高斯小学奥数五年级上册含答案_比例应用题

合集下载

高斯小学奥数五年级上册含答案_燕尾模型

高斯小学奥数五年级上册含答案_燕尾模型

第二十五讲燕尾模型你怎么看?喜泉忖和司京庄之闻有J 午三和形的湖73*£司泉£■£田应逆在东移『盅该往西移匡【村昌认为湖水面积发生了变K 分配.ftiteffi 个村怅】叶得面红耳赤. *44^=3 nnk sgjt>离寂忖畜3m 户人泉「司寂庄有“口户人寂*于罡蒂材商定値一座塀坝.把湖 分底两躺分,面积之比为肚4* 然而ri 年怎"因治国湖造田,溯水的⑥积缩小了■丿1 宙盒住 无 - --------------- - 「名 ------------- X s *.口]JJ-*■一亠rrx e- 2 c之前我们学过等高三角形的比例关系, 有比例关系S i : Sa a:b .如下右图所示,在增加了两条线段后, 图中有4个小三角形,这4个小三角形的面积之 间的比例关系如图中所示.由于图中的阴影部分看起来很像燕子的尾巴, 所以这个图形我们形象的把它称为燕尾模给出不同边上的比例关系,我们就可以用 “燕尾模型”解决三角形面积的问题,下面我们先看- 一个给出两个外比的问题.如下左图所示,△ ABC 被线段AD 一分为二,且外比:S i S 3 S i S 3 BD S 2S 4 S 2 S 4 CD内比: S iS a S i S 2 AO S 3S 4S 3 S 4 OD例题1.如图,AD=6, CD=14,三角形ABE 的面积是24,求三角形 BEC 的面积. 「分析」?△空 AD ,据此就可以求出△ BEC 的面积.S ^BCE DC练习1.已知三角形ABC积是56,求三角形BDF 和三角形CDF 的面积.中,三角形ABF 的面积是60,三角形AFC 的面积是20,三角形BFC 的面a bSS 4根据下列图中所给线段比例来标注各部分的面积份数.例题2.如图,△ ABC 的面积等于28平方厘米.其中 AE EC , BD: DC 3:1 ,求阴影三角形的 面积. 「分析」图中并没有燕尾模型,所以第一步需要把它构造出来•应该连哪条线呢?练习2.在三角形ABC 中,2AE EB , AD CD ,阴影部分占△ ABC 的几分之几?A有时题目给的不是两个外比, 而是一个内比和一个外比, 此时在利用燕尾模型解题的时候,既需要由长度的比推出面积的比,也需要由面积的比推出长度的比.这类问题较简单的一类是已知的内比和外比在同一个燕尾形中.外比:AD:DB=2:1 外比:AF:FC=1:1外比:CD:DB=2:1 外比:AE:EC=1:3外比:CD:DB=3:1 外比:AE:EC=1:3A练一练根据下列图中所给线段比例来标注各部分的面积份数.例题3.如图,△ ABC 中AE ED , BD: DC 1:3,阴影部分的面积占三角形 ABC 面积的几分之几? 「分析」这道题目属于知道一外比和一内比的第一种类型,按顺序填份数就可以了.练习3在三角形ABC 中,AE 2EC , BF : FE 1:1,阴影部分占△ ABC 的几分之几?练一练根据下列图中所给线段比例来标注各部分的面积份数.外比:AD:DC=1:2外比:AD:DC=1:1夕卜比:AE:EB=2:1 夕卜比:BE:EC=2:1例题4i如图,△ ABC中,AF FD , AE —AC,求四边形CEFD的面积是三角形ABC的几分之3几.「分析」这道题目属于知道一外比和一内比的第二种类型,按顺序填份数就可以了.练习4.13DF,四边形ADFE的面积是三角形ABC的几分之在三角形ABC中,AE - EC , CF2几?有些图形不能直接使用燕尾模型,我们需要添加辅助线后方可使用燕尾模型.例题5.如图,正方形ABCD的边长是6, E、F分别是DC和AD边的中点,阴影部分的面积是多少?「分析」连结AC ,燕尾模型就出来了.D E C例题6.如图,四边形ABCD中,AB 3BE , AD 3AF ,四边形AEOF的面积是12, BCDE是平行四边形•那么四边形ABCD的面积是多少?「分析」例题5中,我们通过连结正方形对角线构造出了燕尾模型.本题中,我们应该连结哪条线段呢?A含有“燕”字的诗句中国古代的诗句中,有很多都和燕子有关系。

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

第十八讲直线形计算中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系,下面我们复习一下其中的基本结论.如图所示,对于三角形ABD 与三角形BDC ,它们有共同的高BH ,可知ABD ADBDC DC=三角形的面积三角形的面积.例题1.如图,AE :EB =3:2,CD :DB =7:5,三角形ABC 的面积是60,求三角形AED 的面积. 「分析」图中是否有等高的三角形?练习1.如图,:2:5CE AE =,:7:5CD DB =三角形ABC 面积为120,求三角形AED 的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的漫画中我们认识了“小黎飞镖”.把“飞镖”立起来(如图),标好字母,会发现两个三角形:三角形ADE 与三角形ABC .这两个三角形有一个公共的角A ,并且角A 的两边AD 、AE 分别在AB 、AC 上.对于符合这种情况的三角形ADE 与三角形ABC ,我们称之为“共角三角形”.AB B对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有ADE AD AEABC AB AC=⨯三角形的面积三角形的面积.(同学们,可以想一想如何来证明这个结论.提示:连结四边形BDEC 的一条对角线)例如:如果在“小黎飞镖”中,D 点是AB 上靠近B 的3等分点,E 点是AC 上靠近A 的3等分点,那么23AD AB =,13AE AC =,那么三角形ADE 的面积就是三角形ABC 面积的212339⨯=. 有了这个结论,在解决一些问题时,就方便很多了.请看下面的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.如图,在三角形ABC 中,AD 的长度是BD 的3倍,AC 的长度是EC 的3倍.三角形AED 的面积是10,那么三角形ABC 的面积是多少?「分析」△ADE 占△ABC 的几分之几?应该怎么利用鸟头模型来计算?练习2.三角形ABC 中,BD 的长度是AB 的14,AE 的长度是AC 的13.三角形AED 的面积是8,那么三角形ABC 的面积是多少?例题3.如图,已知长方形ADEF 的面积是16,BE =3BD ,CE =CF .请问:三角形BEC 的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?CCF练习3.如图,长方形ABCD 的面积是48,BE :CE =3:5,DF :CF =1:2.三角形CFE 的面积是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -接着,我们来看一看在任意四边形中三角形之间的面积关系.如图,对于一个任意的四边形ABCD ,连结对角线AC 和BD ,将整个四边形分成4个小三角形,由等高三角形的基本结论,我们可以得到如下关系:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形COD 的面积是3平方千米,三角形AOB 的面积是1平方千米.如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?「分析」△BOC 、△COD 和△AOB 的面积都知道了,那么△AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于O 点,三角形ABO 的面积为6,三角形AOD 的面积为8,三角形BOC 的面积是15,那么四边形ABCD 的面积是多少?ABCDO S 1S 2 S 3S 414142323S S S S BO DO S S S S +===+ 12124343S S S S AO CO S S S S +===+ 1324S S S S ⨯=⨯A B CD E FA例题5.如图,△ABC 的面积是36,并且13AE AC =,14CD BC =,15BF AB =,试求△DEF 的面积.「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6.图中四边形ABCD 的对角线AC 和BD 交于O 点,如果△ABD 的面积是30平方厘米,△ABC 的面积是48平方厘米,△BCD 的面积是50平方厘米.请问:△BOC 的面积是多少? 「分析」题目中给出了3个大三角形的面积,能不能找出四个小三角形之间的面积关系呢?A B CDE F C DAOB三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.1. 如图,△ABC 中,BD 的长度是AB 的23,如果△ABC 的面积为15,那么△ADC 的面积是多少?2. 如图,:4:3AE EB =,:3:1CD DB =,三角形ABC 的面积是84,三角形AED 的面积是多少?3. 如图,:1:4AD DB =,:1:5AE EC =,如果△ABC 的面积是120,那么△ADE 的面积是多少?4. 如图所示,在长方形ABCD 中,DE CE =,2CF BF =,如果长方形ABCD 的面积为18,那么阴影部分的面积是多少?5. 如图,四边形ABCD 中,AC 、BD 两条对角线交于O 点,△ADO的面积为30,△ABO 的面积为6,△DOC 的面积是20,那么四边形ABCD 的面积是多少?C第十八讲 直线形计算中的比例关系例题1. 答案:15详解:因为三角形ACD 与三角形ADB 同高,所以::7:5ACD ADB S S CD DB ∆∆==,所以三角形ADB 面积为25;同理,三角形AED 与三角形BED 等高,所以::3:2AED BED S S AE EB ∆∆==,所以三角形AED 面积为15.例题2. 答案:20详解:AD 是AB 的34,AE 是AC 的23.根据鸟头模型,有△ADE 面积是△ABC 面积的321432⨯=.那么△ABC 的面积是20.例题3. 答案:3详解:连结DF ,根据鸟头模型,可知△BCE 面积是△DEF 面积的313428⨯=.那么△BCE 的面积是1316328⨯⨯=.例题4. 答案:0.6详解:由题意,:::BOC COD BOA DOA S S BO OD S S ∆∆∆∆==,三角形BOC 面积为2平方千米,三角形COD 面积为3平方千米,三角形BOA 面积为1平方千米,则三角形AOD 面积是1.5平方千米,陆地总面积6.9平方千米,则人工湖面积为231 1.5 6.90.6+++-=平方千米.例题5. 答案:15详解:由鸟头模型可得,414836535AEF S ∆=⨯⨯=,132736545BFD S ∆=⨯⨯=,1236643CDE S ∆=⨯⨯=,48273661555DEF S ∆=---=.例题6. 答案:30详解:::3:5ABD BCD AO CO S S ∆∆==,所以5308BOC ABC S S ∆∆=⨯=平方厘米.练习1. 答案:50简答:△ACD 的面积是()12075770÷+⨯=,△AED 的面积是()7025550÷+⨯=.练习2. 答案:32简答:3183243⎛⎫÷⨯=⎪⎝⎭.练习3.答案:10简答:1524810283⨯⨯⨯=.练习4.答案:49简答:△COD的面积是815620⨯÷=,四边形ABCD的面积为68152049+++=.作业1.答案:5简答:由BD的长度是AB的23得:1:3AD AB=,那么三角形ADC的面积为11553⨯=.作业2.答案:12简答:由于:3:1CD DB=,三角形ABC的面积是84,可知三角形ADB的面积为84(31)21÷+=,又由于:4:3AE EB=,可知三角形AED的面积为21(43)412÷+⨯=.作业3.答案:4简答:由已知条件得:1:5,:1:6AD AB AE AC==,利用“共角三角形”得三角形AED的面积是11 120456⨯⨯=.作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三角形BCD的121233⨯=,那么阴影部分的面积是19163⨯-=().作业5.答案:60简答:利用任意四边形的结论得三角形BOC的面积是:620304⨯÷=,所以四边形ABCD 的面积是62030460+++=.。

高思奥数导引小学五年级含详解答案第20讲:直线型计算三

高思奥数导引小学五年级含详解答案第20讲:直线型计算三

第20讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用。

典型问题兴趣篇1.如图20-1,在三角形ABC 中,AD 的长度是AB 的34,AE 的长度是AC 的23。

请问:三角形AED 的面积是三角形ABC 面积的几分之几?2.如图20-2,AC 的长度是AD 的45,且三角形AED 的面积是三角形ABC 面积的一半。

请问:AE 是AB 的几分之几?3.如图20-3,深20厘米的长方形水箱装满水放在平台上。

(1)当水箱像图20-4这样倾斜,水箱中水流出15,这时AB 长多少厘米?(2)如图20-5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这时水箱中水的深度是多少厘米?图20-1BD CE A图20-2BEDCABA B A~~~~~~~~~~~~~~~~~~~~图20-6图20-5图20-4图20-34.如图20-7,某公园的外轮廓是四边形ABCD ,被对角线AC BD 、分成4个部分。

三角形AOB 的面积是2平方千米,三角形BOC 的面积是3平方千米,三角形COD 的面积是1平方千米。

如果公园由大小为6.9万平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?5.如图20-8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。

请问:梯形ABCD 的面积是多少平方厘米?6.如图20-9,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近B 点的三等分点,求图中阴影部分的面积。

图20-7ODABC图20-8CDBAO图20-97.图20-10中的两个正方形的边长分别为6分米和8分米,求阴影部分的面积。

8.如图20-11,梯形ABCD 的对角线相互垂直。

三角形AOB 的面积是12,OD 的长是4,求OC 的长。

9.在图20-12中,正方形ABCD 的边长为5厘米,且三角形CEF 的面积比三角形ADF 的面积大5平方厘米,求CE 的长。

高斯小学奥数五年级上册含答案_环形路线

高斯小学奥数五年级上册含答案_环形路线

第四讲环形路线为什么会出现最后一名超过第一名的现象呢?同学们可能已经想清楚了,这是因为跑道是一个圆.今天我们就来学习一下环形路线问题.顾名思义,环形路线的运动路径是一个封闭的曲线,这就意味着从一个点出发,跑完一圈之后会回到出发点,这是完全不同于直线运动的.同样的,环形中的相遇问题与直线形问题也是略有不同的.如图所示,从一个点出发,背向而行的两人,会在圆周上的一点相遇.这时他们走过的路程和为一个圆周.而如果他们从同一个点出发同向而行,慢的那个人会在圆周上的一点被快的那人追上.这时他们走过的路程之差是一个圆周.这里要特别说明,在圆周上两点之间的距离是这样定义:两点间较短一段圆弧的长度.如右图,AB 两点间的距离就是AB 间粗实线的长度.起点路程和是跑道的周长 相遇时间=周长 ÷(甲速+乙速)相向而行起点路程差是跑道的周长追及时间=周长 ÷(乙速-甲速) A从例题1可以看出,两只小猫从出发到第一次相遇需要25秒.第一次相遇时两只小猫在一起,继续出发的话,到下一次相遇仍然需要25秒.由此可见,环形路线上的相遇问题也具有周期性.同样的,环形路线上的追及问题也具有周期性.若甲、乙两人同地同向出发,甲快乙慢,那么甲第一次追上乙时,恰好比乙多跑一整圈;从此刻开始,甲想要再次追上乙,就必须再多跑一整圈.如此反复不断地追下去,甲每次追上乙都恰好要多跑一整圈,所以每次追及的路程差是一样的.如果两人的速度差保持不变,那每次追上的时间也就相同了.在环形路线问题中,善用周期性会使一些问题变得简单,特别是一些多次相遇和多次追及的问题.如果不是同地出发,这样的环形路线问题还具有周期性吗?总的来说,环形上的行程问题比直线上的情况变化更多,更繁琐.在运动过程较复杂的题目中,我们必须认真画图,仔细分析每一段运动过程.练习4. 如图,有一个环形跑道,甲、乙二人分别从A 、B 两地出发相向而行,第一次相遇在距离A 点100米处的C 点,第二次相遇在距离B 点200米处的D 点.已知AB 长是跑道总长的四分之一,请问跑道周长为多少米?例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快.如果从同一起点出发背向而行,1小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过1小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少.想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?【分析】阿呆第一次看见阿瓜的时候,一定是刚到达某个墙角的时候.应该是哪个墙角呢?如图,一个正方形房屋的边长为12米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?B DC A华罗庚爷爷的故事温室里难开出鲜艳芬芳耐寒傲雪的花儿。

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

第六讲直线型计算中的倍数关系迄今为止,同学们已经学会了很多图形计算面积的方法.在计算这些面积的时候,只要知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形的长和宽即可利用长方形的面积=⨯长宽进行计算.但很多时候,题目中并不给出长和宽,那怎么来求面积呢?我们来看下面这个例题.例题1. 如图,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗?对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于它们宽(长)之比.例如:如图所示的长方形ABCD 与长方形BEFC 宽BC 相同,那么ABCD BEFC AB BE =长方形的面积:长方形的面积:.如图,有7个小长方形,其中的5个小长方形的面积分别为20,4,6,8,10平方厘米.求阴影长方形的面积是多少平方厘米?从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异.我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.过三角形一个顶点的直线将三角形分为两个小三角形,则这两个小三角形面积之比等于84620 10A B CDE481216 20该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍.那么三角形ABE 的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC 中,D 为AB 的中点,E 为BC 的中点,F 为BE 中点,如果三角形ABC 的面积是120平方厘米,那么三角形DEF 的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分.比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3. 如图,把三角形DEF 的各边分别向外延长1倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系.但是我们所求的是三角形DEF 的面积,而已知的是三角形ABC 的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?ACBF ED::ABD ADC BD DC 三角形的面积三角形的面积ABDE A DEA B CED F如图,把三角形DEF 的各边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4. 如图,E 是AB 上靠近A 点的三等分点,梯形ABCD 的面积是三角形AEC 面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC 的面积是“1”份,那么梯形ABCD 的面积就是“5”份.接着可以看看“E 是AB 上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?DEFA BCBCDEA如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系.例题5. 把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、③三个长方形.其中,③的长和宽分别为4、2,可以求出它的面积.那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6. 如图,直角三角形ABC 套住了一个正方形CDEF ,E 点恰好在AB 边上.又已知直角边AC 长20厘米,BC 长12厘米,那么正方形的边长为多少厘米? 「分析」注意到EF 垂直于AC ,ED 垂直于BC .我们可以连接CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而它们的高相等.我们的目标就是求这个高.A BCDE2ACBEF D欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。

高斯小学奥数五年级上册含答案_环形路线

高斯小学奥数五年级上册含答案_环形路线

第四讲环形路线为什么会出现最后一名超过第一名的现象呢?同学们可能已经想清楚了,这是因为跑道是一个圆.今天我们就来学习一下环形路线问题.顾名思义,环形路线的运动路径是一个封闭的曲线,这就意味着从一个点出发,跑完一圈之后会回到出发点,这是完全不同于直线运动的.同样的,环形中的相遇问题与直线形问题也是略有不同的.如图所示,从一个点出发,背向而行的两人,会在圆周上的一点相遇.这时他们走过的路程和为一个圆周.而如果他们从同一个点出发同向而行,慢的那个人会在圆周上的一点被快的那人追上.这时他们走过的路程之差是一个圆周.这里要特别说明,在圆周上两点之间的距离是这样定义:两点间较短一段圆弧的长度.如右图,AB 两点间的距离就是AB 间粗实线的长度.起点路程和是跑道的周长 相遇时间=周长 ÷(甲速+乙速)相向而行起点路程差是跑道的周长追及时间=周长 ÷(乙速-甲速) A从例题1可以看出,两只小猫从出发到第一次相遇需要25秒.第一次相遇时两只小猫在一起,继续出发的话,到下一次相遇仍然需要25秒.由此可见,环形路线上的相遇问题也具有周期性.同样的,环形路线上的追及问题也具有周期性.若甲、乙两人同地同向出发,甲快乙慢,那么甲第一次追上乙时,恰好比乙多跑一整圈;从此刻开始,甲想要再次追上乙,就必须再多跑一整圈.如此反复不断地追下去,甲每次追上乙都恰好要多跑一整圈,所以每次追及的路程差是一样的.如果两人的速度差保持不变,那每次追上的时间也就相同了.在环形路线问题中,善用周期性会使一些问题变得简单,特别是一些多次相遇和多次追及的问题.如果不是同地出发,这样的环形路线问题还具有周期性吗?总的来说,环形上的行程问题比直线上的情况变化更多,更繁琐.在运动过程较复杂的题目中,我们必须认真画图,仔细分析每一段运动过程.练习4. 如图,有一个环形跑道,甲、乙二人分别从A 、B 两地出发相向而行,第一次相遇在距离A 点100米处的C 点,第二次相遇在距离B 点200米处的D 点.已知AB 长是跑道总长的四分之一,请问跑道周长为多少米?例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快.如果从同一起点出发背向而行,1小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过1小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少.想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?【分析】阿呆第一次看见阿瓜的时候,一定是刚到达某个墙角的时候.应该是哪个墙角呢?如图,一个正方形房屋的边长为12米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?B DC A华罗庚爷爷的故事温室里难开出鲜艳芬芳耐寒傲雪的花儿。

高思奥数导引小学五年级含详解答案第19讲:工程问题

高思奥数导引小学五年级含详解答案第19讲:工程问题

第19讲工程问题内容概述掌握工作总量、工作效率、工作时间的基本概念和关系;理解“单位1”的概念并灵活应用;熟悉多人、多工程、效率变化等各种形式的问题;学会处理“水池注水”形式的问题。

典型问题兴趣篇1.甲、乙两辆车运一堆煤,如果只用甲车运,15小时可以运完;如果只用乙车运,10小时可以运完。

请问:(1)如果两车一起运,多少小时可以运完?(2)如果甲车从早上8点开始运煤,乙车下午1点才开始运,那么几点的时候可以把煤运完?2.一项工作,甲单独做20天可以完成,乙单独做30天可以完成。

现在两人合做,用16天就完成了工作,已知在这16天中甲休息了2天,乙休息了若干天。

请问:乙休息了多少天?3.如果甲、乙两队合做一项工程,恰好24天完成;如果乙队先做5天,然后甲队来帮忙,又共同做了10天后,全部工程才完成了一半。

请问:甲队单独完成这项工程需要多少天?4.一项工程,甲单独做要6小时完成,乙单独做要10小时完成。

如果按甲、乙、甲、乙……的顺序交替工作,每人工作1小时后交换,那么需要多少小时才能完成任务?5.有一批工人做某项工程,原计划4天完成。

如果增加6人,只需要3天就能完成。

现在人数不仅没有增加,反而减少了9人,求完成这项工程需要的天数。

6.甲、乙两队分别在A B、两块地植树,B地需要植树的数量是A地的两倍。

已知甲队单独在A地植树需要12天完成,乙队单独在B地植树需要30天完成。

现在甲、乙两队分别在A B、两地同时开始,当甲队做完后便去B地和乙队共同工作。

请问:两队要用多少天才能种完树?7.一水池装有一个进水管和一个排水管。

如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。

现在先打开进水管,2小时后打开排水管。

请问:再过多长时间池内将恰好存有半池水?8.蓄水池有甲、乙、丙三个进水管。

如果想灌满整池水,单开甲管需10小时,单开乙管需12小时,单开丙管需15小时。

上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。

高斯小学奥数五年级上册含答案_第12讲_几何计数

高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有3条横线、4条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。

高斯小学奥数五年级上册含答案_第09讲_流水行船问题

高斯小学奥数五年级上册含答案_第09讲_流水行船问题

第九讲流水行船冋题密第二次世 界大战时期’出 现过一决奇姓的 飞机倒飞事件,丿丿)Where^HBI 与—架从柏林起飞的礒 国侦察机•曲备去汉堡 执行住务.Tuiaj w Pol&ka! {液 兰语:这导波到了预定的时间* 飞行员控制飞机降落, 发现自己来到了一个陌 供的沖方——他被凤带 到了波兰+很小幸•这舉在空 屮遇到了—股强气流, 虽緒飞行员口操作向 前飞行,怛如果此时肖 人在地面上看到这架飞 机:註发现此时飞机1E 在JS 退一6小时.那么在无风的时候,这艘飞艇行驶 1000公里要用多少小时?故事中飞机倒飞的情况真的会出现吗?学习完今天的课程,你就知道了. 如同飞机在飞行的时候会受到风速的影响一样, 当船在水中航行时, 也会受到水速的影响,而具体是怎样的影响呢,我们今天就来研究一下.当船在水中航行时, 如果水是静止不动的, 那船的行驶速度就只由船本身决定, 这个速度称为船的 静水速度,即船本身的速度.大家可以设想一下,如果船本身停止运动,那么它还是会顺着水流前进,这时的速度等 于水流的速度,我们可以把水流的速度简称为水速.当船顺水而行时,船的静水速度和水速会叠加起来,行驶速度会变快,此时的速度我们称之为顺水速度;相反的,如果船逆水而行,水速会抵消掉一部分船本身的速度,行驶速度 会变慢,此时的速度我们称之为 逆水速度.下面的两个基本公式就给出了对应的计算方法:I 顺水速度 静水船速 水速] I 逆水速度 静水船速 水速很容易的,根据和差问题的计算方法,我们可以得到如下结论:|水速 顺水速度-逆水速度 2〔;|船速 顺水速度+逆水速度这四个公式是流水行船问题中最基本的速度计算公式. 下面我们就利用这四个公式,解决几个典型的流水行船问题.例题1. 甲、乙两港间的水路长 208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【分析】能不能先把顺水速度和逆水速度算出来?一艘飞艇,顺风 6小时行驶了 900公里;在同样的风速下,逆风行驶 600公里,也用了城放出一个无动力的木筏,它漂到 B 城需多少天?例题2. 甲河是乙河的支流, 甲河水速为每小时 3千米,乙河水速为每小时2千米.- 艘船沿甲河顺水7小时后到达乙河,共航行 133千米•这艘船在乙河逆水航行 84千米,需 要花多少小时?「分析」要求出船在乙河中航行 84千米所用的时间,只需知道船在乙河行驶的速度,那么 只需要知道船的静水速度就可以了•能通过船在甲河中的运动过程求出静水速度么?水流方向A 、B 两港相距120千米.甲船的静水速度是20千米/时,水流速度是4千米 /时•那么甲船在两港间往返一次需要多少小时?在解答流水行船问题时,我们需要牢牢抓住水速对船速的影响. 同一艘船在顺水航行与逆水航行中的速度不相同,所以我们在解题时应该把船在不同情况下的运动过程分开考虑. 对于有些问题,如果发现题目中条件不足,可以采用设具体数值的方法来解决.例题3. 轮船从A 城行驶到B 城需要3天,而从B 城回到A 城需要4天•请问:在A【分析】我们要求木筏从A城到B城的漂流时间,只需知道木筏漂流的速度即可.由于木筏是无动力的,也就是说木筏漂流的速度就等于水速. 但现在只知道时间,不知道任何的速度或者距离,那该怎么办呢?一艘船在A、B两地往返航行,如果船顺水漂流,从A地到达B地需要60小时,而开船从B地到达A地需要30小时.那么这艘船从A地开到B地需要多长时间?对于有些复杂的流水行船问题,我们需要分段考虑.例题4. 甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达B港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?「分析」乙船比甲船早两小时出发所行驶的距离,就是甲船追乙船时的路程差.练习4: A码头在B码头的上游,两个码头之间的距离是180千米•货船的静水速度是9千米/时,从A码头出发开往B码头;客船的静水速度是15千米/时,与货船同时出发,从B 码头开往A码头.水速是3千米/时•两船相遇后,货船马上掉头,与客船同时开向A码头.那么货船到达A码头的时间比客船晚几小时?下面我们来看看流水行船问题中的相遇与追及问题. 通过一些具体的例子我们可以发现,如果两船相向而行,两船的速度和就是静水速度之和;如果两船同向而行,两船的速度差就是静水速度之差.因此,相遇时间和追及时间与水速大小无关.例题5. A、B两码头间河流长为300千米,甲、乙两船分别从A、B码头同时起航.如果相向而行5小时相遇,如果同向而行10小时甲船追上乙船.求两船在静水中的速度.【分析】不妨设A码头在上游,B码头在下游.如果相向而行,甲船的实际速度为甲速+水速,乙船的实际速度为乙速一水速,两船的速度之和就是甲速+乙速,所以相遇时间和水速大小没有关系.如果同向而行,追及时间是不是也与水速大小没有关系呢?例题6. 某人在河里游泳,逆流而上.他在A处掉了一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.【分析】游泳者丢失水壶时,他并没有发觉,仍旧逆流而上,此时游泳者的速度是:静水速度水速,而水壶则顺流而下,速度和水速相同.两者背向而行,相当于一个相遇问题的逆过程.速度和为“静水速度水速水速”,恰好为游泳者的静水速度.当游泳者返回的时候,他开始追自己的水壶,此时他和水壶的速度又是怎样的?追及时的速度差又是多少呢?帆船帆船起源于欧洲,其历史可以追溯到远古时代。

小学奥数五年级测试及答案(比例及应用题)

小学奥数五年级测试及答案(比例及应用题)
1、比例
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题
第2题
第3题
第4题
第5题
第6题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:D
答案解析
第3题:
正确答案:C
答案解析
第4题:
正确答案:B
答案解析
第5题:
正确答案:C
答案解析
第6题:
正确答案:B
答案解析
2、比例应用题1份数的应用
第1题
第2题
第3题
第4题
第5题
第6题
第7题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:A
答案解析
第3题:
正确答案:B
答案解析
第4题:
正确答案:C
答案解析
第5题:
正确答案:D
答案解析
第6题:
正确答案:D
答案解析
第7题:
正确答案:Dห้องสมุดไป่ตู้
答案解析

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

J望 昆大侠 溝了!这个故事 说起来就久远 了■ ■ ■ ■ 1■律!□-5T L不打里思与蔡川因为这一战攀道剑鮒眾翳胡请1乍亦第十八讲 直线形计算中的比例关系很久以前.青一场n惊江 鬭的人战.匚 原大侠望昆与 魔救蹌一高手 黎川相约在华 山之昴决斗.苓苓「这个飞繚是 怎么来的呼这就是 ■小黎飞镖" 的来由了!望昆用尽力■击出一 劃”正好打在•小養飞 *JT 上,井在无星不轉 的飞傑上留下了一道削*决斗的情况十幷滋 熱.熾后黎川发出了自 己的绝招•小柴飞象, 打向了箋昆.在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系, 中的基本结论.当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如图所示,对于三角形ABD与三角形BDC ,它们有共同的高BH ,可知三角形ABD的面积AD 三角形BDC的面积DC °例题1.如图,AE:EB=3:2, CD:DB=7:5,三角形ABC的面积是60,求三角形AED的面积.「分析」图中是否有等高的三角形?练习1.如图,CE : AE 2:5 , CD : DB 7:5三角形ABC面积为120,求三角形AED的面积.在前面的漫画中我们认识了“小黎飞镖” •把“飞镖”立起来(如图),标好字母,A 会发现两个三角形:三角形ADE与三角形ABC •这两个三角形有一个公共的角A,并且■'角A的两边AD、AE分别在AB、AC上.对于符合这种情况的三角形ADE与三角形ABC, 我们称之为“共角三角形” . DF面我们复习一下其AB对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有三角形ADE的面积AD AE .(同学们,可以想一想如何来证明这三角形ABC的面积AB AC个结论.提示:连结四边形BDEC的一条对角线)例如:如果在“小黎飞镖”中,D点是AB上靠近B的3等分点,E点是AC上靠近AAD 2 AE 1的3等分点,那么,,那么三角形ADE的面积就是三角形ABC面积的AB 3 AC 32 1 23 3 9 .有了这个结论,在解决一些问题时,就方便很多了•请看下面的问题.例题2.如图,在三角形ABC中,AD的长度是BD的3倍,AC的长度是EC的3倍.三角形AED的面积是10,那么三角形ABC的面积是多少?「分析」△ ADE占厶ABC的几分之几?应该怎么利用鸟头模型来计算?练习2. 积是8, 三角形ABC中,BD的长度是AB的丄,AE的长度是AC的1 .三角形AED的面4那么三角形ABC的面积是多少?例题3•如图,已知长方形ADEF的面积是16, BE=3BD, CE=CF .请问:三角形BEC的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?练习3 .如图,长方形 ABCD 的面积是48, BE:CE=3:5 , DF:CF=1:2 .三角形CFE 的面积是接着,我们来看一看在任意四边形中三角形之间的面积关系. 如图,对于一个任意的四边形ABCD ,连结对角线 AC 和BD ,将整个四边形分成 本结论,我们可以得到如下关系:例题4.如图,某公园的外轮廓是四边形 ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形 COD 的面积是3平方千米,三角形 AOB 的面积是1平 方千米.如果公园由大小为 6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多 少平方千米? 「分析」△ BOC 、A COD 和厶AOB 的面积都知道了,那么△ AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于 O 点,三角形 ABO 的面积为6,三角 形AOD 的面积为8,三角形BOC 的面积是15,那么四边形 ABCD 的面积是多少?4个小三角形,由等高三角形的基BO DO§S2 §4 §3AO S ( S, CO S 4§3§i S 4 §2 §3 3 S 2 §1 S 3§1 S 3§>§4D「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6 .图中四边形 ABCD 的对角线AC 和BD 交于0点,如果△ ABD 的面积是30平方厘 米,△ ABC 的面积是48平方厘米,△ BCD 的面积是50平方厘米.请问:△ BOC 的面积是 多少? 「分析」题目中给出了 3个大三角形的面积, 能不能找出四个小三角形之间的面积关系呢?1例题5.如图,△ ABC 的面积是36,并且AE AC , CD3的面积.1BC , BF 】AB ,试求△ DEF 4 5BC 0三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.锐箱三劑形金第三箱形註第三垢形三角形的垂心三角形的旁心三角形的内心三朿形附W21.如图,△ ABC 中,BD 的长度是AB 的,如果△ ABC 的面积为15,那么3△ ADC 的面积是多少?如图所示,在长方形 ABCD 中,DE CE , CF 2BF ,如果长方 形ABCD 的面积为18,那么阴影部分的面积是多少?如图,四边形 ABCD 中,AC 、BD 两条对角线交于 0点,△ ADO的面积为30, △ ABO 的面积为6,^ DOC 的面积是20,那么四边形 ABCD 的面积是多少?2. 3. 如图,AE : EB 4:3 , CD : DB 形AED 的面积是多少?如图,AD:DB 1:4 , AE: EC ADE 的面积是多少?3:1 ,三角形ABC 的面积是84,1:5,如果△ ABC 的面积是120, 三角那么△4.5.B F C第十八讲直线形计算中的比例关系例题1.答案:15详解:因为三角形ACD与三角形ADB同高,所以S ACD :S ADB CD: DB 7:5,所以角形ADB面积为25 ;同理,三角形AED与三角形BED等高,所以S AED : S BED AE:EB 3: 2,所以三角形AED面积为15.例题2.答案:20详解:AD是AB的3, AE是AC的-.根据鸟头模型,有厶ADE面积是△ ABC面积的4 33 2 1.那么△ ABC的面积是20.4 3 2例题3.答案:3详解:连结DF,根据鸟头模型,可知△ BCE面积是△ DEF面积的1 3.那么△4 2 81 3BCE的面积是16 3 .2 8例题4.答案:0.6详解:由题意,S BOC : S COD BO :OD S BOA : S DOA ,三角形BOC面积为2平方千米,三角形COD面积为3平方千米,三角形BOA面积为1平方千米,则三角形AOD面积是1.5平方千米,陆地总面积 6.9平方千米,则人工湖面积为 2 3 1 1.5 6.9 0.6平方千米.例题5.答案:15详解:由鸟头模型可得,S AEF36 4 148S BFD 36—3275 35545124827SCDE36 -6, S DEF 36615 .4355例题6.答案:30详解:AO:CO §AB D:S BCD 3:5,所以S BOC S ABC 8 30平万厘米练习1. 答案:50简答:△ ACD的面积是1207 5 7 70 ,△ AED的面积是70 2 5 5 50.练习2. 答案:32简答:83 - 32 .4 3练习3.答案:10简答:4815 2“10 .2 8 3练习4. 答案:49简答:△ COD的面积是8 15 6 20,四边形ABCD的面积为6 8 15 20 49.作业1.答案:52 1简答:由BD的长度是AB的—得AD: AB 1:3,那么三角形ADC的面积为15 - 5 .3 3作业2. 答案:12简答:由于CD:DB 3:1,三角形ABC的面积是84,可知三角形ADB的面积为84 (3 1) 21,又由于AE : EB 4:3,可知三角形AED的面积为21 (4 3) 4 12. 作业3.答案:4简答:由已知条件得AD : AB 1:5 , AE : AC 1:6,利用“共角三角形”得三角形AED1 1的面积是120 - - 4.5 6作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三12 1 1角形BCD的--1,那么阴影部分的面积是9 (1 J) 6.2 3 3 3作业5. 答案:60简答:利用任意四边形的结论得三角形BOC的面积是:6 20 30 4,所以四边形ABCD的面积是6 20 30 4 60.。

高斯小学奥数五年级上册含答案_工程问题

高斯小学奥数五年级上册含答案_工程问题

第二十三讲工程问题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们这一讲要学习的问题叫做工程问题.先来看下面的这个例子,假设一条地铁线有15千米长,工程队每个月可以修3千米,同学们肯定马上就能看出,共需要5个月的时间修好整条地铁.在这个例子中,总长度15千米叫做这个工程问题的工作总量,5个月即为工作时间,而工程队每个月修3千米就叫做工作效率.同学们,你们能看出来这和我们以前学过的哪一类应用题很类似吗?没错,就是行程问题!上面的例子很容易转化成这样一个行程问题:两地相距15千米,某人行走的速度为每小时3千米,那么从一地走到另一地需要5小时.虽然工程问题看起来和行程问题很类似,但工程问题有它自己独特的解法.在工程问题中,经常无法从题目中找到工作总量,此时可以把工作总量设为单位“1”.例如:一个工程队5天修完一段公路,我们就可以把修这段公路的工作总量设为单位“1”,那么工程队每天就能修完公路的15,那么每天完成的工作量就是“15”,而“15”就是这个工程队的工作效率.如同速度在行程问题中的核心地位,工程问题中工作效率、工作时间和工作总量这三个量中最为关键的量也是工作效率.因此,如何求出每一个工作者的工作效率,是同学们分析问题时的重点.练一练:1.李师傅要完成一批零件,他预计用6个小时完成了整个工作.则以这批零件的总量为单位“1”,李师傅的工作效率是_______,如果李师傅工作了2个小时,那么他完成了全部工作的_____分之_____.2.明明用了10个小时完成了写大字的作业,那么明明3个小时能完成作业的_____分之_____,如果这时他写好了30个大字,那么他总共要写_______个大字.在完成一项工作时,很多时候依靠个人的力量是无法完成的,或者不能完成得很快、很好,这时就需要多个人合作来完成.俗话说:“众人拾柴火焰高”,团队的智慧是远远超过个人的.当多人合作的时候,完成的工作总量就是这些人工作量的总和,“总工效”就是他们每个人的工作效率之和.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1.一条公路,甲队单独去修需要20天完成,乙队单独去修需要30天完成.那么:(1)甲、乙两队一起修,共需要多少天完成?(2)如果甲、乙两队合修若干天之后,乙队停工休息,而甲队继续修了5天才修完,那么乙队一共修了多少天?「分析」题目中已知甲、乙的工作时间,如果我们把工作总量设为单位“1”,那么利用工程问题的基本关系式:工作总量工作时间=工作效率,马上可以求出甲、乙两队的工作效率,那么两人合作的效率是多少?第(2)问中,甲队独修了5天,那么甲队独修的工作量是多少?其余的工作由两人合作完成,那两人还需要合作几天?练习1.有一堆排骨,老虎单独吃需要10分钟,狮子单独吃需要15分钟.那么:(1)老虎和狮子一起互不影响地吃这堆排骨,需要多少分钟吃完?(2)如果老虎和狮子一起吃了3分钟后,老虎就把狮子赶走了,剩下的排骨可以让老虎单独吃几分钟?在例题1中,单独与合作划分得很清楚,单独做的时候只要找那个人对应的工效和工作量,就能算出那个人单独的工作时间,而合作的时候,只要找到工效和与对应的工作量就能求出合作时间.然而有些时候,单独与合作的界线并不是那么清楚,需要我们自己找到.例2.现在要修筑一条公路,如果甲、乙两个工程队同时施工,20天可以完成.如果两队合作15天之后,剩下的全都由乙来完成,则还需要15天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?「分析」实际工作的30天中,前15天是两队合作,后15天是乙队独做,每天的工作效率不一样.那我们可以分别计算前15天与后15天的工作总量,进而计算出甲和乙的工作效率.练2.现在要修筑一条公路,如果乙工程队单独修,需要18天完成.如果两队合作10天之后,剩下的全都由乙来完成,则还需要6天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?例题3.有一条公路,甲队独修需12天,乙队独修需15天.现在让2个队合修,但中间甲队有别的任务离开了,结果从头到尾用了10天才把这条公路修完.请问:甲队参与修路多少天?「分析」我们可以把两队分开来计算.甲队最“懒”,干了几天就走了;乙队最听话,完完整整地做了10天,由此我们可以求出乙队的工作总量,进而求出甲的工作总量和工作时间.练习3.有一堆煤,甲车单独运需要10天运完,乙车单独运需要40天运完.乙车先开始运,若干天后甲车加入,到运完时乙车一共运了12天.那么乙车开始后几天甲车才加入?例题4.有一批待加工的零件,甲单独做需要4天完成,乙单独做需要5天完成,如果两人合作,那么完成任务时甲比乙多做20个零件.这批零件共有多少个?「分析」到完成时甲乙各完成了这批零件的几分之几?20个零件占了这批零件的几分之几?练习4.甲、乙两工程队修一条路,如果让甲队单独修,需要8天完成;如果让乙队单独修,需要6天完成.现在两队合修,修完后,甲队比乙队少修了50米.这条路有多长?在生活当中,有时候会出现“倒班”,也就是几个人轮流工作,而不是同时工作.这种类型的工程问题应该怎么解决呢?例题5.(1)单独完成一项工程,甲需要15天,乙需要10天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(2)单独完成一项工程,甲需要15天,乙需要6天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(3)单独完成一项工程,甲需要15天,乙需要12天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?「分析」甲乙轮流工作,以2天为一周期,每个周期完成的工作量都是相同的.到最后完成工作需要几个周期呢?很多大型的工程中,都包含着多个小型的工程.比如中国的南水北调工程就分为东线工程、中线工程和西线工程.在工程问题中,这种整体与部分之间的关系是值得注意的.例题6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.现有两个相同的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙先帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,那么丙帮助甲搬了多少小时?「分析」我们可以把这两个仓库看成一个大的仓库,那么甲乙丙三人在合作搬运这个大仓库的货物,而且是同时开始,同时结束.那么搬运的时间能不能算出来?曼哈顿工程曼哈顿工程是第二次世界大战期间美国陆军自1942年起开发核武器计划的代号。

高斯小学奥数五年级上册含答案_公约数与公倍数初步

高斯小学奥数五年级上册含答案_公约数与公倍数初步

第十四讲公约数与公倍数初步蜥蜴是蝉的天敌之一,它的生命周期是5年』也就是说*毎五年,蜥蜴就会大量出现一次.因为15和5的.最小公倍数”是15*所以,要是蝉的生命周期是心年’在某一次大甩钻岀土壤时,被蜥蜴大量猎杀,那下一次蝉钻岀土壤时,也必然会有同样的遭遇.如果卿的生命周期是】7年,那么每过85年才会出现一次与大呈蜥埸碰面的情况一除了蜥蜴,蝉的其他天敌也有牛同的生命周期.科学家调查发现,在北部,蝉的生命周期为1 了年,在南部,蝉的生命周期为13年.为什么没有以】4、15. 16年为生命周期的蝉呢?旨 费 蔚 旨 蔚防■ ■ -------- -----------当蝉的生命周期是质数时.它与天敌生命周期的最小公倍数都比较大.这样一来,蝉 遇见大量天敌的机会大大减少,蝉的存活率大幅提升,它们就能一代代地在自然界存活下 来了.的约数.其他公倍数都是36的倍数.通常,我们把两个数a , b 的最大公约数记为 a, b ; a, b 的最小公倍数记为 a ,b •三 个数a , b , c 的最大公约数记为a ,b ,c ; a , b , c 的最小公倍数记为 a , b , c .如:14 和21的最大公约数是 7,记作:14,21 7 ; 14和21的最小公倍数是 42,记作:14,21 42 . 15、10、21 的最大公约数是 1,记作:15,10,21 1 ; 15、10、21 的最小 公倍数是210,记作:15,10,21210 .公约数就是几个数公共的约数, 其中最大的一个称为 最大公约数;公倍数就是几个数公1为所有数的公约数. 24 : 1234630: 12 35 61215 24301、2、3和6都是1、2、 3 和 6 都是 6121812 24 36 4860 72 8496 108 183654729010812和18的公倍数有 36、72、108、72、 108 及810 共的倍数,其中最小的一个称为 最小公倍数•特别的,24和30的公约数,6是最大公约数•可以发现 36、,36是最小公倍数.可以发现在现实生活中我们常常关心几个数的最大公约数和最小公倍数, 那么我们怎样来求几个数的最大公约数和最小公倍数呢?除了直接枚举之外, 还有以下几种:短除法、分解质因数法、辗转相除法.计算两个数的最大公约数及最小公倍数,最常用的方法是短除法.例题 1.用短除法计算:(1) (54 , 90), [54 , 90]; ( 2) (45, 75, 90). 「分析」熟练掌握短除法即可.用短除法计算:(1) ( 36, 48), [36, 48]; (2) (28 , 42 , 70).分解质因数法比较实用,也利于我们分析数的构成.(12, [12,18)= 18]= 23x32 3xx 2x3 233例题2•利用分解质因数法找出下列各组数的最大公约数和最小公倍数. (1) 144 和 250(2) 240、80 和 96「分析」熟练掌握分解质因数法即可.利用分解质因数法找出下列各组数的最大公约数和最小公倍数.如果两个数都比较大,不容易看出来它们的质因数.那我们还有第三种方法:辗转相除 法.厂二3: _4 :取相同质因数中指] 1 L 3 I 1 1 1 1 1 1 5 ;1 < ----------1 I ) 1 1 1 1 1 1 1 3弓1 1 1F 1 1 1 1 1 1 1 15竹1 1 i ■ 1 | 3 311 1 1 1 I 5L一jL取相同质因数中指325 < ----------最小公倍数最大公约数(1) 1024 和 72(2) 60、84、90 和 700例3•利用辗转相除法求下列各组数的最大公约数.(1)377 和221 (2)511 和1314「分析」熟练掌握辗转相除法即可.利用辗转相除法求出3009和2537的最大公约数.例题4•老师在墨莫的班上发水果,一共有59个苹果,97个梨,平均分给班上的学生,最后剩下5个苹果,7个梨•请问班里一共有多少名学生?「分析」因为每个学生分到的苹果和梨都是一样多的,可知学生数是分到的苹果数和梨数的公约数.小高把62个奶糖和75个水果糖平均分给他的朋友们,最后剩下2个奶糖,3个水果糖•请问小高把糖分给了多少个朋友?在计算三个数的最大公约数时, 还可以先求出两个数的最大公约数, 然后再求出这个最大公约数与第三个数的最大公约数. 最后求出的就是三个数的最大公约数.求三个数的最小公倍数也可以使用这个方法.计算多个数的最大公约数和最小公倍数的方法依次递推即可.例题5.计算( 1573, 1547, 1859).「分析」这些数看上去都不好分解质因数, 那我们不妨利用辗转相除法来求最大公约数. 求三个数的最大公约数, 可以先求其中两个的最大公约数, 再求这个公约数与第三个数的最大公约数.例题6.有些自然数既能够表示成连续9个整数之和,又能够表示成连续11 个整数之和, 还能够表示成连续12个整数之和,则所有这样的数中最小的一个是多少?「分析」能表示乘9个连续整数的和, 说明这个自然数是中间数的9倍, 是9的倍数. 根据后面两个条件,我们还能知道这个自然数是多少的倍数呢?画蛇添足战国时代, 楚王派大将昭阳率军攻打魏国, 得胜后又转而攻打齐国。

高斯小学奥数五年级上册含答案_公约数与公倍数初步

高斯小学奥数五年级上册含答案_公约数与公倍数初步

科学家调查发现,在北部,蝉的生命周期为1 了年,在南部,蝉的生命周期为13年.为什么没有以】4、15. 16年为生命周期的蝉呢?第十四讲公约数与公倍数初步旨 费 蔚 旨 蔚防■ ■ -------- -----------当蝉的生命周期是质数时.它与天敌生命周期的最小公倍数都比较大.这样一来,蝉 遇见大量天敌的机会大大减少,蝉的存活率大幅提升,它们就能一代代地在自然界存活下 来了.的约数.其他公倍数都是36的倍数.公约数就是几个数公共的约数, 其中最大的一个称为 最大公约数;公倍数就是几个数公1为所有数的公约数.24:1234 6 30: 12 35 612 15 24301、2、3和6都是 1、2、 3 和 6 都是 6121812 24 36 4860 72 8496 108 183654729010812和18的公倍数有 36、72、108、 72、 108 及810共的倍数,其中最小的一个称为 最小公倍数•特别的, 24和30的公约数,6是最大公约数•可以发现36、,36是最小公倍数. 可以发现通常,我们把两个数a, b的最大公约数记为a, b ; a, b的最小公倍数记为a ,b •三个数a, b, c的最大公约数记为a , b , c ; a, b, c的最小公倍数记为a , b , c .如:14 和21的最大公约数是7,记作:14,21 7 ; 14和21的最小公倍数是42,记作:14,21 42 . 15、10、21 的最大公约数是1,记作:15,10,21 1 ;15、10、21 的最小公倍数是210,记作:15,10,21210 .在现实生活中我们常常关心几个数的最大公约数和最小公倍数, 那么我们怎样来求几个数的最大公约数和最小公倍数呢?除了直接枚举之外, 还有以下几种:短除法、分解质因数法、辗转相除法.计算两个数的最大公约数及最小公倍数,最常用的方法是短除法.例题 1.用短除法计算:(1) (54 , 90), [54 , 90]; ( 2) (45, 75, 90). 「分析」熟练掌握短除法即可.用短除法计算:(1) ( 36, 48), [36, 48]; (2) (28 , 42 , 70).分解质因数法比较实用,也利于我们分析数的构成.(12, [12 , 18)= 18]= 23x32 3xx 2x3 233例题2•利用分解质因数法找出下列各组数的最大公约数和最小公倍数. (1) 144 和 250(2) 240、80 和 96「分析」熟练掌握分解质因数法即可.利用分解质因数法找出下列各组数的最大公约数和最小公倍数.如果两个数都比较大,不容易看出来它们的质因数.那我们还有第三种方法:辗转相除 法.厂二3: _4 :取相同质因数中指]1 L 3 I 11 1 1 1 1 5 ;1 < ----------1 I ) 1 1 1 1 1 1 1 3弓1 1 1F 1 1 1 1 1 1 1 15竹1 1 i ■ 1 | 3 311 1 1 1 I 5L一jL取相同质因数中指325 < ----------最小公倍数最大公约数(1) 1024 和 72(2) 60、84、90 和 700例3•利用辗转相除法求下列各组数的最大公约数.(1)377 和221 (2)511 和1314「分析」熟练掌握辗转相除法即可.利用辗转相除法求出3009和2537的最大公约数.例题4•老师在墨莫的班上发水果,一共有59个苹果,97个梨,平均分给班上的学生,最后剩下5个苹果,7个梨•请问班里一共有多少名学生?「分析」因为每个学生分到的苹果和梨都是一样多的,可知学生数是分到的苹果数和梨数的公约数.小高把62个奶糖和75个水果糖平均分给他的朋友们,最后剩下2个奶糖,3个水果糖•请问小高把糖分给了多少个朋友?在计算三个数的最大公约数时, 还可以先求出两个数的最大公约数, 然后再求出这个最大公约数与第三个数的最大公约数. 最后求出的就是三个数的最大公约数.求三个数的最小公倍数也可以使用这个方法.计算多个数的最大公约数和最小公倍数的方法依次递推即可.例题5.计算( 1573, 1547, 1859).「分析」这些数看上去都不好分解质因数, 那我们不妨利用辗转相除法来求最大公约数. 求三个数的最大公约数, 可以先求其中两个的最大公约数, 再求这个公约数与第三个数的最大公约数.例题6.有些自然数既能够表示成连续9个整数之和,又能够表示成连续11 个整数之和, 还能够表示成连续12个整数之和,则所有这样的数中最小的一个是多少?「分析」能表示乘9个连续整数的和, 说明这个自然数是中间数的9倍, 是9的倍数. 根据后面两个条件,我们还能知道这个自然数是多少的倍数呢?画蛇添足战国时代, 楚王派大将昭阳率军攻打魏国, 得胜后又转而攻打齐国。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

第十六讲分数应用题在三、四年级的时候,同学们学习了“和差倍”问题.在这一讲,继续来学习“和差倍”问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样,“分数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了20个苹果,10个桔子,容易知道,卡莉娅买的苹果数量是桔子的2倍,那桔子是苹果的几倍呢?同样的,用一个除法算式来计算:110202÷=,即桔子的数量是苹果的12倍,或者桔子的数量是苹果的12.我们把分数倍,比如前面的“12”,称为分率.注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的12,在这里,分率“12”所对应的总量是苹果总数,“12”表示的是苹果总数的一半.如果我们将苹果的数量设为“1”份,那桔子的数量就为“12”份.通常,将分率所对应的总量设为“1”份,也就是此分率所对应的单位“1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“1”.当知道单位“1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20个苹果,她的桔子数量是苹果数量的12,那卡莉娅就拥有120102⨯=个桔子.那知道了分率的对应量,如何来求单位“1”呢?请熟记公式:例如,小高有30张动物卡,他的动物卡是植物卡数量的25,那么他的植物卡有多少张呢?列算式计算:230755÷=张,即小高有75张植物卡.一般来说,每一个分率都会有一个数量和它对应(包括单位“1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.例题1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨莫吃了全部巧克力的25,卡莉娅吃了全部巧克力的310,小高吃了9块.请问小高一共买来多少块巧克力?「分析」小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的13,黄球占总球数的14,绿球有50个.口袋里一共有几个球?在例题1中,容易找到分率与数量的对应.但有的题目并不直接给出分率所对应的数量,那就需要同学们仔细寻找和计算,完成量率对应.例题2.有一堆砖,搬走总数的14后又运来306块.这时这堆砖比最开始还多了15.这堆砖原来有多少块?「分析」这道题中只有一个具体的量:306块砖,那么我们就应该去寻找它所对应的分率.小言在练毛笔字.第1个小时结束的时候,还差13才完成练字计划.第2个小时,小言又写了84个毛笔字,结果总的练字数超过了练字计划的14.那么小言计划写多少个字?「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“120”这个分率是相对于哪个单位“1”来说的?它对应的又是哪个量呢?上届校运动会共有250名同学报名参加.本届校运动会的报名统计显示,男生减少了2人,而总人数却增加了4人,原因是女生增加了120.那么本届校运动会有多少女同学报名?在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?「分析」第二天走的“23”是全部路程的23吗?如果不是,它应该是全部路程的几分之几?小明看一本书,第一天看了全书的13,第二天看了剩下的25,还剩下144页没有看.问某人从甲城去乙城,第一天走了全程的14,第二天走了剩下的,这时距乙城还有40千米.问甲、乙两城相距多少千米?23五年级原来有学生325人,新学期男生增加25人,女生减少了,结果总人数增加了16人.请问:现有男生多少人?120这本书共有多少页?「分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统一.「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的35;玩了若干局后,阿呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的75.请问:阿呆此时一共有多少张牌?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的16,桔子的数目是其它两种水果总数的516,梨有26个.这些水果一共有多少个?丢番图的墓志铭古希腊的大数学家丢番图。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

第十六讲分数应用题在三、四年级的时候,同学们学习了“和差倍”问题.在这一讲,继续来学习“和差倍”问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样,“分数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了20个苹果,10个桔子,容易知道,卡莉娅买的苹果数量是桔子的2倍,那桔子是苹果的几倍呢?同样的,用一个除法算式来计算:110202÷=,即桔子的数量是苹果的12倍,或者桔子的数量是苹果的12.我们把分数倍,比如前面的“12”,称为分率.注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的12,在这里,分率“12”所对应的总量是苹果总数,“12”表示的是苹果总数的一半.如果我们将苹果的数量设为“1”份,那桔子的数量就为“12”份.通常,将分率所对应的总量设为“1”份,也就是此分率所对应的单位“1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“1”.当知道单位“1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20个苹果,她的桔子数量是苹果数量的12,那卡莉娅就拥有120102⨯=个桔子.那知道了分率的对应量,如何来求单位“1”呢?请熟记公式:例如,小高有30张动物卡,他的动物卡是植物卡数量的25,那么他的植物卡有多少张呢?列算式计算:230755÷=张,即小高有75张植物卡.一般来说,每一个分率都会有一个数量和它对应(包括单位“1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.例题1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨莫吃了全部巧克力的25,卡莉娅吃了全部巧克力的310,小高吃了9块.请问小高一共买来多少块巧克力?「分析」小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的13,黄球占总球数的14,绿球有50个.口袋里一共有几个球?在例题1中,容易找到分率与数量的对应.但有的题目并不直接给出分率所对应的数量,那就需要同学们仔细寻找和计算,完成量率对应.例题2.有一堆砖,搬走总数的14后又运来306块.这时这堆砖比最开始还多了15.这堆砖原来有多少块?「分析」这道题中只有一个具体的量:306块砖,那么我们就应该去寻找它所对应的分率.小言在练毛笔字.第1个小时结束的时候,还差13才完成练字计划.第2个小时,小言又写了84个毛笔字,结果总的练字数超过了练字计划的14.那么小言计划写多少个字?「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“120”这个分率是相对于哪个单位“1”来说的?它对应的又是哪个量呢?上届校运动会共有250名同学报名参加.本届校运动会的报名统计显示,男生减少了2人,而总人数却增加了4人,原因是女生增加了120.那么本届校运动会有多少女同学报名?在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?「分析」第二天走的“23”是全部路程的23吗?如果不是,它应该是全部路程的几分之几?小明看一本书,第一天看了全书的13,第二天看了剩下的25,还剩下144页没有看.问某人从甲城去乙城,第一天走了全程的14,第二天走了剩下的,这时距乙城还有40千米.问甲、乙两城相距多少千米?23五年级原来有学生325人,新学期男生增加25人,女生减少了,结果总人数增加了16人.请问:现有男生多少人?120这本书共有多少页?「分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统一.「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的35;玩了若干局后,阿呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的75.请问:阿呆此时一共有多少张牌?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的16,桔子的数目是其它两种水果总数的516,梨有26个.这些水果一共有多少个?丢番图的墓志铭古希腊的大数学家丢番图。

高斯小学奥数五年级上册含答案_燕尾模型

高斯小学奥数五年级上册含答案_燕尾模型

第二十五讲燕尾模型之前我们学过等高三角形的比例关系,如下左图所示,△ABC 被线段AD 一分为二,且有比例关系12::S S a b =.如下右图所示,在增加了两条线段后,图中有4个小三角形,这4个小三角形的面积之间的比例关系如图中所示.由于图中的阴影部分看起来很像燕子的尾巴,所以这个图形我们形象的把它称为燕尾模型.阴影部分我们称之为燕尾形.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1.如图,AD =6,CD =14,三角形ABE 的面积是24,求三角形BEC 的面积.「分析」ABE BCE S ADS DC =△△,据此就可以求出△BEC 的面积.练习1.已知三角形ABC 中,三角形ABF 的面积是60,三角形AFC 的面积是20,三角形BFC 的面积是56,求三角形BDF 和三角形CDF 的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -给出不同边上的比例关系,我们就可以用“燕尾模型”解决三角形面积的问题,下面我们先看一个给出两个外比的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ab= 外比:31312424S S S S BDS S S S CD +===+D内比:12123434S S S S AOS S S S OD+===+ A B DC EF- - - - - - - - - - - - - - - - - - - - - - 练一练根据下列图中所给线段比例来标注各部分的面积份数.例题2.如图,△ABC 的面积等于28平方厘米.其中AE EC =,:3:1BD DC =,求阴影三角形的面积.「分析」图中并没有燕尾模型,所以第一步需要把它构造出来.应该连哪条线呢?练习2.在三角形ABC 中,2AE EB =,AD CD =,阴影部分占△ABC- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -有时题目给的不是两个外比,而是一个内比和一个外比,此时在利用燕尾模型解题的时候,既需要由长度的比推出面积的比,也需要由面积的比推出长度的比.这类问题较简单的一类是已知的内比和外比在同一个燕尾形中.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -外比:AD :DB =2:1 外比:AF :FC =1:1 外比:CD :DB =2:1 外比:AE :EC =1:3 外比:CD :DB =3:1 外比:AE :EC =1:3练一练根据下列图中所给线段比例来标注各部分的面积份数.例题3. 如图,△ABC 中AE ED =,:1:3BD DC =,阴影部分的面积占三角形ABC 面积的几分之几? 「分析」这道题目属于知道一外比和一内比的第一种类型,按顺序填份数就可以了.练习3在三角形ABC 中,2AE EC =,:1:1BF FE =,阴影部分占△ABC 的几分之几?练一练根据下列图中所给线段比例来标注各部分的面积份数.外比:AD :DC =1:1外比:AD :DC =1:2外比:BE :EC =2:1外比:AE :EB =2:1例题4如图,△ABC 中,,13AE AC =,求四边形CEFD 的面积是三角形ABC 的几分之几.「分析」这道题目属于知道一外比和一内比的第二种类型,按顺序填份数就可以了.练习4.在三角形ABC 中,12AE EC =,3CF DF =,四边形ADFE 的面积是三角形ABC 的几分之几?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -有些图形不能直接使用燕尾模型,我们需要添加辅助线后方可使用燕尾模型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.如图,正方形ABCD 的边长是6,E 、F 分别是DC 和AD 边的中点,阴影部分的面积是多少?「分析」连结AC ,燕尾模型就出来了.AF FD =AB F EAB DC FE例题6.如图,四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,BCDE 是平行四边形.那么四边形ABCD 的面积是多少?「分析」例题5中,我们通过连结正方形对角线构造出了燕尾模型.本题中,我们应该连结哪条线段呢?A BCD E F O含有“燕”字的诗句中国古代的诗句中,有很多都和燕子有关系。

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

迄今为止,同学们已经学会了很多图形计算面积的方法. 在计算这些面积的时候, 只要 知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积 长 宽进行计算•但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个例题.例题1.如图,有9个小长方形,其中的 5个小长方形的面积分别为 4、 12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗? 对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于 它们宽(长)之比.例如:如图所示的长方形 ABCD 与长方形BEFC 宽BC 相同,那么 长方形ABCD 的面积:长方形BEFC 的面积 AB: BE .如图,有7个小长方形,其中的 5个小长方形的面积分别为 20, 4, 6, 8,10平方厘米.求阴影长方形的面积是多少平方厘米? 2046 810从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利 用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异. 我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.F rz 丄 r D 20n 8、过三角形一个顶点的直线将三角形分为两个小三角形, 则这两个小三角形面积之比等于该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍.那么三角形ABE的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC中,D为AB的中点,E为BC的中点,ABC的面积是120平方厘米,那么三角形DEF的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分. 比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3.如图,把三角形DEF的各边分别向外延长1倍后得到三角形ABC,已知三角形DEF的面积为1,那么三角形ABC的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系•但是我们所求的是三角形DEF的面积,而已知的是三角形ABC的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?三角形ABD的面积:三角形ADC的面积BD : DCF为BE中点,如果三角形如图,把三角形DEF的各边分别向外延长1倍、2倍、3倍后得到三角形ABC,已知三角形DEF 的面积为1,那么三角形ABC的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4.如图,E是AB上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC的面积是“1”份,那么梯形ABCD的面积就是“5”份•接着可以看看“E是AB上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边 BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系. 例题5.把一个正方形的相邻两边分别增加 2厘米和4厘米,结果面积增加了 50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、 ③三个长方形•其中,③的长和宽分别为 4、2,可以求出它的面积•那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6.如图,直角三角形 ABC 套住了一个正方形 CDEF , E 点恰好 在AB 边上.又已知直角边 AC 长20厘米,BC 长12厘米,那么 正方形的边长为多少厘米?「分析」注意到EF 垂直于AC , ED 垂直于BC .我们可以连接 CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而 它们的高相等.我们的目标就是求这个高. ①② ③4欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七讲比例应用题在研究两个量之间的关系时, 经常用到和的关系、 差的关系以及倍数关系. 之前我们学 过的和差倍问题就是关于这些关系的. 而倍数关系还有一种比较常见的表现形式, 就是比的 关系.比如,甲有 3个苹果,乙有 2个苹果,我们可以说甲的苹果是乙的 1.5 倍,也可以说甲 和乙的苹果数之比是 3:2,读作 3 比 2.如果甲有 6 个苹果,乙有 4 个苹果,甲的苹果仍然 是乙的 1.5倍,甲和乙的苹果数之比是 6:4.我们发现, 比的关系和倍数关系可以如下转化:比的关系 由此可见, 比的概念与除法的概念密切相关, 我们定义: 两个数相除又叫做这两个数的比.在两个数的比中, 比号前面的数叫做比的 除以比的后项所得的商叫做 比值 .例如:倍数关系 3 2 1.53:2 1.5倍6:4 6 4 1.51.5倍前项 ,比号后面的数叫做比的 后项 ,比的前项比的前项 比的后项3: 7 3 7 比值 比值通常用分数表示,也可以用小数或整数表示.比号请你想一想: 比的前项、 后项和比值分别相当于除法算式和分数中的什么? 以是 0 吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数( 变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2 比的后项可0 除外),比值不像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们 的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项, 分别是两个 内项 和两个 外项 .在 3:4=9:12 中,其中 3 与 12 叫做比例的 外项 , 4与 9叫做比例的 内项.比例的四个数均不能为 0.在任意一个比例中, 两个外项的积等 于两个内项的积.即:1. 求比值:2:5 = _____ ;7:3 = ____ ;10:4= _____2.把比化成最简整数比:6:15 = _____ ;8:12= ______ ;0.2:0.5 = ____ .3.如果3a 4b ,那么a:b=():();4.我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128 厘米,则长是_______厘米.在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234 个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5 份,哈密瓜有4 份.(1)卡莉娅和萱萱一共买了50 块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200 克的草,那么小山羊吃了多少克的草?例题 2.红旗小学共有师生 1081 人.其中老师与学生的人数之比为数之比为 5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」 如何通过师生的人数比求出学生的总人数?又如何利用男、各有多少?把这两个问题搞清楚了,本题也就解决了.512 名士兵分成龙、 虎两个营, 将龙营分成甲、 乙两个连, 再将乙连分成 A 、B 两个排. 如 果每次都按 5:3 的人数比来分,那么 A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系, 还可以表示多个量之间的倍数关系. 我们把 两个数之间的比称为 简单比 ,多个数的比称为 连比 .简单比与连比之间可以互相转化.如果甲 :乙=2:3,乙 :丙=5:4 ,那么甲 :乙:丙是多少? 甲乙丙2 : 35 : 4甲:乙 :丙=10:15:1210 : 15 : 12 例题 3.机器人制造厂一月份与二月份生产机器人的个数比为 4:5.后来改进生产技术,三 月份生产的机器人的个数与二月份的产量之比为 5:3.(1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了 78 个机器人. 请问, 这家工厂第一季度共生产多少个机 器人?「分析」 题目中给出了两个比, 这两个比之间存在什么样的关系呢?你能通过这两个比求出 一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是 与第三批的人数比是 3:2.已知第一批的人数比第二、三批的总和少 55 人.请问: 育才小学2:45,男生与女生的人 女比例,求出男、女生5:4,第二批五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题, 我们通常要从题中找到不变量, 根据它来统一份数.我们来看看下 面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题 4.慢羊羊村长开了一间学校, 招了好多小羊和小狼, 上学期小羊和小狼的数量比为 1:3, 新学期时又转来了 20只小羊, 导致开学的时候小羊和小狼的数量比变为 3:5,那么开学时一共有多少只小羊?「分析」 题目中也给出了两个比, 这两个比之间存在什么样的关系?我们能像例 1 那样, 把 上学期的小羊和小狼设成 1 份和 3 份,这学期的设成 3 份和 5 份吗?史蒂文森高中去年男生和女生的人数比为 5:3,今年转来了 200 名男生,使得女生和男 生的人数比变为 1:2,那么今年史蒂文森高中一共有多少名学生?例题 5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是水面上、下的长度之比为 3:1,乙木棒在水面上、下的长度之比为下的长度之比为 2:3.请问:水深是多少厘米?「分析」 题目中的三个比涉及到了甲、 乙、 丙三根木棒的水上部分和水下部分, 它们之间有360 厘米.甲木棒在 4:3,丙木棒在水面上、公共的量吗?例题6.甲、乙两包糖的重量比是5:3 ,如果从甲包取出10 克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10 克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是一个无理数,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用,在很多地方都可以发现黄金分割的存在。

1、1、2、3、5、8、⋯⋯,这个数列叫做斐波那契数列。

相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比。

黄金分割在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。

下图是帕特农神庙,它的设计很多处都用到了黄金分割。

作业1. 王老师班上的男生和女生之比为7:5,如果班上有21 个男生,那么有多少个女生?作业2. 书架上有中文书和英文书,一共有20 本.其中中文书与英文书的数量比是2:3,那么中文书有多少本?作业 3. 青蛙王国共有青蛙900只.其中大青蛙与小青蛙的只数之比为17:28,小青蛙中,绿皮青蛙与其他青蛙的只数之比为3:1 .那么小青蛙中的绿皮青蛙有多少只?作业 4. 花园里有玫瑰、百合还有兰花,其中玫瑰和百合的朵数之比为1:2,而百合和兰花的朵数之比为4:3,如果玫瑰比兰花少20 朵,那么玫瑰花有多少朵?作业5. 有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变成11:10.请问:后来报名的女生有多少人?第十七讲比例应用题例题1. 答案:(1)西瓜 130个,哈密瓜 104个.(2)57 详解:(1)234 5 4 26,26 5 130 ,26 4 104 .(2)21 13 6 3,3 13 6 57 .例题2. 答案:老师 46人,男生 575人,女生 460人详解:1081 2 45 23 , 2 23 46 ,45 23 1035 .1035 5 4 115 , 5 115 575 , 4 115 460 .例题3. (1)12:15:25;(2)312详解:( 1)将二月份的产量统一为 15 份,那么一月份的产量是 12份,三月份的产量是 25 份,三个月的产量之比是 12:15:25;(2)78 25 12 6, 6 12 15 25 312.例题4. 答案: 45只详解:注意到小狼的数量并没有发生变化,所以统一两次小狼的份数,将狼和羊的数量比化成 5:15 和 9:15.求出 1 份代表20 9 5 5 (只),那么开学时共有 5 9 45 只小羊.例题5. 答案: 45厘米详解:注意到三根木棒在水下的长度是一样的,将水下部分都统一为 3 份.三个比分别转化成 9:3、 4:3 和 2:3,1 份的长度为360 9 3 4 3 2 3 15 厘米,水下部分的长度是15 3 45 厘米.例题6. 答案: 240 详解:注意到甲、乙两包糖的重量之和没有变,统一成 24 份.两个比分别转化成 15:9 和14:10,可求出 1 份的重量为10 15 14 10 克,两包糖的重量总和为10 15 9 240 克.练习1. 答案:(1)20;(2)250 简答:参考例 1 即可.练习2. 答案: 75.简答:参考例 2 即可.练习3. 答案: 385简答:参考例 3 即可.练习4. 答案: 1800简答:注意到女生的人数没有变,统一女生的份数即可.作业1. 答案:15简答:21 7 5 15 .作业2. 答案:8简答:20 2 3 2 8 .作业3. 答案:420简答:首先可求出小青蛙有900 17 28 28 560 只.再求出绿皮青蛙有5601 3 3 420 只.作业4. 答案:40简答:首先可求出玫瑰、百合和兰花的朵数比是2:4:3,那么玫瑰与兰花的朵数比是2:3.玫瑰有20 3 2 2 40 朵.作业5. 答案: 12 简答:男生的人数没有变化过,一直都是429 6 7 7 231 人.那么后来男女生一共有231 11 11 10 441人,增加的 12 人就是后来报名的女生.。

相关文档
最新文档