微晶玻璃 PPT
微晶玻璃第二章
2 组成2.1 概述微晶玻璃的组成与结构是影响其性能的主要因素。
与普通玻璃相比,微晶玻璃在制备工艺和性能上具有特殊性,其组成也与普通玻璃有所不同,只有一定范围的组成能够符合微晶玻璃的制备要求。
一般说来,微晶玻璃除了含有一定量的玻璃形成氧化物如SiO2、B2O3、P2O5外,为了使玻璃易于分相、核化与晶化,组成中还常常引入离子半径小、场强大的离子如Li+、Mg2+、Zn2+等。
此外,为了促进(诱导)玻璃的整体晶化,大多数组成中还加入一定量的晶核剂如ZrO2、TiO2等。
晶核剂种类及其作用机理的研究已成为微晶玻璃组成研究的一个重要内容。
一些特殊的玻璃组成,不加晶核剂也可以转化成微晶玻璃,如Li2O-MgO-Al2O3-SiO2系统及Li2O-ZnO-Al2O3-SiO2系统玻璃,其中每系玻璃中都含有两种高场强阳离子的氧化物,如Li2O和MgO,Li2O和ZnO。
它们都有一个静电场较高的阳离子,在一定温度下,容易产生分相,分相产物中至少有一个是容易析晶的。
对于某些制备方法而言,基础玻璃中可以不加晶核剂。
如近年国内广泛采用的烧结法,就是利用玻璃在分界面处易于核化的性质,先将玻璃制成颗粒或粉末再成形,当热处理时就会在颗粒或粉末的表面成核、晶化,这种方法多用于建筑装饰微晶玻璃和微晶玻璃封接剂的生产。
具有实用意义的微晶玻璃组成应符合以下条件:能满足使用性能要求;玻璃较易于熔制;成形过程中不析晶;晶化过程易于核化与晶化;晶化过程制品变形。
微晶玻璃组成广泛、品种繁多。
最初,微晶玻璃系统仅限于硅酸盐、铝硅酸盐等系统,组成也相对简单。
经过多年研究,其系统已扩展到非硅酸盐和非氧化物系统,如磷酸盐和硫系化合物及氧氮化合物微晶玻璃,组成范围也进一步扩大,迄今为止,在已研究的成百上千种微晶玻璃中,实用微晶玻璃品种并不太多。
虽然有些新组成系统目前还处于基础研究和开发阶段,距工业化生产和实际应用还有一定距离,但已显现出良好的发展前景。
微晶玻璃及其用途0906-17
微晶玻璃及其用途0906-17
微晶玻璃及其用途0906-17
微晶玻璃介绍
微晶玻璃(Microcrystalline glass),又称玻璃钢,是一种高性能
玻璃,它具有高熔点、高硬度、高抗损伤性、高粘结性,是一种具有优异
性能的玻璃。
微晶玻璃一般由一种或多种氧化物组成,以硅酸铝硅酸锰为
基本构成元素,具有铝、锰、钛等金属的氧化物成分。
微晶玻璃制造工艺
微晶玻璃的重要原料是硅酸铝、硅酸锰、硅酸钛等金属元素的氧化物,一般经过精细加工组成成分,采用烧结工艺制造出来。
根据加工工艺不同,可以将微晶玻璃分为微晶玻璃颗粒、碎片和微晶玻璃块三种形式。
微晶玻璃的性能特点
1.高熔点:微晶玻璃的熔点可达1600℃,远远高于普通玻璃,具有
良好的高温耐受能力。
2.高硬度:由于微晶玻璃中含有较多的金属元素,具有较高的硬度,
受损伤比普通玻璃小。
3.高抗温性:因为微晶玻璃具有自身的特殊性,具有比普通玻璃更高
的耐热性能,在高温条件下表现良好,可以长时间在高温环境下工作。
4.高抗化学腐蚀性:微晶玻璃表面具有自身的化学结构,能有效抵御
化学侵蚀,耐酸碱性腐蚀能力强,非常适合接触各种有害物质的环境。
微晶玻璃
色调均匀: 采用天然石材装修墙面、地面,难免色差不一,而微晶玻璃生 产可以精确控制,易于获得类似彩色玻璃那样的颜色均匀性,使建筑物达 到更完美的装修效果。
线膨胀 系数可 调
• 热稳定性好(加热900℃骤然投入5℃ 耐磨
冷水而性能与高频瓷接近;
• 化学稳定性与硼硅酸玻璃相同,不怕酸 碱侵蚀。
优异 的抗 热震
• 可进行车、刨、磨 、钻、锯切和攻丝 等加工。其加工性能类似于铸铁,可加 工成各种形状复杂,精度要求高的产品
微晶 玻璃
良好的 可加工 性能
➢ 耐高温玻璃陶瓷
耐高温玻璃陶瓷是随着烧结法、溶胶一凝胶法等新工艺在玻璃陶瓷 制备中的应用而发展起来的。当玻璃陶瓷中析出如莫来石、尖晶石、 铯榴石等耐高温的晶体且含量较高时,材料可以耐很高的温度。如铯 榴石玻璃陶瓷中,不仅析出了这种耐高温微晶,还析出了一些莫来石 晶体,而且其残余玻璃相为晶体所包裹,所以这种材料在1420℃时的 压强为1012Pa。
➢ 溶胶-凝胶法:
首先将某些金属有机盐作为原料,使其均匀地溶解在乙醇中,并以醋酸作 为催化剂,在规定的温度下恒温加热,随时间变化,一部分溶剂挥发后,有 机金属盐不断水解并缩聚,溶液的浓度和黏度不断增大,并形成一种不可流 动的凝胶状态,然后在逐步进行热处理,最终获得微晶玻璃。
• 优点:其制备低温远低于传统方法;同时可以避免某些组分挥发、侵蚀容器、
枝状结构是由于晶体沿某些晶面或晶格方向生长而形成,它实质上是 种骨架结构,有种光敏玻璃陶瓷中的二硅酸锂晶体就属于这种结构。二硅 酸锂晶体比玻璃基体易溶于氢氟酸中,利用这种特性可进行酸刻蚀并制造 成图案尺寸精度高的电子器件。
微晶玻璃ppt课件
24
7 案例赏析
瑞士纳沙泰尔 La Maladière 中心
设计的独特之处是将一块透明导电玻璃板装上LED,然后再与另一块玻璃合在一起形成一块 PVB夹胶玻璃。
25
7 案例赏析
德国证券交易所 法兰克福/美茵
18
6 应用领域
4、生物医学材料上的应用 生物微晶玻璃具有许多优越、独特的性能,如良好的化学稳定性、生物兼容性或
者生物活性等。目前,主要用作牙齿材料、人造骨骼、铁磁性抗癌材料等。
19
6 应用领域
5、化学化工材料上的应用 微晶玻璃化学稳定性好,几乎不被腐蚀的特性广泛应用于化工上。在控制污染和
新能源应用领域也有用途,如微晶玻璃用于喷射式燃烧器中消除汽车尾气中的碳氢化 合物;在硫化钠电池中作密封剂;在输送腐蚀性液体中作管道等。
6
3 特性
美学优点: 丰富的色泽、良好的质感
通过工艺控制可以生产出各自色彩、色调和图案的微晶玻璃。 色调均匀
天然花岗石难以避免明显的色差,而微晶玻璃易于实现颜色 均匀,尤其是高雅的纯 白色微晶玻璃。 永不浸湿、抗污染
微晶玻璃不吸水,还有自清洁的功能。
7
3 特性
环保优势: 一般的废渣土中都含有制作微晶玻璃的大多数成分,利用废渣、废土 做原材料,包括:矿石、工业尾矿、冶金矿渣、粉煤炭等,有利于环 境治理,变废为宝。
9
5 制作工艺
不同种类的微晶玻璃有各自不同的生产工艺,但微晶玻璃常用的生产工艺主要为 整体析晶法和烧结法。
整体析晶法: 玻璃的制备与成形→采用可控热处理工艺使玻璃核化、晶化 特点:可沿用任何一种玻璃的成形方法,与通常的陶瓷成形工艺相比,更适合自 动化操作和制备形状复杂、尺寸精确的制品。组成均匀、不存在气孔等缺陷。
玻璃的结构与性质.ppt
§3.2 玻璃的生成规律及其相变
3.2.1影响玻璃生成的因素
1.热力学条件 ΔG = ΔH - TΔS
2.动力学条件
晶核形成速率或晶体生长速度 晶核形成速率或晶体生长速度 晶核形成速率或晶体生长速度
U
I
U
I
UI
过冷度
a
过冷度
b
过冷度
c
/°C
生成玻璃的动力学条件:控制熔体的冷却速率 (粘度增大速率)
氧化物提高玻璃硬度的能力
SiO2 > B2O3 > (BaO,ZnO,MgO) >Al2O3 > Fe2O3>K2O>Na2O >PbO
急冷玻璃较慢冷玻璃硬度小。
玻璃的脆性
常用抗冲击强度来表示。
脆性与玻璃成分、玻璃的均匀性、热历史、试样厚 度与形状等有关。
3.3.4玻璃的热学性能
玻璃的热膨胀系数(线膨胀系数)
玻璃的热膨胀系数计算
α= αnPn
式中 n—玻璃中各氧化物的热膨胀计算系数; Pn—玻璃中各氧化物质量分数(%)。
热膨胀系数的影响因素:
玻璃中非桥氧越少,玻璃的热膨胀系数越小; 急冷玻璃较慢冷玻璃的热膨胀系数大。
玻璃的热稳定性
热膨胀系数和厚度越大,玻璃的热稳定性越差。
3.3.5玻璃的化学稳定性
部分色散
阿贝数 γ=
相对部分色散
nD
-1
nF - nC
3. 玻璃的反射、吸收与透过
玻璃的反射:与玻璃表面的光滑程度、光的入射角、
频率及玻璃的折射率有关
当入射角为90°时, R—反射率
R
=
n n
+
第六节-微晶玻璃
一、定义、结构、形成、特点、分类及用途
• 1.定义 微晶玻璃:具有微晶体的玻璃。又称
玻璃陶瓷 , 玻璃水晶 是综合陶瓷和玻璃技术发展起来的新材料,具有玻璃和陶瓷的双重性能。把加 有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理, 使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。
化工:防腐材料 国防:火箭头部的雷达 罩 美国 航空运输 国际上欧洲 日本 用途建筑:幕墙,高档装饰 材料 告诉切削车刀 轴承 活塞 工矿: 汽轮机零件 内燃机零件 材: ,优于天然石材 科研民用:微晶玻璃板 21世纪最新建筑装饰材料 电子工业:绝缘材料, 大规模集成电路的底板 ,微波炉耐热系列新型 材料(器皿)
玻璃:内部原子排列没有规则,是玻璃易碎的原因之一 微晶玻璃:象陶瓷一样,由晶体组成,原子排列有规律。 所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。
微晶玻璃历史
年代 50年代 60年代 70年代 80年代 90年代
微晶 玻璃
首次研 究成功
矿渣微晶玻璃(苏联) 人造玄武石(捷克斯洛伐 克) 人造蛋白石(美国) 缺点:无漂亮的外观
4.2~6. 0
6 5~3
5 ~5.5
600 130
130~57 0
2.7 2.7 2.7
0.08 10.0 0.10
0.05
0.08
0
0.028
62
1.6
0.19
89
80
4
2059
0.30
0.19
0.3 0.3 5
0.23
80~2 60 80~1 50
2.2~2. 3 2.1~2. 4
微晶玻璃
第三节 制备工艺
生产方法
• 压延法: 是将生料融成玻璃液,然后将玻璃液压 延,经热处理再切割成板材。 • 烧结法 是先将生料熔融成玻璃液,淬冷成碎料, 然后将碎料倒人模具铺平,放人窑炉中热处 理得到微晶玻璃板材。 • 两者各具优缺点,前者能连续流水生产、热 耗低,但品种单一;后者能做到品种多样, 但工艺复杂,对模具要求高,成品气泡多是 其主要的弱点。
实例——矿渣微晶玻璃:
• 矿渣微晶玻璃的主要原料是: 高炉矿渣(62%一78% 高炉矿渣(62%一78%) 硅石(22%一38% 硅石(22%一38%)和其他非铁冶金渣等。 • 一般需要由下列化合物组成: 二氧化硅40%一70%, 二氧化硅40%一70%, 三氧化二铝5%一15%, 三氧化二铝5%一15%, 氧化钙15%一35%, 氧化钙15%一35%, 氧化镁2%一12%, 氧化镁2%一12%, 氧化钠2%一12%, 氧化钠2%一12%, 晶核剂5%一10%。 晶核剂5%一10%。
烧结法原理:
• 目前建筑用微晶玻璃均采用烧结法; • 基本原理是:玻璃是一种处于一种亚稳状态的非晶态固 体, 从热力学观点看,在一定条件下,可以转化为结晶 态。 从动力学观点来看,玻璃熔体在冷却过程中,粘度 急剧增加,抑制晶核的形成和晶体长大,阻止了结晶体 的成长壮大。 建筑用微晶玻璃充分应用了热力学上的可能和动力 学上的抑制,在一定条件下,使这种相反相成的物理过 程,形成一个新的平衡,而获得的一种新材料。
这块玻璃究竟发生了什么变化?
在显微镜下观察到: 这块玻璃中析出了大量的 微小晶体,这就是后来大名 鼎鼎的微晶玻璃。
性能由此改变:
• 当玻璃中充满微小晶体后(每立方厘 米约十亿晶粒),玻璃固有的性质发 生变化,即由非晶形变为具有金属内 部晶体结构的玻璃结晶材料。 • 它近似于硬化后不脆不碎的凝胶,是 一种新的透明或不透明的无机材料, 即所谓的结晶玻璃、玻璃陶瓷或高温 陶瓷。
玻璃工艺学-微晶玻璃
9
4.2 Porous glass-ceramics
Applications : catalytic supports(催化剂载体), membranes 膜 Ion-exchange (离子交换) humidity sensors.(湿度传感器) immobilized enzymes(生物酶载体) bacteriostatic materials(抗菌材料) Microporous glasses and glass-ceramics have great advantage over conventional porous ceramics because they have well controlled pores.
8
BaO–CaO–Al2O3–SiO2 Glass–ceramic Sealants for Intermediate Temperature Solid Oxide Fuel Cell Application
thermal expansion behavior, electrical resistivity, leak-rate, and shrinkage and flow behavior at the SOFC operating temperature (800 ℃).
Photocatalyst such as TiO2 is widely used in various products such as air purifiers, deodorants, and for sterilization and anti-fouling . However, the photocatalysts are used in dispersed form and are very difficult to collect after use. To overcome this shortcoming, photocatalysts have recently been developed in which TiO2 was coated on appropriate substrates, such as a ceramic, glass or metal plate, or glass tube, by the sol–gel process. However, in these applications, the coated TiO2 easily peels off from the substrate.
第2讲微晶玻璃
20
2.1 玻璃的定义、通行与结构
第2讲微晶玻璃
玻璃的定义
玻璃是由熔融冷却到刚体状态而没有结晶的非晶态 固体。
无定形态物质是一种其中不存在原子排列大于10nm 的远程有序的物质。
玻璃的通性
➢ 各向同性
➢ 介稳性
1、绪论
1.1 微晶玻璃的定义:
微晶玻璃(glass-ceramics)又称玻璃陶瓷,是将特定组 成的基础玻璃,在加热过程中通过控制晶化而制得的一类 含有大量微晶相及玻璃相的多晶固体材料。
Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. It is formed as a glass, and then made to crystallize partly by heat treatment. Unlike sintered ceramics, 2 glass-ceramics have no pores between crystals.
10
第2讲微晶玻璃
第2讲微晶玻璃
微晶玻璃炉具面板
透明微晶玻璃
11
各类微晶玻璃
第2讲微晶玻璃
12
第2讲微晶玻璃
微晶玻璃诞生过程中两个重要步骤
1、光敏玻璃的发现:晶核形成 2、晶化控制
13
第2讲微晶玻璃
1.3 微晶玻璃科学上的重要性
微晶玻璃的研究和发展与过冷液体的成核和晶化密切相关, 在这方面有它的普遍意义;
和晶核形成与晶体生长研究密切相关的是玻璃分相的研究; 微晶玻璃晶化控制的研究,对介稳相及稳定相以及固溶体的
微晶玻璃
1.1微晶玻璃简介1.1.1微晶玻璃微晶玻璃(glass-ceramics)又称玻璃陶瓷或结晶化玻璃[1],微晶玻璃是把加有晶核剂(或不加晶核剂)的特定组成的玻璃在一定条件下进行热处理,使原有单一的玻璃相形成了由微晶相和玻璃相均匀分布的复合材料[2]。
微晶玻璃的结构与性能,和陶瓷、玻璃均不同,微晶玻璃的性能由晶相和玻璃相的化学组分及他们的数量决定,所以它集中了两者的特点,成为一类特殊的材料,因其可用矿石、工业尾矿、冶金矿渣、粉煤灰等作为主要生产原料,且生产过程可以实现固体废弃物的整体利用和零排放,产品本身无放射性污染,故又被称为环保材料或绿色材料。
微晶玻璃具有原料来源广、制备工艺简单、可与金属焊接等诸多优点,可作为结构材料、光学材料、电学材料、建筑装饰材料等,广泛应用于建筑、医疗、航空、国防以及生活等各个领域。
尽管微晶玻璃发展己有50多年的历史,但有关各类微晶玻璃的研究开发和应用依然十分活跃,已成为新型陶瓷材料开发应用的研究重点之一。
[3]1.1.2微晶玻璃成分对微晶玻璃来说,它的结构由材料的组成和热处理工艺共同决定。
其中组成对玻璃析晶性能和主晶相的形成有着很大的影响,对微晶玻璃的内部结构起到决定性的作用。
随着成分的变化,微晶玻璃结构及性能发生改变。
实际上,玻璃成分是通过结构决定了性质,即成分、结构、性能间存在的总规律是:微晶玻璃成分通过对结构的影响而决定了其性能。
微晶玻璃不同于一般系统的玻璃,其结构中既存在玻璃相,亦存在有一定晶相,玻璃相结构和晶相性质共同作用决定了微晶玻璃的性能。
从玻璃形成条件看,其组分中必须含有可以形成玻璃的氧化物,如SiO2、B2O3和P2O5,同时还必须含有一定量的中间氧化物,如CaO和MgO等。
在研究中对料方调整按下列依据进行:(1)SiO2SiO2是构成微晶玻璃骨架网络的主要氧化物,它的含量不仅决定玻璃的主要化学性质和性能指标,而且对玻璃的粘度影响很大,是熔化、澄清及成形的关键性因素。
微晶玻璃第三章
3结构众所周知,微晶玻璃是由晶相和玻璃相组成的。
晶相是多晶结构,晶粒细小,比一般结晶材料的晶体要小得多,一般为0.1~0.5μm,晶体在微晶玻璃中为空间取向分布。
在晶体之间残留的玻璃相,玻璃相把数量巨大、粒度细微的晶体结合起来。
在晶体含量方面可以从不含晶体的玻璃,逐渐变化到含有90%以上微晶的多晶体。
而玻璃相的数量可以从5%变化到50%以上。
晶化后残余玻璃相是很稳定的,在一般条件下不会析晶。
因此,微晶玻璃是晶体和玻璃体的复合材料,其性能由两者的性质及数量比例决定。
由于微晶玻璃的结构来源于原始玻璃的组成、结构、分相、析晶以及玻璃熔体的成核和晶体生长过程,因此,本章首先从玻璃的基础知识开始讨论。
3.1玻璃的定义、通性与结构3.1.1玻璃的定义3.1.1.1 广义上的定义玻璃是呈现玻璃转变现象的非晶态固体。
所谓玻璃转变现象是指当物质由固体加热或由熔体冷却时,在相当于晶态物质熔点绝对温度的1/2~2/3温度附近出现热膨胀、比热容等性能的突变,这一温度称为玻璃转变温度。
3.1.1.2 狭义上的定义玻璃是一种在凝固时基本不结晶的无机熔融物,即通常所说的无机玻璃,最常见的为硅酸盐玻璃。
3.1.2玻璃的通性3.1.2.1各向同性硅酸盐熔体内形成的是相当大的、形状不规则的近程有序、远程无序的离子聚合结构,玻璃态结构类似于硅酸盐熔体结构。
因此,玻璃和非晶态的原子排列都是近程有序、远程无序的,结构单元不像晶体那样按定向排列,它们在本质上呈各向同性,例如玻璃态物质各方向的硬度、弹性模量、热膨胀系数、折射率、导电率等都是相同的。
因此,玻璃的各向同性是统计均质结构的外在表现。
3.1.2.2介稳性玻璃在熔体冷却过程中,黏度急剧增大,质点来不及作有规则排列,释放能量较结晶潜热(凝固热)小,因此,玻璃态物质比相应的结晶态物质含有较大的能量。
玻璃不是处于能量最低的稳定状态,而是处于能量的介稳状态,如图3-1所示。
3.1.2.3无固定熔点玻璃态物质由固体转变为液体是在一定的温度范围(软化温度范围)内进行的,不同于结晶态物质,它没有固定的熔点。
微晶玻璃 第四章
4性能如前所述,玻璃是一种具有无规则结构的非晶态固体,或称玻璃态物质,从热力学观点出发,它是一种亚稳态,较之晶态具有较高的内能,在一定条件下可转变为结晶态(多晶体)。
对玻璃控制晶化而制得的微晶玻璃具有突破的力学、热学及电学性能。
材料的外在性能取决于它的内在结构。
微晶玻璃也不例外,微晶玻璃的结构取决于晶相和玻璃相的组成、晶体的种类、晶粒的尺寸的大小、晶相的多少以及残留玻璃相的种类及数量。
值得注意的是这种残留玻璃相的组成,通常和它的母体玻璃组成并不一样,因为它缺少了那些参与晶相形成所需的氧化物。
微晶玻璃结构的一个显著特征是拥有极细的晶粒尺寸和致密的结构,并且晶相是均匀分布和杂乱取向的。
可以说微晶玻璃具有几乎是理想的多晶固体结构。
其中晶相和残留玻璃相的比例可以有很大不同,当晶相的体积分数较小时,微晶玻璃为含孤立晶体的连续玻璃基体结构,此时玻璃相的性质将强烈地影响微晶玻璃的性质;当晶相的体积分数与玻璃相大致相等时,就会形成网络结构;当晶相的体积分数较大时,玻璃即在相邻晶体间形成薄膜层,这时微晶玻璃的性质主要取决于主晶相的物理化学性质。
因此微晶玻璃性能既取决于晶相和玻璃相的化学组成、形貌以及其相界面的性质,又取决于它们的晶化工艺。
因为晶体的种类由原始玻璃组成决定,而晶化工艺亦即热处理制度却在很大程度上影响着析出晶体的数量和晶粒尺寸的大小。
①主晶相的种类不同主晶相的微晶玻璃,其性能差别很大。
如主晶相为堇青石(2Mg O·2Al2O3·5SiO2)的微晶玻璃具有优良的介电性、热稳定性和抗热震性以及高强度和绝缘性;主晶相为β-石英固溶体的微晶玻璃具有热膨胀系数低和透明及半透明性能;主晶相为霞石(NaAlSiO4)的微晶玻璃具有高的热膨胀系数,在其表面喷涂低膨胀微晶玻璃釉料后,可以作为强化材料。
通过选取不同的原始玻璃组成及热处理制度,可以得到不同的主晶相,得到不同性能的微晶玻璃,满足不同的需要。
微晶玻璃及微晶玻璃幕墙
微晶玻璃及微晶玻璃幕墙一、什么是微晶玻璃微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。
是综合玻璃、石材技术发展起来的一种新型建材。
因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。
微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。
是具有发展前途的21世纪的新型材料。
二、微晶玻璃的组成把加有晶核剂或不加晶核剂的特定组成的玻璃,在有控条件下进行晶化热处理,使原单一的玻璃相形成了有微晶相和玻璃相均匀分布的复合材料。
微晶玻璃和普通玻璃区别是:前者部分是晶体,后者全是非晶体。
微晶玻璃表面可呈现天然石条纹和颜色的不透明体,而玻璃则是各种颜色、不同程序的透明体。
微晶玻璃的综合性能主要决定三大因素:原始组成的成份、微晶体的尺寸和数量、残余玻璃相的性质和数量。
后两种因素是由微晶玻璃晶化热处理技术决定。
微晶玻璃的原始组成不同,其晶相的种类也不同,例如有β硅灰石、β石英、氟金云母、二硅酸锂等,各种晶相赋予微晶玻璃的不同性能,在上述晶相中,β硅灰石晶相具有建筑微晶玻璃所需性能,为此常选用CaO-Al2O3-SiO2系统为建筑微晶玻璃原始组成系统,其一般成分如表一所示。
表一:CaO-Al2O3-SiO2微晶玻璃组成颜色\组成SiO2 Al2O3 B2O3 CaO ZnO BaO Na2O K2O Fe2O3 Sb2O3白色59.0 7.0 1.0 17.0 6.5 4.0 3.0 2.0 0.5黑色59.0 6.0 0.5 13.0 6.0 4.0 3.0 2.0 6.0 0.5上述玻璃成份在晶化热处理后所析出的主晶相是:β——硅灰石(β——CaO、SiO2)。
微晶玻璃 第一章
1 绪论1.1 微晶玻璃的定义1.1.1 定义及特性微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。
玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。
从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。
微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。
微晶玻璃既不同于陶瓷,也不同于玻璃。
微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。
微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。
另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。
尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。
微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。
如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。
并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。
Chap 6 微晶玻璃
热稳定性好 由于微晶玻璃α值低,抗张强度高,所以具 有优良的热稳定性。有的可以经受5-1000℃的温度剧变而
不破坏,也能在温差高达400℃的条件下使用。
软化温度高 由于微晶玻璃中含有大量晶体,所以在晶体 的熔化点以下时,其粘度几乎与温度没有关系。故在微晶
玻璃所含晶体的熔化温度以下时,它有比一般玻璃高得多 的使用温度。荷重软化温度为560-1340℃。
微晶玻璃的应用
主要性能
低膨胀、耐高温、耐热冲击 高强度
应用实例
天文反射望远镜、气体激光谐振器镜的支持棒、炊具、餐具、高温电光源用玻璃、 实验室用加热器具、高温热交换器、代石英玻璃 汽车、轮船、飞机、火箭、卫星的结构材料、墙体材料、饰面材料、电热线保护 管、小型绝缘子、电线管道衬垫、封接材科 轴承、气缸、活塞、纺织机导线杆、研磨设备内衬及研磨刀具、离合器、地板、 楼梯踏板、导槽、料斗、流槽、水利漩流器锥体
温度制度中,需选择合适的晶化速度。
五、微晶玻璃的加工
表面涂层
在具有高膨胀系数的微晶玻璃制品表面,在高温下涂覆一 薄层膨胀系数较低的玻璃,冷却后,因两者膨胀系数的不
同,涂层产生压应力,而微晶玻璃本体产生张应力。根据 材料的强度理论,涂层的压应力将提高制品的强度。采用 该方法强化微晶玻璃,一般可提高强度2-4倍。 表面涂层的增强方法,只适用于膨胀系数大的微晶玻璃。 对于低膨胀的微晶玻璃,一般采用离子交换的方法进行强
电学性能微晶玻璃的应用主要性能应用实例低膨胀耐高温耐热冲击天文反射望远镜气体激光谐振器镜的支持棒炊具餐具高温电光源用玻璃实验室用加热器具高温热交换器代石英玻璃高强度汽车轮船飞机火箭卫星的结构材料墙体材料饰面材料电热线保护管小型绝缘子电线管道衬垫封接材科高硬度耐磨轴承气缸活塞纺织机导线杆研磨设备内衬及研磨刀具离合器地板楼梯踏板导槽料斗流槽水利漩流器锥体易机械加工可机械钻孔切削生产要求耐腐蚀耐热冲击及加工精度高的部件代不锈钢塑料耐腐蚀化工管道球磨机的球衬垫高纯化化工产品生产设备透明耐高温耐热冲击高温观察窗化学输送管道阀泵低介电损耗雷达罩集成电路的基极丝网印刷介电体强介电性透明彩色电视材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 应用领域
2、光学材料上的应用 超薄硼硅玻璃,在红外和可见光区域都具有极高的透过率,适用于光学式触摸屏技术。
微晶玻璃
01 简介 02 历史 03 特性 04 种类 05 制作工艺 06 应用领域 07 案例赏析 08 发展前景
目录
CONTENTS
1 简介
微晶玻璃是由特定组成的母玻璃在可控制条件下进行晶化热处理,在玻璃基 质上生成一种或多种晶体,使原来单一、均匀的玻璃相物质转变成了由微晶 相和玻璃相交织在一起的多相复合材料。又称玻璃陶瓷或微晶玉石。 它具有玻璃和陶瓷的双重特性,比陶瓷的亮度高,比玻璃的韧性强。
活塞、旋转叶片、炊具的制造上,同时也用在飞机、火箭、人造地球卫星的结构 材料上。
6 应用领域
1、机械力学材料上的应用 微晶玻璃具有很低的热膨胀系数及十分优越的耐热冲击性能,可以加工成不同
形状和尺寸。
6 应用领域
厨具应用
6 应用领域
厨具应用
6 应用领域
2、光学材料上的应用 微晶玻璃通常没有气孔,且含有一定的玻璃相,因此它可
烧结法: 配料→混合→熔制→淬冷→烘干→过筛→分级→装模(辅料)→烧 结→晶化→磨抛→检验→成品→入库
特点:玻璃经过淬冷后颗粒细小、表面积增加,通过表面或界面晶化而形成微晶 玻璃,不必使用晶核剂。
6 应用领域
1、机械力学材料上的应用 利用微晶玻璃耐高温、抗热震、热膨胀性可调等力学和热学性能,广泛应用于
高透过率超薄硼硅玻璃,具有出色的化学稳定性和对恶劣使用环境的耐受性,适用于电 阻式触摸屏技术。高品质铝硅酸盐玻璃,在化学强化后拥有出色的耐刮擦性能和机械强 度,适用于电容式触摸屏技术的保护面板。如Na2O -Al2O3-SiO2系玻璃,先通过热处理 使其析出Na2O .Al2O3.2SiO2霞石晶体,然后通过K+与Na+交换,使表面的霞石晶体转 变为K2O.Al2O3.2SiO2六方钾霞石,体积增大10%使表面产生很大的压应力,机械强度 提高到1500MPa,在已知的微晶玻璃中强度是最高的。
6 应用领域
4、生物医学材料上的应用 生物微晶玻璃具有许多优越、独特的性能,如良好的化学稳定性、生物兼容性或
者生物活性等。目前,主要用作牙齿材料、人造骨骼、铁磁性抗癌材料等。
6 应用领域
5、化学化工材料上的应用 微晶玻璃化学稳定性好,几乎不被腐蚀的特性广泛应用于化工上。在控制污染和
新能源应用领域也有用途,如微晶玻璃用于喷射式燃烧器中消除汽车尾气中的碳氢化 合物;在硫化钠电池中作密封剂;在输送腐蚀性液体中作管道等。
2 历史
18世纪:尝试阶段,奠定基础。 20世纪30年代:关注度高,但未实现工业化。 1957年:美国康宁公司著名的玻璃化学家S.D.Stookey首先研制成功了 商品光敏微晶玻璃。 1959年:Stookey制成以二氧化钛为晶核剂的微晶玻璃。 1960年:前苏联科学家首先研制成功了矿渣微晶玻璃。 1966年:第一条辊压法制造微晶玻璃的生产线建成并投入生产。
5 制作工艺
不同种类的微晶玻璃有各自不同的生产工艺,但微晶玻璃常用的生产工艺主要为 整体析晶法和烧结法。
整体析晶法: 玻璃的制备与成形→采用可控热处理工艺使玻璃核化、晶化 特点:可沿用任何一种玻璃的成形方法,与通常的陶瓷成形工艺相比,更适合自 动化操作和制备形状复杂、尺寸精确的制品。组成均匀、不存在气孔等缺陷。
6 应用领域
3、电子与微电子材料上的应用 有明显弥散特征的云母微晶玻璃在电子、精密部件、航空领域有广泛应用前景。极性微
晶玻璃是一种新型的功能材料,含有定向生长的非铁电体极性晶体具有压电性和热释电性能, 在水声、超声等领域有广阔的应用前景。
晶牛微晶集团历经十年自主研发世界首条浮法微晶生产线终于在2008年10月在晶牛成 功诞生透明微晶玻璃,被北京航天三院用于激光陀螺加工设备。这是我集团航天微晶产品首 次在国防领域应用,打破一直采用进口工件托架的历史。厚度:4-7mm, 板宽:500800mm,长度:1000-2000mm。
2 历史
我国建筑装饰用微晶玻璃的发展历史 1981~1992年:实验室研究阶段。 1992~1997年:工业化试验阶段。 1997~2004年:工业发展阶段。
3 特性
物理性能: 比高碳钢硬、比铝轻 机械强度比普通玻璃高6倍多 耐磨性不亚于铸石 热稳定性好(加热900℃骤然投入5℃冷水而不炸裂) 电绝缘性能与高频瓷接近 化学稳定性好,耐腐蚀
6 应用领域
3、电子与微电子材料上的应用 晶牛微晶公司浮法低膨胀微晶玻璃利用浮
法微晶玻璃超厚超宽、耐高温的特点,2012年 为韩国三星供应低膨胀560mm×860mm大板 面的微晶板,应用于“韩国三星”等离子液晶 屏背后光源产品生产线垫板,经过多次进行加 工技术交流和试验,为三星生产中解决技术难 题,用低膨胀微晶装备提升韩国三星工艺技术。
3 特性
环保优势: 一般的废渣土中都含有制作微晶玻璃的大多数成分,利用废渣、废土 做原材料,包括:矿石、工业尾矿、冶金矿渣、粉煤炭等,有利于环 境治理,变废为宝。
4 种类
按微晶化原理分为:光敏微晶玻璃、热敏微晶玻璃。 按基础玻璃的组成分为:硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸 盐系统。 按所用原料分为:技术微晶玻璃(用一般的玻璃原料)、矿渣微晶玻璃(用工矿业废 渣等为原料)。 按特征特性分为:耐热微晶玻璃、耐腐蚀微晶玻璃、压电微晶玻璃、生物微晶玻璃等。 按形状分为:普型板、异型版。 按加工程度分为:镜面板、亚光面板。 按外观分为:透明微晶玻璃、不透明微晶玻璃。
பைடு நூலகம்
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
3 特性
美学优点: 丰富的色泽、良好的质感
通过工艺控制可以生产出各自色彩、色调和图案的微晶玻璃。 色调均匀
天然花岗石难以避免明显的色差,而微晶玻璃易于实现颜色 均匀,尤其是高雅的纯 白色微晶玻璃。 永不浸湿、抗污染
微晶玻璃不吸水,还有自清洁的功能。