改变(无序性) 例题:假设一个篮球队有7个人,他们的队员编号分别为1,2,3,4,5,6 ,7,在一次训练中,教练第一次让他们按照从大到小的顺序排队站好,则{此篮 球队的队员编号}={1,2,3,4,5,6,7},教练第二次让他们随意排队站好, 顺序为1,3,5,7,2,4,6,此时{此篮球队的队员编号}={1,3,5,7,2,4 ,6},但是不论顺序如何,篮球队员始终都是这7个人,因此{此篮球队的队员编 号}={1,2,3,4,5,6,7}={1,3,5,7,2,4,6}。 因此,只要构成两个集合的元素是一样的,不管顺序如何,我们就称这两个 集合是相等的。
高中数学 第一章 集合与函数概念 1.1.1 集合的含义与表示 第2课时 集合的表示课件 新人教版必修1

举法表示为{(1,2)},也可用描述法表示为{(x,y)|xy= =12, }.
易错警示
解析答案
跟踪训练4 用列举法表示下列集合. (1)A={y|y=-x2+6,x∈N,y∈N}; 解 因为y=-x2+6≤6,且x∈N,y∈N, 所以x=0,1,2时,y=6,5,2,符合题意, 所以A={2,5,6}. (2)B={(x,y)|y=-x2+6,x∈N,y∈N}. 解 (x,y)满足条件y=-x2+6,x∈N,y∈N,
{0,1,2,3,4,5,6,7,8,9}.
(2)方程x2=x的所有实数根组成的集合;
解 设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.
(3)由1~20以内的所有质数组成的集合.
解 设 由 1 ~ 2 0 以 内 的 所 有 质 数 组 成 的 集 合 为 C , 那 么 C=
反思与感悟
第一章 1.1.1 集合的含义与表示
第2课时 集合的表示
学习 目标
1.掌握集合的两种表示方法(列举法、描述法). 2.能够运用集合的两种表示方法表示一些简单集合.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点 集合的表示方法 1.列举法:把集合的元素 一一列举 出来,并用花括号“{ }”括起来表 示集合的方法叫做列举法. 2.描述法:(1)定义:用集合所含元素的 共同特征 表示集合的方法称为描 述法. (2)写法:在花括号内先写上表示这个集合元素的_一__般__符__号__及__取__值__(_或__变__ 化)范围 ,再画一条竖线,在竖线后写出这个集合中元素所具有的_共__同__ 特征 .
则Δ=64-64k=0,即k=1.
高中数学集合的概念课件人教版必修一.ppt1.1.1

如果a是集A的元素,记作: a ∈ A 如果a不是集A的元素,记作: a ∉A
例如,用A表示“ 1~20以内所有的整数”组成的集合,则有
4.常见的数集有哪些?分别要怎样来表示?
数集 自然数集(非负整数集) 正整数集 符号
N N* 或N+ Z Q R
整数集
有理数集 实数集
知识探究(一)集合的表示方法 问题1:通过我们对课本的预习,我们知道,课本为我们提供了 哪几种集合表示方法?
B={ x Z 10 x 20 }
用列举法表示为 B= { 11,12,13,14,15,16,17,18,19}
课堂练习 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
(2)在平面直角坐标系中以原点为圆心,横坐标上的点 组成的集合;
(3)所有奇数组成的集合; (4)由数字1,2,3组成的所有三位数构成的集合.
知识探究(三)
思考1:a 与{a }的含义是否相同? 思考2:集合{1,2}与集合{(1,2)}相同吗? 思考3:集合{ y | y x 2 , x R} 与集合 { y x 2 } 相同吗? 思考4:集合 {( x, y) | y x 2 , x R}11,13,17,19}.
2.互异性
3.无序性
问题4:考察下列集合: (1)不等式2 x 7 3 的解组成的集合; (2)绝对值小于2的实数组成的集合.
思考1:这两个集合能不能用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征? 思考3:上述两个集合还可以怎么表示? 思考4:这种表示集合的方法叫什么? 描述法 思考5:描述法表示集合的基本模式是什么? 用集合所含元素的共同特征表示集合的方法.
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。 康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。 康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。 集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。
人教版高中数学必修一1.1.1_集合的含义与表示ppt课件

a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
1.1+集合的概念(共2课时)高一数学同步教材精品课件(人教A版2019必修第一册)

0____N
∈
-3____N
0.5____Z
____Z
2
1 ∈
____Q
3
∈
π ____R
2.集合A中的元素x满足
−
∈ , ∈ , 则集合A中的元素为(0,1,2
)
04
集合概念的应用
概念讲解
1. 已知0∈A,1∈A,a∈A, a2∈A,且A是包含三个元素的集合,求实数a
的值.
①接近于0的数的全体;
②比较小的正整数全体;
×
×
③平面上到点O的距离等于1的点的全体;
④正三角形的全体;
⑤ π的近似值的全体.
√
×
√
03
元素与集合的关系
概念讲解
探究3:
已知下面的两个实例,并回答下列问题:
(1)用A表示高一(3)班全体学生组成的集合.
(2)用c表示高一(3)班的一位同学,b表示高一(4) 班的一位同学.
∴A={ | = − 1}={ | ≥ 1}
B={ | = − 1}表示的是 = − 1中函数值的取值范围,
∴B={ | = − 1}={ |y ∈ R}
C={ (, ) | = − 1}表示的是 = − 1图象上所有点。
归纳小结
思考:你能说出列举法和描述法的优缺点吗?
义
集合
把一些元素组成的总体叫做集合,简称集。通常用大写拉丁字母
A,B,C…表示集合。
概念讲解
探究2:集合中的元素特征
1.所有的“个子高的男生”能否构成一个集合?由此说明什么?
2.由1,2,-3,5,︱-2︳这些数组成的一个集合中有5 个元素,这种说法正确吗?
∈
-3____N
0.5____Z
____Z
2
1 ∈
____Q
3
∈
π ____R
2.集合A中的元素x满足
−
∈ , ∈ , 则集合A中的元素为(0,1,2
)
04
集合概念的应用
概念讲解
1. 已知0∈A,1∈A,a∈A, a2∈A,且A是包含三个元素的集合,求实数a
的值.
①接近于0的数的全体;
②比较小的正整数全体;
×
×
③平面上到点O的距离等于1的点的全体;
④正三角形的全体;
⑤ π的近似值的全体.
√
×
√
03
元素与集合的关系
概念讲解
探究3:
已知下面的两个实例,并回答下列问题:
(1)用A表示高一(3)班全体学生组成的集合.
(2)用c表示高一(3)班的一位同学,b表示高一(4) 班的一位同学.
∴A={ | = − 1}={ | ≥ 1}
B={ | = − 1}表示的是 = − 1中函数值的取值范围,
∴B={ | = − 1}={ |y ∈ R}
C={ (, ) | = − 1}表示的是 = − 1图象上所有点。
归纳小结
思考:你能说出列举法和描述法的优缺点吗?
义
集合
把一些元素组成的总体叫做集合,简称集。通常用大写拉丁字母
A,B,C…表示集合。
概念讲解
探究2:集合中的元素特征
1.所有的“个子高的男生”能否构成一个集合?由此说明什么?
2.由1,2,-3,5,︱-2︳这些数组成的一个集合中有5 个元素,这种说法正确吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
表示任意一个集合A
韦恩图
画一条封闭的曲线,用它的 内部来表示一个集合.如图:
A
3,9,27
表示任意一个集合A
韦恩图
画一条封闭的曲线,用它的 内部来表示一个集合.如图:
A
3,9,27
表示任意一个集合A
表示{3,9,27}
韦恩图
画一条封闭的曲线,用它的 内部来表示一个集合.如图:
A
3,9,27 4,6,10
请用列举法表示下列集合. (1) 小于5的正奇数; (2) 能被3整除且大于4小于15的自 然数;
(3) 方程x2-9=0的解的集合;
请用列举法表示下列集合. (1) 小于5的正奇数; (2) 能被3整除且大于4小于15的自 然数;
(3) 方程x2-9=0的解的集合;
(4){15以内的质数}.
练习题:用列举法表示下列集合
复习回顾
复习回顾
1.集合元素的特征有哪些?怎样理解?
试举例说明.
复习回顾
1.集合元素的特征有哪些?怎样理解?
试举例说明. 2.集合与元素关系是什么?如何表示?
复习回顾
1.集合元素的特征有哪些?怎样理解?
试举例说明. 2.集合与元素关系是什么?如何表示?
3.a与{a}各表示什么意思?
集合的表示方法
集合的表示方法
(1) 列举法:把集合中元素一一
列举出来的方法.
集合的表示方法
(1) 列举法:把集合中元素一一
列举出来的方法. (2) 描述法:用确定条件表示某
些对象是否属于这个集合的方法.
请用列举法表示下列集合. (1) 小于5的正奇数;
请用列举法表示下列集合. (1) 小于5的正奇数; (2) 能被3整除且大于4小于15的自 然数;
集合的分类
(1) 有限集:含有有限个元素的集合.
(2) 无限集:含有无限个元素的集合.
3.空集
我们把不含任何元素的集合 叫做空集.记作
3.空集
我们把不含任何元素的集合 叫做空集.记作
2 例如:{x|x +2=0}=
{x|x2+1<0}=
韦恩图
画一条封闭的曲线,用它的 内部来表示一个集合.如图:
表示任意一个集合A
表示{3,9,27}
韦恩图
画一条封闭的曲线,用它的 内部来表示一个集合.如图:
A
3,9,27 4,6,10
表示任意一个集合A
表示{3,9,27} 表示{4,6,10}
1.表示集合的方法;
2.关注“ ”的应用
.
课外作业
1°阅读教材;
2°课本P7 习题1.1第2、3题;
3°预习教材P7~P8.
用描述法分别表示下列集合 (1) 抛物线x2=y上的点; (2) 数轴上离开原点的距离大于6的点 的集合; (3) 平面直角坐标系中y上点的横坐标;
用描述法分别表示下列集合 (1) 抛物线x2=y上的点; (2) 数轴上离开原点的距离大于6的点 的集合; (3) 平面直角坐标系中第Ⅰ、Ⅲ象限 点的集合;
(4) 抛物线x2=y上点的横坐标;
(5) 抛物线x2=y上点的纵坐标.
练习题:
(1)用描述法分别表示1到100的连 续自然数的平方的集合;
练习题:
(1)用描述法分别表示1到100的连 续自然数的平方的集合; (2) {x},{x,y},{(x,y)}的 含义是否相同?
集合的分类
(1) 有限集:含有有限个元素的集合.
6 (1){x| ∈Z,x∈Z}; 3 x
x 2 y 3 ( 2)方程组 的解集. 2 x 3 y 27
用描述法分别表示下列集合 (1) 抛物线x2=y上的点;
用描述法分别表示下列集合 (1) 抛物线x2=y上的点; (2) 数轴上离开原点的距离大于6的点 的集合;
用描述法分别表示下列集合 (1) 抛物线x2=y上的点; (2) 数轴上离开原点的距离大于6的点 的集合; (3) 平面直角坐标系中第Ⅰ、Ⅲ象限 点的集合;