三角函数 讲义全集
三角函数讲义201204
![三角函数讲义201204](https://img.taocdn.com/s3/m/a9cac407f78a6529647d533b.png)
第一章:三 角 函 数一、任意角和弧度制1、按___________方向旋转形成的角叫正角;按___________方向旋转形成的角叫负角。
象限角: 当角的顶点与坐标原点重合,角的始边与________重合,那么角的_______在第几象限,就说这个角是第几象限角,如果终边在________上,就认为这个角不属于任何象限。
所有与α终边相同的角,连同α在内,可以用式子__________来表示。
2、弧度制:︒1的角 周角的__________为︒1的角。
1弧度的角 ____________叫1弧度的角。
360o =______rad 180o =______rad ∴ ︒1=______rad 1rad=______ ∴ n o =______rad n rad=_____o3、扇形弧长与面积:扇形半径为R ,圆心角为α,弧长为l ,则l =______,面积S =________=________. 推导:二、任意角的三角函数1、设α是一个任意角,α的终边上任意一点()y x P ,,它与原点的距离0r OP ==>,那么sin α=_________,cos α=_________,tan α=________。
2、设α是一个任意角,α的终边与单位圆的交点为()y x P ,,它与原点的距离1r OP ===,那么sin α=_________,cos α=_________,tan α=________。
3、同终边角的三角函数值相等:sin(α+k2π)= _______ cos (α+2 k π)=_______tan(α+2 k π)= _______ (k 为整数,可为正整数、负整数、零)例1、若α为第一象限,则α/3为第_________象限角,若α为第二象限,则2α为第________象限角总结:例2、以下有四个命题:①小于︒90的角是锐角;②第一象限的角一定不是负角;③锐角是第一象限的角;④第二象限的角一定大于第一象限的角。
三角函数的性质讲义1.docx
![三角函数的性质讲义1.docx](https://img.taocdn.com/s3/m/2a445c70eefdc8d376ee32a3.png)
三角函数的性质讲义1【知识要点】、图象和性质图表解函数正弦函数余弦函数正切函数图象\ ,A.V1 V儿丿丿°, 5七<7 •1定义域R R 』H兰 + k7i、ke Z>2值域[-1,1]最大值为1,最小值为[-1,1]最大值为1,最小值为・1R无最大值,最小值周期性最小止周期为2兀最小正周期为2龙最小正周期为兀奇偶奇函数偶函数奇函数单调性TT 7T[一专+ 2刼冷+ 2切增TT3龙[-- + 2^,—+ 2^ ]减2 2[(2^-1 '兀2k兀)增[2k兀,(2k一\}n ]减伙G Z)7F 7T在(一丝+ k;z■,丝+比龙)(RwZ)上都是增函数对称性JI对称轴X = k7T + —2对称中心坐标伙龙,0),对称轴x = k兀7T对称中心坐标为伙龙+ —,0),Ljr对称屮心坐标(——,0) ,(ke Z)【性质的应用】一、求定义域例1、已知三角函数值求角(1) sinx = —(2) tanx = -1 (3) sinx> —2 2 (4) cosx> —(5) sir\x<^-(6) tanx> V32 2例3、求函数y=Jsinx-cosx 的的定义域例4、求函数y = lg(2cosx +72) + 716-x 2的定义域二、周期性例1、下列函数是否是周期函数?若是求出最小正周期(l)y = sin x ; (2)y = cos x ;例 2、设函数 f(x) = sin3兀+ | sin3% 処I/O)为 ________________例3、己知函数^ = sin 2 x + 2sinx-cosx + 3cos 2 x,求该函数的最小正周期例2、求函数 y = lg(2cosx + V2) 1 - cos 兀 2sinx-l的定义域(3)y = sin x三、奇偶性]、若 y = Asin (60r + °)为奇函数则 ____________________________________________若y = A sin (血+°)为偶函数则 ________________________________________________2^ y = Asin (cm : + °)的对称轴为 ________________ 对称中心为 ____________________ y = Acos (血+ 0)的对称轴为 ___________________ 对称中心为 ___________________ y = A tan (加+ °)的对称中心为 __________________ 无对称轴。
三角函数经典讲义全集
![三角函数经典讲义全集](https://img.taocdn.com/s3/m/f40f5a24a216147917112862.png)
三角函数专题1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3. 终边相同的角的表示:(1)终边与终边相同( 的终边在终边所在射线上) 2k (k Z) ,注意:相等的角的终边一定相同,终边相同的角不一定相等. 如与角1825 的终边相同,且绝对值最小的角的度数是___,合___弧度。
(答:25 ;536)(2)终边与终边共线( 的终边在终边所在直线上) k (k Z) .(3)终边与终边关于x 轴对称2k (k Z) .(4)终边与终边关于y 轴对称2k (k Z) .(5)终边与终边关于原点对称2k (k Z).(6)终边在x 轴上的角可表示为:k , k Z;终边在y 轴上的角可表示为:kk , k Z;终边在坐标轴上的角可表示为:,k Z . 如的终边与2 2 6的终边关于直线y x对称,则=____________。
(答:2k , k Z )34、与的终边关系:由“两等分各象限、一二三四”确定. 如若是第二象限角,则是第22_____象限角(答:一、三)5. 弧长公式:l | | R,扇形面积公式: 1 1 | |2S lR R ,1 弧度(1rad) 57.3 . 如已知扇形2 2AOB 的周长是6cm,该扇形的中心角是 1 弧度,求该扇形的面积。
(答:2 2cm )6、任意角的三角函数的定义:设是任意一个角,P(x, y) 是的终边上的任意一点(异于原点),它与原点的距离是y x2 2 0r x y ,那么sin ,cosr ry,tan , x 0x,cotxy( y 0) ,sec rxrx 0 ,csc y 0y。
06第六章 三角函数【讲义】
![06第六章 三角函数【讲义】](https://img.taocdn.com/s3/m/4a82676f011ca300a6c390b2.png)
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
三角函数讲义
![三角函数讲义](https://img.taocdn.com/s3/m/a4083ad76f1aff00bed51e23.png)
知识总结一、角的概念的推广1.角的定义(1)一条射线由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.(2)“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角.第一象限角:{α|k360o π<α<k360o +90o ,k ∈Z }第二象限角:{α|k360o +90o <α<k360o +180o ,k ∈Z }第三象限角:{α|k360o +180o <α<k360o +270o ,k ∈Z }第四象限角:{α|k360o +270o <α<k360o +360o ,k ∈Z }角的终边落在坐标轴上,则此角不属于任何一个象限。
3.终边相同的角所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意以下四点:(1)Z k ∈(2) α是任意角;(3)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二、弧度1、定义用“弧度”做单位来度量角的制度叫做弧度制。
1弧度的角指的是弧长与半径相等的圆弧所对应的圆心角,记作1rad 。
⑴平角=π rad 、周角=2π rad⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶圆心角α的弧度数的绝对值r l =α(l 为弧长,r 为半径) 2.角度制与弧度制的换算:360︒=2πrad180︒=π rad1︒=rad rad 017453.0180≈π 8.447157)180(1'''︒≈︒=πrad 3.两个公式(1)弧长公式:α⋅=r l 180r n l π= 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积(2)扇形面积公式lR S 21=3602R n S π=扇 其中l 是扇形弧长,R 是圆的半径3、任意角的三角函数有向线段MP 为正弦线 有向线段OM 为余弦线有向线段AT 为正切线四、三角函数的基本关系1、平方关系:sin2α+cos2α=1;2、商数关系:五、三角函数的诱导公式口诀:奇变偶不变,正负看象限例题题型一角的集合表示及象限角的判定【例1】(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【例2】已知点P(sin 5π4,cos3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( ) A.一B.二C.三 D.四题型二三角函数的定义【例3】已知角θ的终边上有一点P(x,-1)(x≠0),且tan θ=-x,求sin θ,cos θ.【例4】已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则cos 2θ=().A.-45B.-35C.35D.45三、弧度制的应用【例5】4已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是()A.1或4 B.1C.4 D.8【例6】已知半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.四、三角函数线及其应用【例7】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:(1)sin α≥32;(2)cos α≤-12.【例8】求下列函数的定义域:(1)y=2cos x-1;(2)y=lg(3-4sin2x).题型五、利用诱导公式化简、求值【例9】已知tanθ=2,则sin(π2+θ)-cos(π-θ)sin(π2-θ)-sin(π-θ)=()A. 2B. -2C. 0D. 2 3【例10】已知角α终边上一点P(-4,3),则cos⎝⎛⎭⎪⎫π2+αsin(-π-α)cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α的值为________.题型六、同角三角函数关系的应用【例10】已知tan α=2.求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin2α-3sin αcos α-5cos2α.题型七三角形中的诱导公式【例11】在△ABC中,sin A+cos A=2,3cos A=-2cos(π-B),求△ABC 的三个内角.若将例11的已知条件“sin A+cos A=2”改为“sin(2π-A)=-2sin(π-B)”其余条件不变,求△ABC的三个内角.课下作业一、选择题1.若α=k ·180°+45°(k ∈Z ),则α在().A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限2.下列与9π4的终边相同的角的表达式中正确的是( ).A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )3.已知角α的终边过点(-1,2),则cos α的值为( ).A .-55B.255C .-255 D .-124.若sin α<0且tan α>0,则α是( ).A .第一象限角B .第二象限角C .第三象限角D .第四象限角5.点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ).A .第一象限B .第二象限C .第三象限D .第四象限6.已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12C.32 D .±327.若cos α=13,α∈(-π2,0),则tan α等于 ( )A. -24B. 24C. -22D. 2 28.cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是( ). A. 2 B .- 2 C .0 D.22二、填空题9.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________10.若sin θ=-45,tan θ>0,则cos θ=________.11.在直径为10 cm 的轮上有一长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为________.三、计算题12、已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.13、已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.14、若sin θ,cos θ是关于x的方程5x2-x+a=0(a是常数)的两根,θ∈(0,π),求cos 2θ的值.15、已知sin θ+cos θ=713,θ∈(0,π),求tan θ.。
三角函数讲义
![三角函数讲义](https://img.taocdn.com/s3/m/cd3f1d2202d8ce2f0066f5335a8102d276a26187.png)
三角函数讲义任意角的三角函数及同角三角函数的关系知识点知识点一三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 知识点二正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .作用:可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.体现了三角函数的周期性。
知识点四三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R且x ≠k π+π2,k ∈Z }.知识点五三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .知识点六同角三角函数的基本关系1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ). 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一三角函数定义的应用【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;2.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .5题型二三角函数符号的判断【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【例2】若tan x <0,且sin x -cos x <0,则角x 的终边在() A .第一象限 B .第二象限C .第三象限D .第四象限【过关练习】1.若sin θ<0且tan θ<0,则θ是第象限的角.2.使得lg(cos αtan α)有意义的角α是第象限角.题型三诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin -11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan -15π4;(2)sin 810°+tan 765°-cos 360°.2.sin(-1 380°)的值为( )A .-12 B.12 C .-32D.323.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四利用三角函数线求角、解不等式【例1】根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1) sin θ≥32;(2)-12≤cos θ<32.【例3】当α∈0,π2时,求证:sin α<α<="">【过关练习】1.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<="" αB .tan α<="" αC .si n α<="" αD .cos α<="" α2.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.0,π6 B.π6,5π6 C.π6,2π3D.5π6,π题型五求三角函数定义域【例1】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1. 求函数f (x )=1-2cos x +lnsin x -22的定义域.2.函数y =tanx -π3的定义域为( ) A.x |x ≠π3,x ∈R B.?x |x ≠k π+π6,k ∈Z C.x |x ≠k π+5π6,k ∈Z D.x |x ≠k π-5π6,k ∈Z题型六三角函数知一求二【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.35题型七三角函数平方关系及其应用【例1】已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【例2】已知sin α+cos α=m ,求sin 3α+cos 3α的值.【过关练习】1.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cosA -7的值.3.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43 题型八三角函数的化简证明【例1】已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.【例2】证明三角恒等式cos α1-sin α=1+sin αcos α【例3】已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b 2n 2=1.【过关练习】1.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.2.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.3.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.4.函数y =lg cos x 的定义域为________________.5.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.6.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.【巩固练习】1.已知角α的终边上一点的坐标为?sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π62.如果3π4<θ<π,那么下列各式中正确的是( ) A .co s θ<="" θB .sin θ<="" θC .tan θ<="" θD .cos θ<="" θ3.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π) 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3105.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为.6.函数f (x )=cos 2x -sin 2x 的定义域为________________.7.化简sin 2β+cos 4β+sin 2βcos 2β的结果是.8.已知sin α=15,求cos α,tan α.9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan-23π4;(3)sin (cos θ)cos (sin θ)(θ为第二象限角).10.求证:tan θ·sin θtan θ-si n θ=1+cos θsin θ.【拔高练习】1.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-34π<="">π,k ∈Z } B .{x |2k π+π4<="">π,k ∈Z } C .{x |k π-π4<="">,k ∈Z } D .{x |k π+π4<="">π,k ∈Z } 2.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .3.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是. 4.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为. 5.在△ABC 中,2sin A = 3cos A ,则角A = .6.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.7.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).8.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;。
(完整word版)三角函数专题讲义
![(完整word版)三角函数专题讲义](https://img.taocdn.com/s3/m/d11f00e1844769eae109edbf.png)
三角函数专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心对称中心函 数 性 质2。
正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩⇒ sin 2sin 2sin 2a A Rb B Rc C R⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。
高考三角函数辅导讲义
![高考三角函数辅导讲义](https://img.taocdn.com/s3/m/e178ffe05ef7ba0d4a733bff.png)
三角函数诱导公式例1:利用诱导公式求三角函数的值 (1)10sin()3π-;)(2)29sin()6π;(3)20sin()3π- 例2:化简3sin()tan()2sin()πααππα++- 高效作业,技能备考1、0cos35a =,则0sin 55= ; 2、cos()3π-的值为 ;0sin(855)-= ;3、95cos()cos()22x x ππ++-= ; 1 .设cos(π+α)=32,(π<α<32π),那么cos(2π-α)的值是( ) A .-12 B.32 C .-32D.122 .cos(2013)π-的值为 ( )A . 12 B. 1-C .D. 03 .sin 585的值为 ( )A .2-B.2 C .2- D. 24 .已知sin()cos(2)()cos()tan f παπααπαα--=--,则31()3f π-的值为 ( )A .12 B. 13- C .12- D. 135 .化简95cos()cos()22x x ππ++-= ; 6 .化简sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-⋅------;7 .已知2cos()63πα-=,则2sin()3πα-= ; 同角的三角函数(1)1cos sin 22=α+α (2)α=ααtan cos sin 例1:(1)已知3sin 5α=-,且α在第三象限,求cos α和tan α;(2)(2010全国)若0cos(80)k -=,那么0tan100= ;例2:已知tan 2α=,求值(1)224sin 3sin cos 5cos αααα--;(2)22222sin 3cos 4sin 9cos αααα--例3:若cos(2)3πα-=,且(,0)2πα∈-,则sin()πα-= ;高效作业,技能备考1 .已知tan 2α=,则sin 3cos sin cos αααα-+的值为 ( )A .53- B. 13- C .53 D. 132 .已知3cos()25πα+=,且3(,)22ππα∈,则tan α=( ) A .43 B. 34 C .34- D. 34±3.已知5cos 13α=-,且α是第二象限的角,则tan (2)πα=-= ;4.(2011全国)3(,)2παπ∈,tan 2α=,则cos α= ; 5.若4sin 5θ=-,tan 0θ>则cos θ= ;6 .3cos()cos()02πθπθ-++=,21cos sin 22θθ+= ;7 .1tan 3α=-,则11sin cos αα=- ; 8 .求证:cos 1sin 1sin cos x xx x+=-9、已知tan()2,tan 3αββ+==,则3sin(2)2πα+= ;三角函数的图像与性质问题三角函数sin()y A x ωϕ=+图像例1:(1)已知函数sin()y A x ωϕ=+(0ω>,2πϕ<)的部分图像如图所示,则 ( ) A.1,6πωϕ==B. 1,6πωϕ==-C. 2,6πωϕ==D. 2,6πωϕ==-(2)已知函数已知函数()cos()f x A x ωϕ=+的图象如图所示,2()23f π=-,则(0)f =( )(A )23-(B)- 12 (C) 23 (D) 12图(1) 图(2) 高效作业,技能备考 1.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所示,则ω=2. (2011江苏)函数sin()y A x ωϕ=+(A 、ω、ϕ是常数,0,0A ω>>的部分图象如图所示,则(0)f = ;图1 图23.(2011全国大纲)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .94.(2012天津) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是 A.13 B. 1 C. 53D. 2 三角函数的值域和最值例题:求函数sin (0)2cos x y x x π-=<<-的最小值。
高一数学讲义 第六章 三角函数
![高一数学讲义 第六章 三角函数](https://img.taocdn.com/s3/m/c9a0b7ac1b37f111f18583d049649b6648d709b3.png)
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
三角函数培优讲义
![三角函数培优讲义](https://img.taocdn.com/s3/m/adedd8539ec3d5bbfc0a7478.png)
三角函数培优讲义(一)【知识梳理】:1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说该角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
①第I 象限角的集合: ;②第II 角限角的集合: ; ③第III 象限角的集合: ; ④第IV 象限角的集合: ; ⑤终边在x 轴正半轴的角的集合: ;终边在x 轴负半轴的角的集合: ;终边在x 轴上的角的集合: ;⑥终边在y 轴正半轴的角的集合: :终边在y 轴负半轴的角的集合: ;终边在y 轴上的角的集合: ; ⑦终边在坐标轴上的角的集合: :⑧终边在直线x y =的角的集合: :⑨终边在直线x y -=的角的集合: :3. 终边相同的角的表示:①α终边与θ终边相同(α的终边在θ终边所在射线上)⇔ ; ②α终边与θ终边共线(α的终边在θ终边所在直线上)⇔ ; ③α终边与θ终边关于x 轴对称⇔ ; ④α终边与θ终边关于y 轴对称⇔ ;⑤α终边与θ终边关于原点对称⇔ ; ⑥ α终边与θ终边关于直线x y =对称⇔ ;注意:相等的角的终边一定相同,终边相同的角不一定相等. 4.弧长公式:①扇形的弧长为l ,半径为R ,圆心角为α,则: , ②扇形面积公式: ;1弧度(1rad)57.3≈.5.任意角的三角函数的定义:①设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么正弦sin ,cos y x r rαα==余弦sin ,cos y x r r αα==,正切()tan ,0y x x α=≠;②了解:余切cot x y α=(0)y ≠,正割sec r x α=()0x ≠,余割()csc 0r y yα=≠。
三角函数归纳整合课件
![三角函数归纳整合课件](https://img.taocdn.com/s3/m/7a668a78580102020740be1e650e52ea5418ce51.png)
专题一 任意角的三角函数的定义及三角函数线 掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利 用三角函数的定义求三角函数值,利用三角函数线判断三角函 数的符号,借助三角函数线求三角函数的定义域.
【例 1】 求函数 y= sin x+ 解 由题意知
cos x-12的定义域.
sin x≥0,
sin x≥0,
4.三角函数的图象与性质 函数 y=sin x y=cos x
图象
y=tan x
定义域
R
R
kπ-π2 , kπ+π2(k∈Z)
值域
[-1,1]
x=2kπ+π2(k∈Z)时,
最值 ymax=1; x=2kπ-π2(k∈Z)时,
ymin=-1
[-1,1] x=2kπ (k∈Z)时, ymax=1; x=2kπ+π (k∈Z)时, ymin=-1
(2)诱导公式可概括为 k·π2±α(k∈Z)的各三角函数值的化简公式.记 忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数 倍或偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函 数名称变为相应的异名函数;若是偶数倍,则函数名称不变.符 号看象限是指把 α 看成锐角时原函数值的符号作为结果的符号.
cos
x-12≥0,
即 cos
x≥12,
如图,结合三角函数线知:
2kπ≤x≤2kπ+π k∈Z, 2kπ-π3≤x≤2kπ+π3 k∈Z, 解得 2kπ≤x≤2kπ+3π(k∈Z), ∴函数的定义域为x|2kπ≤x≤2kπ+π3,k∈Z.
专题二 同角三角函数的关系式及诱导公式 (1)牢记两个基本关系式 sin2α+cos2α=1 及csoins αα=tan α,并能应用 两个关系式进行三角函数的求值、化简、证明.在应用中,要注 意掌握解题的技巧,同时要体会数学思想方法如数形结合思想、 分类讨论思想、转化与化归思想及函数与方程思想的应用.
《三角函数的图象与性质》讲义
![《三角函数的图象与性质》讲义](https://img.taocdn.com/s3/m/d7c59a2ee55c3b3567ec102de2bd960591c6d95f.png)
《三角函数的图象与性质》讲义一、引言三角函数是数学中的重要概念,其图象和性质在数学、物理、工程等领域都有广泛的应用。
掌握三角函数的图象与性质,对于理解和解决相关问题具有关键意义。
二、三角函数的定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦(sin):对边与斜边的比值。
余弦(cos):邻边与斜边的比值。
正切(tan):对边与邻边的比值。
用角度θ表示,即:sinθ =对边/斜边cosθ =邻边/斜边tanθ =对边/邻边三、常见的三角函数1、正弦函数:y = sin x定义域:R(全体实数)值域:-1, 1周期性:周期为2π,即 sin(x +2π) = sin x奇偶性:奇函数,即 sin(x) = sin x图象特点:图象是一条波浪线,在 x =kπ +π/2 (k∈Z)处取得最大值 1,在 x =kπ π/2 (k∈Z)处取得最小值-1。
2、余弦函数:y = cos x定义域:R值域:-1, 1周期性:周期为2π,即 cos(x +2π) = cos x奇偶性:偶函数,即 cos(x) = cos x图象特点:图象也是一条波浪线,在 x =kπ(k∈Z)处取得最大值 1,在 x =kπ +π(k∈Z)处取得最小值-1。
3、正切函数:y = tan x定义域:{x |x ≠ kπ +π/2,k∈Z}值域:R周期性:周期为π,即 tan(x +π) = tan x奇偶性:奇函数,即 tan(x) = tan x图象特点:图象是由一系列不连续的曲线组成,在每个周期内,在x =kπ +π/2 (k∈Z)处有垂直渐近线。
四、三角函数图象的变换1、平移变换对于正弦函数 y = sin(x +φ),当φ > 0 时,图象向左平移φ个单位;当φ < 0 时,图象向右平移|φ|个单位。
对于余弦函数 y = cos(x +φ),规律与正弦函数相同。
2、伸缩变换对于正弦函数 y =A sin(ωx +φ),A 决定了图象的振幅,ω决定了图象的周期。
重点高一数学必修四 三角函数讲义
![重点高一数学必修四 三角函数讲义](https://img.taocdn.com/s3/m/31cb799f0242a8956aece448.png)
精心整理专题四三角函数.基本知识点【1】角的基本概念 (1)正角负角零角(2终}36036090,k k α<<⋅+∈Z}36090360180,k k +<⋅+∈Z }360180360270,k k α+<<⋅+∈Z }360270360360,k k α+<<⋅+∈Z{}180,k ∈Z }}(3(4,18057.3≈【2设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx x α=≠.【3】三角函数的基本关系()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.【4】函数的诱导公式:奇变偶不变,符号看象限 【5】常用三角函数公式(1)两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β (2(3sin2(4由a (5【6(1(2)正弦函数、余弦函数和正切函数的图象与性质:例1】变式1】变式2】变式3】(1)(2)变式4】(2012年江西)sin cos1sin cos2αα+=-,求tan2α的值变式4】(2012年全国卷)已知α为第二象限角,且sin cosαα+=,则cos2α= D变式5】(2012年重庆卷)设tan α,tan β是方程x2-3x+2=0的两个根,则tan (α+β)的值为( )-3B-1C1D3例2】已知1sin cos 8αα⋅=,02πα<<,求sin cos αα+的值. 变式1】已知3sin cos 8αα⋅=,且42ππα<<,求cos sin αα-的值.变式2】(2012例3】(2008)求sin 4x π⎛⎫-⎪⎝⎭)求x sin 的值;)求 ⎝⎛+32sin πx 变式1】已知函数Ⅰ)求函数()f x Ⅱ)若06(),5f x =例4】已知函数f )求函数()f x 的周期、递增区间、递减区间)求函数()f x 取得最大值时x 的集合)求函数()f x 取得最小值时x 的集合变式1】已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 得最大值,)求函数()f x的表达式)求函数()f x的递增区间和点减区间)求函数()f x取得最大值时x的集合变式2】(2011年和平区一模)知()cos3f x x π⎛⎫=+⎪⎝⎭,()()()g x f x f x=⋅-)求2fπ⎛⎫ ⎪⎝⎭)求函数()h x=变式3】(2012函数()f x)求()f x)求使得()f x )若()20,πθ∈且例5】(2011Ⅰ)求()f xⅡ)求()f x变式1】(2007年天津理)已知函数()2cos(sin cos)1f x x x x x=-+∈R,.Ⅰ)求函数()f x的最小正周期;Ⅱ)求函数()f x在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.变式2】(2012年和平区一模)()()22sin cosx x x x m m R=++∈)当x R∈时,求()f x的单调递增区间;)当0,2xπ⎡⎤∈⎢⎥⎣⎦时()f x的最大值是6,求实数m的值变式3】(2012河西一模)知平面内点A ⎛⎝2OCⅠ)求函数()f xⅡ)当[,xππ∈-变式4】(2012知函数()f x= )求函数()f x Ⅱ)求函数(f x 例6】(2011知函数()f x=Ⅰ)求()f xI)设0,4πα⎛⎫∈ ⎪⎝⎭变式1】求函数tan23y x=+⎪⎝⎭的定义域,周期和单调区间。
(word完整版)高中数学专题系列三角函数讲义.doc
![(word完整版)高中数学专题系列三角函数讲义.doc](https://img.taocdn.com/s3/m/b23faa727375a417866f8f6d.png)
素诚教育高中数学素质、诚实SCE 金牌数学专题系列专题:三角函数§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角终边相同的角的集合:2k , k Z .§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做 1 弧度的角 .2、l. r3、弧长公式:l n R R . 4 、扇形面积公式:S n R21lR .180 360 2 § 1.2.1、任意角的三角函数1,那么:sin y, cos x, tany、设是一个任意角,它的终边与单位圆交于点P x, yx 2、设点A x , y 为角终边上任意一点,那么:(设 r x2 y2)sin y x y x , cos , tanx, cotr r y3、sin , cos , tan 在四个象限的符号和三角函数线的画法.y正弦线: MP; 余弦线: OM; 正切线: ATTPO M A x5、特殊角 0°, 30° 45°, 60°, 90°, 180°, 270 等的三角函数值 .0 6 4 3 2 2 3 323 4 2sincostan§ 1.2.2、同角三角函数的基本关系式1、平方关系:sin2 cos2 12、商数关系:tan sin .3、倒数关系:tan cot1cos§ 1.3 、三角函数的诱导公式(概括为 “奇变偶不变,符号看象限”k Z )1、 诱导公式一 :2、 诱导公式二 :sin 2k sin ,sin sin , cos 2k cos , (其中: k Z )cos cos ,tan2ktan .tantan .3、诱导公式三 :4、诱导公式四 :sin sin ,sin sin ,cos cos, cos cos,tantan .tantan .5、诱导公式五 :6、诱导公式六 :sin2cos ,sincos ,2cos2sin .cossin .2§ 1.4.1 、正弦、余弦函数的图象和性质y=sinxyy=cosxy3 73 7-5 -2 1-5-2 1222-3 2-23 2-4-7-3 -2 -3 -o 2 5 34x-4-7-2 -3o 2 54x22-1 2222 -1 221、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质: 定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用 五点法作图 .y sin x 在 x [0, 2 ] 上的五个关键点为: (0,0)(,,1)(, ,0)(,3,-1)(,2 ,0).2 2图表归纳:正弦、余弦、正切函数的图像及其性质y sin x y cosx y tan x 图象定义域R值域[-1,1]x 2k , k Z时, y max 1最值 2x 2k , k Z 时, y min 12周期性T 2奇偶性奇单调性在[2k , 2k ] 上单调递增2 2k Z 在 [2k,2k 3] 上单调递减2 2对称性对称轴方程:x kk Z 2对称中心 (k , 0)§ 1.4.3 、正切函数的图象与性质yy=cotx-- o 321、记住正 2 2 22、记住余3、能够对照偶性、单调性、周期性.R { x | x k , k Z }2[-1,1] Rx 2k , k Z时, y max 1无x 2k , k Z时, y min1T 2 T偶奇在 [2 k ,2 k ] 上单调递增在(k , k ) 上单调递2 2在[2 k ,2 k] 上单调递减增对称轴方程:x k 无对称轴对称中心 ( k , 0) 对称中心 (k,0)2 2yy=tanxx3 -- 2o 3x- 2 2 2图象切函数的切函数的图象:图象讲出正切函数的相关性质:定义域、值域、对称中心、奇§ 1.5 、函数 y A sin x 的图象1、对于函数:y Asin xB A 0,有:振幅 A2 ,初相 ,相位 x,频率 fT 2.,周期 T12、能够讲出函数 y sin x 的图象与y AsinxB 的图象之间的平移伸缩变换关系 .① 先平移后伸缩:② 先伸缩后平移:y sin x 平移 || 个单位(左加右减)横坐标不变纵坐标变为原来的 A 倍y sin xy sin x横坐标不变y A sin x纵坐标变为原来的 A 倍y Asin x纵坐标不变y Asin x横坐标变为原来的| 1| 倍纵坐标不变y Asin x横坐标变为原来的 | 1|倍平移 |B | 个单位y Asin x B平移个单位(左加右减)平移 |B| 个单位 y Asin xy Asin x B(上加下减)(上加下减)3、三角函数的周期,对称轴和对称中心函数 y sin( x) ,x ∈ R 及函数 y cos( x), x ∈ R(A, , 为常数,且2 ;A ≠ 0) 的周期 T||函数 ytan( x) , xk,kZ (A, ω , 为常数,且 A ≠ 0) 的周期 T.2| |对于 y A sin( x ) 和 y Acos( x ) 来说, 对称中心与零点相联系,对称轴与最值点联系.求 函 数 yAsin(x) 图 像 的 对 称 轴 与 对 称 中 心 , 只 需 令 xk(k Z ) 与 x k (k Z )2解出 x 即可 . 余弦函数可与正弦函数类比可得 .4、由图像确定三角函数的解析式利用图像特征: Aymaxymin ,Bymaxymin.22要根据周期来求 ,要用图像的关键点来求 .§ 1.6 、三角函数模型的简单应用(要求熟悉课本例题 . )§ 3.1.1 、两角差的余弦公式 记住 15°的三角函数值:sincostan6 26 2231244§3.1.2 、两角和与差的正弦、余弦、正切公式 1、 sin sin cos cos sin2、 sin sincoscos sin3、 cos cos cos sin sin4、 cos cos cossin sin5、 tantan tan .1 tan tan6、 tantan tan.1 tan tan§ 3.1.3 、二倍角的正弦、余弦、正切公式1、 sin 22 sin cos ,2、 cos2cos 2sin 2 变形 : sincos1sin 2 .2 cos 2 121 2 sin 2.升幂公式:1 cos2 2cos 21cos22sin 2cos 21 (1 cos2 )降幂公式:2sin 21(1 cos 2 )23、 tan 22 tan . 4sin 21 cos2 1 tan2、 tan1 cos2sin 2§ 3.2 、简单的三角恒等变换 1、 注意 正切化弦、平方降次 . 2、辅助角公式y a sin x b cos xa 2b 2 sin( x ) ( 其 中 辅 助 角所 在 象 限 由 点 ( a, b) 的 象 限 决定 , tanb).a解三角形1、正弦定理:a b c 2R .sin A sin B sin C(其中 R 为 ABC 外接圆的半径)a2R sin A,b 2R sin B,c 2R sin C ; sin Aa ,sin B b,sin C c ;2R2R2Ra :b :c sin A :sin B :sin C.用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
(完整word版)三角函数及差和倍角公式讲义
![(完整word版)三角函数及差和倍角公式讲义](https://img.taocdn.com/s3/m/49ea1dfd581b6bd97f19eaf0.png)
教育学科教师辅导讲义学员编号: 年 级:高一 课 时 数: 学员姓名: 辅导科目:数学 学科教师:课 题 三角函数和差公式和倍角公式授课日期及时段教学目的1、学习并掌握三角函数的和差公式的推导过程;2、理解并掌握倍角公式的推导过程及其应用;3、能灵活利用和差公式进行分析求解问题.教学内容一、上次作业检查与讲解;二、学习要求及方法的培养:三、知识点分析、讲解与训练:一、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。
如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)三角函数名互化(切割化弦),(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
(4)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=与升幂公式:21cos 22cos αα+=,21cos 22sin αα-=)。
高中数学专题系列 三角函数讲义
![高中数学专题系列 三角函数讲义](https://img.taocdn.com/s3/m/bf3a200ecc7931b765ce1567.png)
§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R R n l απ==180. 4、扇形面积公式:lR R n S 213602==π. §1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT5、 特殊角0°,30°45°,60°,90°,180°,270等的三角函数值.§1.2.21、 平方关系:1cos sin 22=+αα 2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为Z k ∈)§1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).y=tanx3π2ππ2-3π2-π-π2oyxy=cotx 3π2ππ22π-π-π2o yx图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos =x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=T π2=Tπ=T奇偶性 奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增 对称性 Z k ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§1.4.3、正切函数的图象与性质1、记住正切函数的图象2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 (要求熟悉课本例题.)§3.1.1、两角差的余弦公式§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=- 5、()tan tan 1tan tan tan αβαβαβ+-+=.6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式1、αααcos sin 22sin =,2、ααα22sin cos 2cos -=变形: 12sin cos sin 2ααα=. 1cos 22-=α α2sin 21-=.升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).解三角形1、正弦定理:R CcB A 2sin sin sin ===. (其中R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
三角函数讲义适用于高三第一轮复习
![三角函数讲义适用于高三第一轮复习](https://img.taocdn.com/s3/m/8a729f999b89680202d8256c.png)
三角函数1.同角三角函数的基本关系式:1cos sin22=+αααααtan cos sin = 2.诱导公式 (奇变偶不变,符号看象限)ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtan )tan(=+ ααπsin )sin(=- ααπcos )cos(-=- ααπtan )tan(-=-ααπcos )2sin(=+ ααπsin )2cos(-=+ ααπcos )2sin(=- ααπsin )2cos(=- ααsin )sin(-=- ααcos )cos(=- 3.两角和与差的公式βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=-4.倍角公式 αααcos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=αααααααα2tan 1tan 22tan -=5.降幂公式 22cos 1sin 2αα-= 22cos 1cos 2αα+= ααα2sin 21cos sin =6.幅角公式 x b x a ωωcos sin +)sin(22ϕω++=x b a ,其中ab=ϕtan8.补充公式 ααααα2sin 1cos sin 21)cos (sin 2±=±=±, 2cos2sinsin 1ααα±=±知识点睛一.三角函数的图象与性质图象]1,1[- ]1,1[-最值 当且仅当22ππ+=k x 时取到最大值1;当且仅当22ππ-=k x 时取到最小值1-当且仅当πk x 2=时取到最大值1;当且仅当ππ-=k x 2时取到最小值1-周期 最小正周期为π2最小正周期为π2奇偶性 奇函数偶函数单调性在]22,22[ππππ+-k k 上单调增;在]232,22[ππππ++k k 上单调减在]2,2[πππk k -上单调增; 在]2,2[πππ+k k 上单调减 对称轴2ππ+=k x ;对称中心)0,(πk对称轴πk x =;对称中心)0,2(ππ+k说明:表格中的k 都是属于Z ,在选择“代表”的区间或点时,先尽量选择离坐标原点近的,再尽量选择正的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(答: 向上平移1个单位得 的图象,再向左平移 个单位得 的图象,横坐标扩大到原来的2倍得 的图象,最后将纵坐标缩小到原来的 即得 的图象);
(2)要得到函数 的图象,只需把函数 的图象向___平移____个单位
(答:左; );
(3)将函数 图像,按向量 平移后得到的函数图像关于原点对称,这样的向量是否唯一?若唯一,求出 ;若不唯一,求出模最小的向量
10.三角函数诱导公式( )的本质是:奇变偶不变(对 而言,指 取奇数或偶数),符号看象限(看原函数,同时可把 看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k + , ;(2)转化为锐角三角函数。如
(1) 的值为________
(答: );
(2)已知 ,则 ______,若 为第二象限角,则 ________。
(1)若 ,则 =___
(答:0);
(2)函数 的最小正周期为____
(答: );
(3)设函数 ,若对任意 都有 成立,则 的最小值为____
(答:2)
(4)奇偶性与对称性:正弦函数 是奇函数,对称中心是 ,对称轴是直线 ;余弦函数 是偶函数,对称中心是 ,对称轴是直线 (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 轴的直线,对称中心为图象与 轴的交点)。如
(答:存在但不唯一,模最小的向量 );
(4)若函数 的图象与直线 有且仅有四个不同的交点,则 的取值范围是
(答: )
(5)研究函数 性质的方法:类比于研究 的性质,只需将 中的 看成 中的 ,但在求 的单调区间时,要特别注意A和 的符号,通过诱导公式先将 化正。如
(1)函数 的递减区间是______
; ;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(1)已知角 的终边经过点P(5,-12),则 的值为__。
(答: );
(2)设 是第三、四象限角, ,则 的取值范围是_______
(答:(-1, );
(3)若 ,试判断 的符号
(答:负)
7.三角函数线的特征是:正弦线MP“站在 轴上(起点在 轴上)”、余弦线OM“躺在 轴上(起点是原点)”、正切线AT“站在点 处(起点是 )”.三角函数线的重要应用是比较三角函数值的大小和解三角不等式。如
16、形如 的函数:
(1)几个物理量:A―振幅; ―频率(周期的倒数); ―相位; ―初相;
(2)函数 表达式的确定:A由最值确定; 由周期确定; 由图象上的特殊点确定,如 , 的图象如图所示,则 =_____(答: );
(3)函数 图象的画法:①“五点法”――设 ,令 =0, 求出相应的 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。
(3)周期性:是周期函数且周期是 ,它与直线 的两个相邻交点之间的距离是一个周期 。绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。 如 的周期都是 , 但
的周期为 ,而 , 的周期不变;
(4)函数 的图象与 图象间的关系:①函数 的图象纵坐标不变,横坐标向左( >0)或向右( <0)平移 个单位得 的图象;②函数 图象的纵坐标不变,横坐标变为原来的 ,得到函数 的图象;③函数 图象的横坐标不变,纵坐标变为原来的A倍,得到函数 的图象;④函数 图象的横坐标不变,纵坐标向上( )或向下( ),得到 的图象。要特别注意,若由 得到 的图象,则向左或向右平移应平移 个单位,如
(1)内角和定理:三角形三角和为 ,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).注意:①正弦定理的一些变式: ;
(1)平方关系:
(2)倒数关系:sin csc =1,cos sec =1,tan cot =1,
(3)商数关系:
同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。如
(答:一、三)
5.弧长公式: ,扇形面积公式: ,1弧度(1rad) .如已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。
(答:2 )
6、任意角的三角函数的定义:设 是任意一个角,P 是 的终边上的任意一点(异于原点),它与原点的距离是 ,那么 , , , , 。三角函数值只与角的大小有关,而与终边上点P的位置无关。如
(1)函数 的奇偶性是______、
(答:偶函数);
(2)已知函数 为常数),且 ,则 ______
(答:-5);
(3)函数 的图象的对称中心和对称轴分别是_______、_______
(答: 、 );
(4)已知 为偶函数,求 的值。
(答: )
(5)单调性: 上单调递增,在 单调递减; 在 上单调递减,在 上单调递增。特别提醒,别忘了 !
(答: ; )
11、两角和与差的正弦、余弦、正切公式及倍角公式:
如(1)下列各式中,值为 的是
A、 B、
C、 D、
(答:C);
(2)命题P: ,命题Q: ,则P是Q的
A、充要条件B、充分不必要条件
C、必要不充分条件D、既不充分也不必要条件
(答:C);
(3)已知 ,那么 的值为____
(答: );
(4) 的值是______
(4) 终边与 终边关于 轴对称 .
(5) 终边与 终边关于原点对称 .
(6) 终边在 轴上的角可表示为: ; 终边在 轴上的角可表示为: ; 终边在坐标轴上的角可表示为: .如 的终边与 的终边关于直线 对称,则 =____________。
(答: )
4、 与 的终边关系:由“两等分各象限、一二三四”确定.如若 是第二象限角,则 是第_____象限角
(2)若 ,求 的值。
(答: );
(3)已知 ,试用 表示 的值
(答: )。
13、辅助角公式中辅助角的确定: (其中 角所在的象限由a,b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用。如
(1)若方程 有实数解,则 的取值范围是___________.
(答:[-2,2]);
(2)当函数 取得最大值时, 的值是______
其中正确结论是_______
(答:②④);
(5)已知函数 图象与直线 的交点中,距离最近两点间的距离为 ,那么此函数的周期是_______
(答: )
17、正切函数 的图象和性质:
(1)定义域: 。遇到有关正切函数问题时,你注意到正切函数的定义域了吗?
(2)值域是R,在上面定义域上无最大值也无最小值;
(2)函数 的单调递增区间为____
(答: )
(5)式子结构的转化(对角、函数名、式子结构化同)。如
(1)
(答: );
(2)求证: ;
(3)化简:
(答: )
(6)常值变换主要指“1”的变换(
等),如已知 ,求 (答: ).
(7)正余弦“三兄妹— ”的内存联系――“知一求二”,如
(1)若 ,则 __
(答: ),特别提醒:这里 ;
(答:4);
(5)已知 ,求 的值(用a表示)甲求得的结果是 ,乙求得的结果是 ,对甲、乙求得的结果的正确性你的判断是______
(答:甲、乙都对)
12.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有:
(4)奇偶性与对称性:是奇函数,对称中心是 ,特别提醒:正(余)切型函数的对称中心有两类:一类是图象与 轴的交点,另一类是渐近线与 轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。
(5)单调性:正切函数在开区间 内都是增函数。但要注意在整个定义域上不具有单调性。如下图:
18. 三角形中的有关公式:
(答: );
(2) 的递减区间是_______
(答: );
(3)设函数 的图象关于直线 对称,它的周期是 ,则
A、
B、 在区间 上是减函数
C、
D、 的最大值是A
(答:C);
(4)对于函数 给出下列结论:
①图象关于原点成中心对称;
②图象关于直线 成轴对称;
③图象可由函数 的图像向左平移 个单位得到
;④图像向左平移 个单位,即得到函数 的图像。
(1)定义域:都是R。
(2)值域:都是 ,对 ,当 时, 取最大值1;当 时, 取最小值-1;对 ,当 时, 取最大值1,当 时, 取最小值-1。如
(1)若函数 的最大值为 ,最小值为 ,则 __, _
(答: 或 );
(2)函数 ( )的值域是____
(答:[-1, 2]);
(3)若 ,则 的最大值和最小值分别是____ 、_____
(1)函数 的值的符号为____
(答:大于0);
(2)若 ,则使 成立的 的取值范围是____
(答: );
(3)已知 , ,则 =____
(答: );
(4)已知 ,则 =___; =____
(答: ; );