函数与方程不等式 专题

合集下载

函数、方程与不等式的关系专题训练(含解析)

函数、方程与不等式的关系专题训练(含解析)

函数、方程与不等式的关系专题训练一、 单选题1.(2019·伊宁市第八中学高一期中)若方程2(1)230k x x --+=有两个不相等的实数根,则实数k 的取值范围是( ) A .43k <B .43k >C .43k <,且1k ≠ D .43k >,且1k ≠ 2.(2019·江门市第二中学高一月考)若12x x ,是方程2560x x -+=的两个根,则1211+x x 的值为( ) A .1-2B .13-C .16-D .563.(2020·河北省鹿泉区第一中学高二月考)已知函数()21f x x x =+-,则函数()y f x =的零点的个数是( ) A .1B .2C .3D .44.(2020·浙江省台州一中高三开学考试)若函数2()|2|f x x x a =--有三个零点,则实数a 的值的个数为( ) A .1B .2C .3D .45.(2020·浙江省高三其他)已知关于x 的方程20(,)x ax b a b R ++=∈在[0,1]上有实数根,且322a b -≤+≤-,则2+a b 的最大值为( )A .1-B .0C .12D .16.(2020·浙江省高三其他)已知函数()21f x ax bx =++有两个零点1x ,2x ,则“1a ≥”是“122x x +≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2020·全国高三月考(文))已知函数()f x ,()g x 的定义域为R ,(1)f x +是奇函数,(1)g x +是偶函数,若()()y f x g x =⋅的图象与x 轴有5个交点,则()()y f x g x =⋅的零点之和为( ). A .5-B .5C .10-D .108.(2019·涡阳县萃文中学高一月考)函数y =|x 2-1|与y =a 的图象有4个交点,则实数a 的取值范围是( ). A .(0,+∞ )B .(-1,1)C .(0,1)D .(1,+∞)9.(2018·浙江省杭州四中高三月考)已知函数2()(,)f x x ax b a b =++∈R 在(0,1)内有两个零点,则3a b +的取值范围是( ) A .(4,0)-B .(5,0)-C .(0,4)D .(0,5)10.(2020·贵州省高三其他(文))已知函数22,0,(),0,x a x f x x ax x +<⎧=⎨-≥⎩若函数()(())g x f f x =恰有8个零点,则a 的值不可能为( ) A .8 B .9C .10D .12二、多选题11.(2019·山东省高一期中)狄利克雷函数()f x 满足:当x 取有理数时,()1f x =;当x 取无理数时,()0f x =.则下列选项成立的是( ) A .()0f x ≥B .()1f x ≤C .3()0-=f x x 有1个实数根D .3()0-=f x x 有2个实数根12.(2020·化州市第一中学高二月考)(多选)已知函数()2211x f x x-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数 B .()1f f x x ⎛⎫=-⎪⎝⎭C .()f x 在[]2,3上的最大值为35D .()()g x f x x =+在区间()1,0-上至少有一个零点13.(2019·辽宁省高一月考)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则( )A .a b c +=B .b c a +=C .b a c =D .2b c a +=14.(2020·枣庄市第三中学高二月考)已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( ) A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞三、填空题15.(2019·合肥一六八中学高三其他(理))方程220ax bx ++=的一根在区间()0,1上,另一根在区间()1,2上,则2a b -的取值范围是 .16.(2020·北京大峪中学高二期中)设函数()2,02,0x bx c x f x x ⎧++≤=⎨>⎩,若()()40f f -=,()21f -=-,则方程()f x x =的解的个数是______.17.(2020·天津大钟庄高中高二月考)已知函数2,0(){21,0x x f x x x x >=--+≤若函数()()2g x f x m =+有三个零点,则实数m 的取值范围是 . 四、双空题18.(2019·浙江省嘉兴一中高三期中)我国古代数学著作《算法统宗》中记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长,井深各几何?”其大意为:“用绳子测量井的深度,若将绳三等分,则绳比井的深度长四尺:若将绳四等分,则绳比井的深度长一尺.”则绳长________尺,井深________尺.19.(2019·浙江省高二月考)已知函数()21,22,2x x f x x x +≤⎧=⎨->⎩,则()=f f ________,()2y f x =-的零点有________.20.(2020·安达市第七中学高一月考)已知函数2()(2)f x x x =+,则函数()f x 的零点是_______;不等式()0f x ≤的解集为_______.21.(2018·浙江省高考真题)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 五、解答题22.(2019·陕西省咸阳市实验中学高一月考)已知函数()2()23f x x ax a a R =-+-∈.(1)若1a =时,求()f x 在区间1[,3]2上的最大值和最小值; (2)若()f x 的一个零点小于0,另一个零点大于0,求a 的范围.23.(2019·营口市第二高级中学高二月考(文))已知函数21()(0)ax f x a x b+=≠+是奇函数,并且函数()f x 的图像经过点(1,3). (1)求实数,a b 的值;(2)若方程()f x m x =+在区间1[,3]2上有两个不同的实根,试求实数m 的取值范围.24.(2019·陕西省咸阳市实验中学高一月考)设()2243,3033,0165,16x x x f x x x x x x ⎧++-≤<⎪=-+≤<⎨⎪-+-≤≤⎩,(1)画出函数()f x 的图像; (2)求()f x 的单调增区间;(3)集合{|M m R x =∈的方程()f x m =有三个不等实根},求?M =25.(2020·南昌市八一中学高一开学考试)已知函数2()21f x x ax =-+.(1)若函数()f x 的增区间是(2,)-+∞,求实数a ;(2)若函数()f x 在区间(1,1)-和(1,3)上分别各有一个零点,求实数a 的取值范围.26.(2020·广东省湛江二十一中高二开学考试)已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x .(1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围,27.(2020·浙江省高一开学考试)已知函数()224f x x x x a x =+--,其中a R ∈.(1)当1a =时,方程()f x b =恰有三个根,求实数b 的取值范围;(2)若关于x 的不等式()1f x ≥-在区间1,22⎡⎤⎢⎥⎣⎦上恒成立,求实数a 的取值范围.二、 单选题1.(2019·伊宁市第八中学高一期中)若方程2(1)230k x x --+=有两个不相等的实数根,则实数k 的取值范围是( ) A .43k <B .43k >C .43k <,且1k ≠ D .43k >,且1k ≠ 【答案】C 【解析】由方程有两个不相等的实数根可知,此方程为一元二次方程且判别式大于零,即可得()1041210k k -≠⎧⎨∆=-->⎩,解得43k <,且1k ≠. 故选:C.2.(2019·江门市第二中学高一月考)若12x x ,是方程2560x x -+=的两个根,则1211+x x 的值为( ) A .1-2B .13-C .16-D .56【答案】D 【解析】解方程2560x x -+=,即可求得12==3x x ,2,代入可得:1211115=+=236x x +, 故选:D.3.(2020·河北省鹿泉区第一中学高二月考)已知函数()21f x x x =+-,则函数()y f x =的零点的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】函数()21f x x x =+-的零点个数即为y x =与21y x =-的交点个数在同一坐标系内作出两函数图象如图所示:由图象可知y x =与21y x =-有2个交点,即函数()21f x x x =+-的零点有两个.故选:B4.(2020·浙江省台州一中高三开学考试)若函数2()|2|f x x x a =--有三个零点,则实数a 的值的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】函数2()|2|f x x x a =--有三个零点⇔方程2|2|x x a =-的有三个根⇔函数2yx 与函数|2|y x a =-有三个不同的交点, 作出函数2yx 与|2|y x a =-的图象,如图所示,(1)当0a =时,显然有三个交点,∴0a =成立,(2)当2ax ≥时,2y x a =-与2y x 相切时,则220x x a -+=,此时4401a a ∆=-=⇒=,如图所示(3)当2ax <时,2y x a =-+与2y x 相切时,则220x x a +-=,此时4401a a ∆=+=⇒=-,如图所示,∴a 的值有3个,故选:C.5.(2020·浙江省高三其他)已知关于x 的方程20(,)x ax b a b R ++=∈在[0,1]上有实数根,且322a b -≤+≤-,则2+a b 的最大值为( )A .1-B .0C .12D .1【答案】B 【解析】由题意,关于x 的方程20x ax b ++=(),a b ∈R 在[0,1]上有实数根,即函数2()f x x =-与()g x ax b =+在[0,1]x ∈上的图象有交点,作出函数()f x ,()g x 的大致图象如图所示.因为322a b -≤+≤-,所以3(2)2g -≤≤-.又1122222a b a b g ⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭,所以求2+a b 的最大值可以转化为求12g ⎛⎫⎪⎝⎭的最大值. 数形结合可知,当()y g x =的图象经过点(2,3)B -且和()y f x =的图象在[0,1]x ∈上相切时,12g ⎛⎫⎪⎝⎭大.易求得切点为(1,1)-,且()21g x x =-+,此时102g ⎛⎫= ⎪⎝⎭, 所以2+a b 的最大值为0. 故选:B.6.(2020·浙江省高三其他)已知函数()21f x ax bx =++有两个零点1x ,2x ,则“1a ≥”是“122x x +≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】由题意得0a ≠,且1x ,2x 是方程()0f x =的两个根,故121x x a=,所以212121212x x x x x x a ⎛+⎫==⋅≤ ⎪⎝⎭,当且仅当12x x =时等号成立.若122x x +≤,则1a ≥,反之,若1a ≥,则121x x ⋅≤,当12x =,213x =时,12213x x ⋅=<,但12723x x +=>故“1a ≥”是“122x x +≤”的必要不充分条件, 故选:B .7.(2020·全国高三月考(文))已知函数()f x ,()g x 的定义域为R ,(1)f x +是奇函数,(1)g x +是偶函数,若()()y f x g x =⋅的图象与x 轴有5个交点,则()()y f x g x =⋅的零点之和为( ). A .5- B .5C .10-D .10【答案】B 【解析】由题意,(1)(1)f x f x -+=-+⇔(2)()f x f x -=-,又(2)()g x g x -=,所以(2)(2)()()f x g x f x g x -⋅-=-,所以函数()()y f x g x =⋅的图象关于点(1,0)对称.设()()y f x g x =⋅的零点为1x ,2x ,3x ,4x ,5x ,易知31x =,设12451x x x x <<<<,则15242x x x x +=+=,所以123455x x x x x ++++=.故选:B .8.(2019·涡阳县萃文中学高一月考)函数y =|x 2-1|与y =a 的图象有4个交点,则实数a 的取值范围是( ). A .(0,+∞ ) B .(-1,1) C .(0,1) D .(1,+∞)【答案】C 【解析】作函数21y x =-图象,根据函数图像得实数a 的取值范围为(0,1),选C.9.(2018·浙江省杭州四中高三月考)已知函数2()(,)f x x ax b a b =++∈R 在(0,1)内有两个零点,则3a b +的取值范围是( ) A .(4,0)- B .(5,0)-C .(0,4)D .(0,5)【答案】B 【解析】由函数2()f x x ax b =++在(0,1)内有两个零点得2(0)0,(1)10,40,01,2f b f a b a b a =>⎧⎪=++>⎪⎪⎨->⎪⎪<-<⎪⎩即20,10,40,20,b a b a b a >⎧⎪++>⎪⎨->⎪⎪-<<⎩在平面直角坐标系aOb 内画出不等式组表示的平面区域如图中阴影部分所示(不包含边界),由图易得目标函数3z a b =+在点(0,0)处取得最大值max 3000z =⨯+=,在点(2,1)-处取得最小值min 3(2)15z =⨯-+=-,所以3z a b =+的取值范围为(5,0)-, 故选:B.10.(2020·贵州省高三其他(文))已知函数22,0,(),0,x a x f x x ax x +<⎧=⎨-≥⎩若函数()(())g x f f x =恰有8个零点,则a 的值不可能为( ) A .8 B .9C .10D .12【答案】A 【解析】易知,当0a ≤时,方程()0f x =只有1个实根, 从而()(())g x f f x =不可能有8个零点, 则0,a >()0f x =的实根为2,a -0,a . 令()f x t =,则(())()0f f x f t ==, 则2,0,t a a =-数形结合可知,直线y a =与()f x 的图象有2个交点, 直线0y =与()f x 的图象有3个交点,所以由题意可得直线2y a =-与()f x 的图象有3个交点,则必有224a a ->-,又0a >,所以8a >. 故选:A 二、多选题11.(2019·山东省高一期中)狄利克雷函数()f x 满足:当x 取有理数时,()1f x =;当x 取无理数时,()0f x =.则下列选项成立的是( ) A .()0f x ≥B .()1f x ≤C .3()0-=f x x 有1个实数根D .3()0-=f x x 有2个实数根【答案】ABC 【解析】因为()f x 的值域为{}0,1,故AB 成立3()0-=f x x 只有一个根1,故C 成立故选:ABC12.(2020·化州市第一中学高二月考)(多选)已知函数()2211x f x x-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数 B .()1f f x x ⎛⎫=-⎪⎝⎭C .()f x 在[]2,3上的最大值为35D .()()g x f x x =+在区间()1,0-上至少有一个零点 【答案】ABCD 【解析】因为()2211x f x x -=+,所以其的定义域为R ,A 选项,()22221()1()1()1----===+-+x x f x f x x x,所以函数()f x 为偶函数,故A 正确; B 选项,22221111()111⎛⎫- ⎪-⎛⎫⎝⎭===- ⎪+⎝⎭⎛⎫+ ⎪⎝⎭x x f f x x x x ,故B 正确; C 选项,因为()22212111-==-+++x f x x x,当[]2,3x ∈,21y x =+单调递增,所以()2211=-++f x x 单调递减,因此()()max 2321145==-+=-+f x f ,故C 正确; D 选项,因为()()g x f x x =+,所以()()1111-=--=-g f ,()()0001=+=g f ,即()1(0)0-⋅<gg ,由零点存在性定理可得:()()g x f x x =+在区间()1,0-上存在零点,故D 正确;故选ABCD13.(2019·辽宁省高一月考)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则( )A .a b c +=B .b c a +=C .b a c =D .2b c a +=【答案】AD 【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =; 方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =; 方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =. 根据选项,可得A ,D 成立. 故选:AD .14.(2020·枣庄市第三中学高二月考)已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( ) A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【解析】对于A 选项,当0x >时,0x -<,则 ()22()()2()2() 11 f x x x x x f x -=--+-+-≠-+=- 所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x -<-<⇒--<⎡⎤⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2(2 )11f x x x x x -=--+--+=-+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)12,x ⎡∈-+∞⎣,()0f x<时,(),12x ∈-∞-所以12,012,122)01,12(x x x x x x x x x g x ⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 三、填空题15.(2019·合肥一六八中学高三其他(理))方程220ax bx ++=的一根在区间()0,1上,另一根在区间()1,2上,则2a b -的取值范围是 . 【答案】()5,+∞【解析】由题意得,方程220ax bx ++=的一根在区间()0,1上,另一根在区间()1,2上,令()22f x ax bx =++,则()()10{20 0f f a <>>,即20{210 0a b a b a ++<++>>,画出不等式组表示的平面区域,如图所示,设2z a b =-,当2z a b =-经过点()1,3A -点时,目标函数由最小值,此时最小值为()min 2135z =⨯--=,所以2a b -的取值范围是()5,+∞.16.(2020·北京大峪中学高二期中)设函数()2,02,0x bx c x f x x ⎧++≤=⎨>⎩,若()()40f f -=,()21f -=-,则方程()f x x =的解的个数是______. 【答案】1 【解析】()2,02,0x bx c x f x x ⎧++≤=⎨>⎩,由()()()4021f f f ⎧-=⎪⎨-=-⎪⎩,即164421b c c b c -+=⎧⎨-+=-⎩,解得43b c =⎧⎨=⎩, ()243,02,0x x x f x x ⎧++≤∴=⎨>⎩.当0x ≤时,由()f x x =,可得2330x x ++=,30∆=-<,此时方程()f x x =无解;当0x >时,由()f x x =,可得2x =,合乎题意. 综上所述,()f x x =的解的个数是1. 故答案为:1.17.(2020·天津大钟庄高中高二月考)已知函数2,0(){21,0x x f x x x x >=--+≤若函数()()2g x f x m =+有三个零点,则实数m 的取值范围是 . 【答案】1(1,]2-- 【解析】画出函数f(x)图像如上图所示,而函数()()2g x f x m =+有三个零点,即()20f x m +=有三个根,所以()2f x m =-有三个根,也就是说函数()y f x =与函数2y m =-的图像有三个交点,利用数形结合的方法可知:122m ≤-<,解得112m ≤-<-.四、双空题18.(2019·浙江省嘉兴一中高三期中)我国古代数学著作《算法统宗》中记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长,井深各几何?”其大意为:“用绳子测量井的深度,若将绳三等分,则绳比井的深度长四尺:若将绳四等分,则绳比井的深度长一尺.”则绳长________尺,井深________尺. 【答案】36 8 【解析】设绳长为x 尺,井深为h 尺,依题意有:3(4)4(1)x h x h =+⎧⎨=+⎩,解得368x h =⎧⎨=⎩, 所以绳长为36尺,井深为8尺. 故答案为:36;8.19.(2019·浙江省高二月考)已知函数()21,22,2x x f x x x +≤⎧=⎨->⎩,则()=f f ________,()2y f x =-的零点有________.【答案】1+ 1个 【解析】由函数()21,22,2x x f x x x +≤⎧=⎨->⎩,得1f=,所以,()))21121ff f ==-=+当2x ≤时,由()2120y f x x =-=+-=,解得1x =; 当2x >时,由()22220y f x x =-=--=,解得2x =±(舍). 所以,()2y f x =-的零点有1个.故答案为:1+1个.20.(2020·安达市第七中学高一月考)已知函数2()(2)f x x x =+,则函数()f x 的零点是_______;不等式()0f x ≤的解集为_______.【答案】2-,0 (]{}--20∞⋃,【解析】解:令2(2)0x x +=,即0x =或20x +=,即0x =或2x =-, 即函数()f x 的零点是-2,0,解不等式()0f x ≤,即2(2)0x x +≤,即0x =或20x +≤,即0x =或2x -≤,即不等式()0f x ≤的解集为(]{}--20∞⋃,, 故答案为(1).2-,0 (2).(]{}--20∞⋃,.21.(2018·浙江省高考真题)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)+∞【解析】 由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)+∞.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 五、解答题22.(2019·陕西省咸阳市实验中学高一月考)已知函数()2()23f x x ax a a R =-+-∈.(1)若1a =时,求()f x 在区间1[,3]2上的最大值和最小值; (2)若()f x 的一个零点小于0,另一个零点大于0,求a 的范围. 【答案】(1) max 5y =;min 1y = ;(2)3a > 【解析】(1)当1a =时,函数的对称轴为11[,3]2x =∈,∴min ()(1)1f x f ==,15(),(3)524f f ==, ∴max ()5f x =。

专题5.4 一次函数与方程、不等式的关系【十大题型】(学生版)

专题5.4 一次函数与方程、不等式的关系【十大题型】(学生版)

专题5.4一次函数与方程、不等式的关系【十大题型】【浙教版】【题型1一次函数与一元一次方程的解】 (1)【题型2两个一次函数与一元一次方程】 (2)【题型3利用一次函数的变换求一元一次方程的解】 (3)【题型4一次函数与二元一次方程(组)的解】 (3)【题型5不解方程组判断方程组解的情况】 (4)【题型6一次函数与一元一次不等式的解集】 (5)【题型7两个一次函数与一元一次不等式】 (6)【题型8绝对值函数与不等式】 (7)【题型9一次函数与一元一次不等式组的解集】 (9)【题型10一次函数与不等式组中的阴影区域问题】 (10)【例1】(2022秋•白塔区校级月考)直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.【变式1-1】(2022春•安阳县期末)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为.【变式1-2】(2022春•雷州市校级期末)一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是()A.x=3B.x=4C.x=0D.x=b【变式1-3】(2022秋•招远市期末)已知关于x的一次函数y=3x+n的图象如图,则关于x的一次方程3x+n=0的解是()A.x=﹣2B.x=﹣3C.D.【题型2两个一次函数与一元一次方程】【例2】(2022秋•双流区期末)已知一次函数y=5x+m的图象与正比例函数y=kx的图象交于点(﹣2,4)(k,m是常数),则关于x的方程5x=kx﹣m的解是.【变式2-1】(2022秋•龙岗区期末)如图,函数y=2x+b与函数y=kx﹣1的图象交于点P,则关于x的方程kx﹣1=2x+b的解是.【变式2-2】(2022秋•苏州期末)已知一次函数y=kx+1与的图象相交于点(2,5),求关于x的方程kx+b=0的解.【变式2-3】(2022秋•包河区期末)已知直线y=x+b和y=ax+2交于点P(3,﹣1),则关于x的方程(a﹣1)x =b﹣2的解为.【题型3利用一次函数的变换求一元一次方程的解】【例3】(2022春•江都区校级月考)若一次函数y=kx+b(k为常数且k≠0)的图象经过点(﹣2,0),则关于x 的方程k(x﹣5)+b=0的解为.【变式3-1】(2022•姜堰区一模)若一次函数y=ax+b(a、b为常数,且a≠0)的图象过点(2,0),则关于x 的方程a(x+1)+b=0的解是.【变式3-2】(2022秋•庐阳区校级期中)若关于x的一次函数y=kx+b的图象经过点A(﹣1,0),则方程k(x+2)+b=0的解为.【变式3-3】(2022秋•庐阳区校级期中)将直线y=kx﹣2向下平移4个单位长度得直线y=kx+m,已知方程kx+m =0的解为x=3,则k=,m=.【题型4一次函数与二元一次方程(组)的解】【例4】(2022春•夏津县期末)如图,根据函数图象回答问题:方程组y=kx+3y=ax+b的解为.【变式4-1】(2022•贵阳)在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y 的方程组y−k1x=b1y−k2x=b2的解是.【变式4-2】(2022秋•西乡县期末)已知二元一次方程组x−y=−5x+2y=−2的解为x=−4y=1,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=−12x﹣1的交点坐标为()A.(4,1)B.(1,﹣4)C.(﹣1,﹣4)D.(﹣4,1)【变式4-3】(2022•德城区二模)若以关于x、y的二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=−12x+b﹣1上,则常数b的值为()A.12B.1C.﹣1D.2【题型5不解方程组判断方程组解的情况】【例5】(2022秋•泰兴市校级期末)已知关于x,y的方程组y=kx+by=(3k−1)x+2(1)当k,b为何值时,方程组有唯一一组解;(2)当k,b为何值时,方程组有无数组解;(3)当k,b为何值时,方程组无解.【变式5-1】(2022秋•苏州期末)若二元一次方程组3x+y=−12x+my=−8有唯一的一组解,那么应满足的条件是()A.m=23B.m≠23C.m=−23D.m≠−23【变式5-2】(2022春•覃塘区期中)如果关于x,y的方程组x+y=1ax+by=c有唯一的一组解,那么a,b,c的值应满足的条件是()A.a≠b B.b≠c C.a≠c D.a≠c且c≠1【变式5-3】(2022春•高明区期末)k为何值时,方程组kx−y=−133y=1−6x有唯一一组解;无解;无穷多解?【题型6一次函数与一元一次不等式的解集】【例6】(2022•海淀区校级自主招生)已知一次函数y=kx+b中x取不同值时,y对应的值列表如下:A.x>1B.x>2C.x<1D.无法确定【变式6-1】(2022春•龙岗区期末)如图,已知一次函数y=kx+b的图象经过点A(﹣3,2),B(1,0),则关于x的不等式kx+b<2解集为.【变式6-2】(2022春•湖南期中)已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)【变式6-3】(2022春•高明区校级期末)如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2B.x≥1C.x≤1D.x≥2【题型7两个一次函数与一元一次不等式】【例7】(2022•钟山县校级模拟)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣1【变式7-1】(2022•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解集为.【变式7-2】(2022春•楚雄州期末)已知关于x的一次函数y=kx+b(k≠0)的图象过点A(2,4)、B(0,3).(1)求一次函数y=kx+b的解析式;(2)若关于x的一次函数y=mx+n(m<0)的图象也经过点A,则关于x的不等式mx+n≥kx+b的解集为.【变式7-3】(2022春•潮安区期末)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.【题型8绝对值函数与不等式】【例8】(2022秋•临海市校级月考)小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c的图象和性质.(1y=|x﹣2|和y=|x﹣2|+1的图象;(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.【变式8-1】(2022秋•玄武区期末)请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点;③连线.(2)观察图象,当x时,y随x的增大而增大;(3)根据图象,不等式|x|<12x+32的解集为.【变式8-2】(2022春•确山县期末)画出函数y=|x|﹣2的图象,利用图象回答下列问题:(1)写出函数图象上最低点的坐标,并求出函数y的最小值;(2)利用图象直接写出不等式|x|﹣2>0的解集;(3)若直线y=kx+b(k,b为常数,且k≠0)与y=|x|﹣2的图象有两个交点A(m,1),B(12,−32),直接写出关于x的方程|x|﹣2=kx+b的解.【变式8-3】(2022春•重庆期末)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|2x+4|+x+m性质及其应用的部分过程,请按要求完成下列各小题.(1)如表是部分x,y的对应值:x…﹣6﹣5﹣4﹣3﹣2﹣1012…y…0n﹣2﹣3﹣4﹣1258…根据表中的数据可以求得m=,n=;(2)请在给出的平面直角坐标系中,描出以如表中各组对应值为坐标的点,再根据描出的点画出该函数的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若一次函数y=kx+b(k≠0)的图象经过点(﹣4,﹣2)和点(1,5),结合你所画的函数图象,直接写出不等式kx+b<|2x+4|+x+m的解集.【题型9一次函数与一元一次不等式组的解集】【例9】(2022秋•青田县月考)如图,可以得出不等式组ax+b<0cx+d>0的解集是()A.x<﹣1B.﹣1<x<0C.﹣1<x<4D.x>4【变式9-1】(2022春•南康区期末)如图,直线y=﹣x+m与直线y=12x+3交点的横坐标为﹣2.则关于x的不x+m>12x+3+3>0的解集为.【变式9-2】(2022•富阳区二模)如图,直线y=kx+b经过点A(﹣1,3),B(−52,0)两点,则不等式组0<kx+b<﹣3x的解集为.【变式9-3】(2022•青羊区校级自主招生)如图,直线y1=ax+2与y2=bx+4交于点N(1,a+2),将直线y1=ax+2向下平移后得到y3=ax﹣5,则能使得y3<y2<y1的x的所有整数值分别为()A.1,2,3B.2,3C.2,3,4D.3,4,5【题型10一次函数与不等式组中的阴影区域问题】【例10】(2022•黄冈中学自主招生)如图,表示阴影区域的不等式组为()A.2x+y≥53x+4y≥9B.2x+y≤53x+4y≤9C.2x+y≥53x+4y≥93x+4y≥9D.2x+y≤5【变式10-1】(2022秋•包河区期中)图中所示的阴影部分为哪一个不等式的解集()A.x﹣y≤﹣5B.x+y≥﹣5C.x+y≤5D.x﹣y≤5【变式10-2】(2012春•南岸区期末)如图,用不等式表示阴影区域为()A.x+y≤0,且x﹣y≥0B.x+y≥0,且x﹣y≥0C.x+y≥0,且x﹣y≤0D.x+y≤0,且x﹣y≤0【变式10-3】(2022春•广水市期末)阅读材料:在平面直角坐标系中,二元一次方程x ﹣y =0的一个解x =1y =1可以用一个点(1,1)表示,二元一次方程有无数个解,以方程x ﹣y =0的解为坐标的点的全体叫作方程x ﹣y =0的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程x ﹣y =0的图象称为直线x ﹣y =0.直线x ﹣y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x ﹣y ≤0,那么点M (x 0,y 0)就在直线x ﹣y =0的上方区域内.特别地,x =k (k 常数)表示横坐标为k 的点的全体组成的一条直线,y =m (m 为常数)表示纵坐标为m 的点的全体组成的一条直线.请根据以上材料,探索完成以下问题:(1)已知点A (2,1)、B (83,32)、C (136,54)、D (4,92),其中在直线3x ﹣2y =4上的点有(只填字母);请再写出直线3x ﹣2y =4上一个点的坐标;(2)已知点P (x ,y )的坐标满足不等式组0≤x ≤40≤y ≤3则所有的点P 组成的图形的面积是;(3)已知点P (x ,y )的坐标满足不等式组0≤x ≤10≤y ≤2x −y ≥0,请在平面直角坐标系中画出所有的点P 组成的图形(涂上阴影),并求出上述图形的面积.。

专题:一次函数与方程、不等式【精品】

专题:一次函数与方程、不等式【精品】
是( B )
A
B
C
D
12.若以二元一次方程x+2y-b=0的解为坐标的点(x,y)都在直线y=-0.5x+b-1
上,则常数b等于( B )
A.0.5
B.2
C.-1
D.1
知识点4 一次函数与二元一次方程组
13.如图,直线y=ax-b与直线y=mx+1交于点A(2,3),则方程组maxxyyb1
的解为( A )
解:(1)x=-0.5.
(2)x=1.
(3)x<-0.5.
(4)0<x<2.
知识点3 一次函数与二元一次方程
10.直线l是以二元一次方程8x-4y=5的解为坐标所构成的直线,则该直线不经过的
象限是( B )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x-y=2的解的
2.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( C )
A
B
C
D
3.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+ n与x轴的交点坐标是 (-3,0) . 4.如图所示,已知直线y=ax-b,则关于x的方程 ax-b=1的解是 x=4 .
5.如图所示是一次函数y=kx+b在平面直角坐标系
14.若关于x,y的二元一次方程组
y=kx+b y=mx+n
的解为
x=1 y=2
则一次函数y=kx+b与y=mx+n的图象的交点坐标为( A )
A.(1,2) B.(2,1) C.(2,3) D.(1,3)
15.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A.x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A.x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A.x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A.x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A.x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项. 【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0, 又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0, 故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确. 令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()()24g t t t t =-=--,1x >时, 函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得(())02bf f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解. 【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02bf >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <, 则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以(())02b f f >,所以必要性成立; 反之,设()02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<, 此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件. 故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________. 【答案】1<a ≤2. 【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果. 【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21aa >⎧⎨⎩,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞- 【解析】∵不等式220ax x a ++<对任意x ∈R 恒成立, ∴函数22y ax x a =++的图象始终在x 轴下方,∴2440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+ 【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可. 【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞ 【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果. 【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数, 若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞, 故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________. 【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值. 【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++ 当232x =时,12max134x x -=. 故答案为:134. 10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围. 【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞ 【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围. 【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A .3,3⎡--+⎣B .1,3⎡--+⎣C .[]3,1- D .3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--. 综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程练提升()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =--,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解, 取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=, 其他m 的取值,方程均无解,则m 的取值范围是{}4. 故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________. 【答案】2a <或3a >. 【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a < 【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点, 因为函数()g x 的对称轴为122a x =<, 所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <. 故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________. 【答案】12- 【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解. 【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈, 当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为() 1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-; 当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤, 所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=, 因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1- 【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值. 【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-, 当sin a x <时,211()(sin )4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+; 由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-; 当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+; 由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-; 当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭, ∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增; 11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1. 故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2)2. 【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值. 【详解】 解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()min M h x h x -2(),2xh x x R x =∈+ 当0()0x h x ==当10()2x h x x x≠=+, 令2()g x x x=+,当0,()22x g x>,当x =当0,()x g x <≤-x =()(,)g x ∴∈-∞-⋃+∞(),00,(0)44h x x ⎡⎫⎛∈-⋃≠⎪ ⎢⎪⎣⎭⎝⎦综上,()44h x ⎡∈-⎢⎣⎦2442M⎛∴--= ⎝⎭min 2M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈. (1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围; (2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值. 【答案】(1)[)1,+∞;(2)45. 【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+-- ⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求. 【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =. ①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+; ②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增, ()0f b =,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞; (2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b+=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭, 设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭, 由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =. 所以,当115x =,21x =时,2244a b b +-取最小值45. 9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出, (Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2. 当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9; 当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1; 故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54. 令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩, 解得m ≤﹣52或m ≥52. 10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=. (1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞. 【解析】(1)由二次函数的性质知()f x 在0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式; (2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可. 【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==, ∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠; (2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈, ∴222221814()44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦, ∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关练真题【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得{x ≥2x −4<0 或{x <2x 2−4x +3<0 ,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f(x)=x −4>0,此时f(x)=x 2−4x +3=0,x =1,3,即在(−∞,λ)上有两个零点;当λ≤4时,f(x)=x −4=0,x =4,由f(x)=x 2−4x +3在(−∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=, 整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=, 整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩, 其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++-- 原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围. 结合对勾函数和函数图象平移的规律绘制函数()g x 的图象, 同时绘制函数y a =的图象如图所示,考查临界条件, 结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; 【答案】(1)()2h x x =; 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.。

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

函数方程不等式专题

函数方程不等式专题

函数方程不等式专题(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数、方程、不等式综合应用专题一、专题介绍函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。

函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。

函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。

而新课程标准中把这个联系提到了十分明朗、鲜明的程度。

因此,第二轮中考复习,对这部分内容应予以重视。

这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

三、考点精讲考点一:一次函数,反比例函数,二次函数综合1.已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】 A .B .C . D解析:∵二次函数图象开口向下,∴a <0,∵对称轴x=- b/2a <0,∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数y= ax 位于第二四象限,纵观各选项,只有C选项符合.故选C.课堂练习:1已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为 B.有最大值,最大值为C.有最小值,最小值为 D.有最小值,最小值为2.某公司销售一产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的关系,每年销售该产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+.(1)求y关于x的函数关系式;(2)写出该公司销售该产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少(3)若公司希望该产品一年的销售获利不低于万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元考点二:函数与方程(组)综合应用例2.某乡镇决定对小学和初中学生用餐每生每天3元的标准进行营养补助,其中家庭困难的学生的补助标准为:小学生每生每天4元,初中生每生每天5元,已知该乡镇现有小学生和初中学生共1000人,且小学、初中均有2%的学生为家庭困难寄宿生.设该乡镇现有小学生x人.(1)用含x的代数式表示:该乡镇小学生每天共需营养补助费是____元.该乡镇初中生每天共需营养补助费是_____元.(2)设该乡镇小学和初中生每天共需营养补助费为y元,求y与x之间的函数关系式;(3)若该乡镇小学和初中学生每天共需营养补助费为3029元,问小学生、初中生分别有多少人解答:解:(1)小学生每天所需营养费=4×2%x+3(1﹣2%)x=;中学生所需营养费=5×2%(1000﹣x)+3×(1﹣2%)(1000﹣x)=3040﹣;(2)根据题意得y=+3040﹣=3040﹣;(3)令y=3029,故3040﹣=3029解得:x=550,故中学生为1000﹣550=450人.答:小学生有550人,中学生有450人.课堂练习3.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多4.体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.考点三:函数与不等式(组)综合应用例3.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价y 1(万元)之间满足关系式y 1=170-2x ,月产量x (套)与生产总成本y 2(万元)存在如图所示的函数关系.(1)直接写出....y 2与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大最大利润是多少解:(1)y 2=500+30x. (2)依题意得:⎩⎨⎧≥-≤+.902170,5030500x x x 解得:25≤x ≤40(3)∵W =xy 1-y 2=x (170-2x )-(500+30x )=-2x 2+140x -500,∴W =-2(x -35)2+1950.而25<35<40, ∴当x =35时,1950=最大W .即月产量为35件时,利润最大,最大利润是1950万元.课堂练习:5.某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x (个),购买两种球的总费用为y (元),请你写出y 与x 的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案(3)从节约开支的角度来看,你认为采用哪种方案更合算6.为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A 、B 两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择(3)选择哪种购进收割机的方案,农机公司获利最大最大利润是多少此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元7.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某,乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部..运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少最少运费是多少元8.某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完戚.并要求每人只加工一种配件.根据下表提供的信息。

专题05 二次函数与一元二次方程、不等式的关系(知识串讲+7大考点)(解析版)

专题05 二次函数与一元二次方程、不等式的关系(知识串讲+7大考点)(解析版)

专题05 二次函数与一元二次方程、不等式的关系考点类型知识串讲(一)二次函数与一元二次方程的关系a>0(示意图)a<0(示意图)一元二次方程根的情况有两个不相等的实数根b2-4ac>0b2-4ac=0有两个相等的实数根无实数根b2-4ac<0(二)利用函数图像解不等式考点训练考点1:求抛物线与x轴的交点典例1:(2022秋·九年级单元测试)已知函数y=x2―6x+5的部分图象(如图),满足y<0的x的取值范围是____.【答案】1<x<5【分析】首先由图象可求得该抛物线与x轴的另一个交点的横坐标,再根据图象即可求解.【详解】解:由y=x2―6x+5,当x=0时,x2―6x+5=0解得:x1=1,x2=5∴该抛物线与x轴的交点的横坐标1,5,∵该抛物线的开口向上,∴当y<0时,x的取值范围是1<x<5,故答案为:1<x<5.【点睛】本题考查了二次函数的图象和性质,从图象中获取相关信息是解决本题的关键.【变式1】(2023春·安徽蚌埠·九年级校考阶段练习)如图,在平面直角坐标系中,二次函数y=x2―2x―3的图象与x轴交于点A,B,与y轴交于点C,P是二次函数图象上位于x轴上方的一点,且S△APC=S△APB.(1)点C的坐标为__________.(2)点P的坐标为__________.【答案】(0,―3)(4,5)【分析】(1)因为与y轴交于点C,所以横坐标为0,代入后即可得到纵坐标;(2)先让纵坐标为0,求出点A,B的横坐标,进而求出直线BC的表达式,再依据S△APC=S△APB,求出直线AP的表达式,再联立方程组,得到点P的坐标,注意两个答案排除一个.【详解】(1)∵y=x2―2x―3与y轴交于点C∴当x=0时,y=―3∴C(0,―3)故填:(0,―3).(2)∵因为y=x2―2x―3与x轴交于点A,B∴当y=0时,x2―2x―3=0∴x1=3,x2=―1∴A(―1,0),B(3,0)∵C(0,―3),B(3,0),设直线BC为y=kx+b∴b=―3 3k+b=0∴b=―3 k=1∴直线BC为y=x―3∵S△APC=S△APB∴AP∥BC∴设直线AP为y=x+m ∵A(―1,0)∴直线AP为y=x+1∵解方程组y=x2―2x―3y=x+1得,x=―1y=0或x=4y=5∴P(―1,0)(舍去),P(4,5)故填:(4,5).【点睛】本题考查了二次函数与两坐标轴交点坐标的求法,待定系数法,利用坐标求三角形面积等,解题时要应用数形结合思想.【变式2】(2022秋·九年级单元测试)抛物线y=(x―3)(x+2)与x轴的交点坐标是____.【答案】(3,0),(―2,0)【分析】令y=0,解关于x的一元二次方程,即可得到答案;【详解】解:令y=0,则:(x―3)(x+2)=0解得:x1=3,x2=―2∴抛物线y=(x―3)(x+2)与x轴的交点坐标是(3,0),(―2,0);故答案为:(3,0),(―2,0).【点睛】本题主要考查了二次函数图像与x轴的交点问题,解题的关键在于能够熟知二次函数y=ax2+bx +c(a≠0)与x轴交点的横坐标是令y=0时,一元二次方程ax2+bx+c=0的解.【变式3】(2023春·陕西西安·九年级校考阶段练习)将抛物线y=x2―1向下平移8个单位长度后与x轴的两个交点之间的距离为_____.【答案】6【分析】根据平移规律得出平移后的二次函数的解析式为y=x2―9,令x2―9=0,求其解即可得抛物线与x轴的交点坐标,进而可得答案.【详解】解:将抛物线y=x2―1向下平移8个单位长度后其解析式为y=x2―9,当x2―9=0时,解得:x1=―3,x2=3,∴抛物线y=x2―9与x轴的交点为―3,0,3,0,∴抛物线y=x2―1向下平移8个单位长度后与x轴的两个交点之间的距离为6,故答案为:6.【点睛】本题考查了抛物线与x轴的交点、二次函数图象与几何变换,解题的关键是掌握二次函数图象的平移规律:左加右减,上加下减.考点2:求抛物线与y轴的交点典例2:(2023·上海·一模)抛物线y=―x2―3x+3与y轴交点的坐标为____.【答案】(0,3)【分析】把x=0代入抛物线y=―x2―3x+3,即得抛物线y=―x2―3x+3与y轴的交点.【详解】解:∵当x=0时,抛物线y=―x2―3x+3与y轴相交,∴把x=0代入y=―x2―3x+3,求得y=3,∴抛物线y=―x2+3x―3与y轴的交点坐标为(0,3).故答案为:(0,3).【点睛】本题考查了二次函数图象上点的坐标特征,比较简单,掌握y轴上点的横坐标为0是解题的关键.【变式1】(2023·上海·一模)抛物线y=(x+1)2―2与y轴的交点坐标是_________.【答案】(0,―1)【分析】求出x=0时y的值即可得到抛物线与y轴的交点坐标.【详解】解:当x=0时,y=(x+1)2―2=1―2=―1,所以抛物线与y轴的交点坐标是(0,―1),故答案为:(0,―1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.【变式2】(2022秋·浙江温州·九年级校考期中)如图,是一个半圆和抛物线的一部分围成的“芒果”.已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=x2+b,若AB长为4,则图中CD的长为______.故答案为:(0,3);(2,―1)【点睛】本题考查了抛物线与y轴的交点坐标,二次函数的图像与性质,明确抛物线与y轴的交点的横坐标为0与将抛物线的一般式化为顶点式是解题的关键.考点3:由函数值求自变量x的值【答案】―2+22或5【答案】4【分析】先求得点C的坐标,然后由标代入函数解析式求得m【详解】解:当x=0时,【答案】2【分析】根据题意,将y=4分别代入进而即可求得BC的长.【详解】解:∵x≥0,则y y【答案】x1=―3,x2=1【分析】利用图象法即可解决问题,方程的解就是两个函数图象的交点的横坐标.【详解】解:由图象可知,关于x的方程ax2―bx―c=0的解,就是抛物线y=ax2(a≠0)与直线y=bx+ c(b≠0)的两个交点坐标分别为A(﹣3,6),B(1,3)的横坐标,即x1=―3,x2=1.故答案为:x1=―3,x2=1.【点睛】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题.【变式2】(2022秋·陕西西安·九年级校考阶段练习)设一元二次方程(x+1)(x―3)=m(m>0)的两实数根分别为α、β且α<β,则α、β满足_____.【答案】α<―1且β>3【分析】方程的两实数根α、β可看作抛物线y=(x+1)(x―3)与直线y=m的两交点的横坐标,然后画出导致图象可确定正确选项.【详解】方程(x+1)(x―3)=m(m>0)的两实数根α、β可看作抛物线y=(x+1)(x―3)与直线y=m的两交点的横坐标,而抛物线y=(x+1)(x―3)与x轴的交点坐标为―1,0和3,0,如图,典例5:(2022春·全国·九年级专题练习)如图,抛物线y=ax2+bx与直线y=mx+n相交于点A (―3,―6),B(1,―2),则关于x的不等式ax2+bx>mx+n的解集为__________.【答案】―3<x<1【答案】―1<x<4/4>x>―【分析】观察图象,当抛物线位于直线的下方时,即可求得【详解】解:由图象知,当―1故答案为:―1<x<4.【点睛】本题考查了二次函数与一次函数的图象,数形结合是关键.(1)二次函数y=ax2+bx+(2)不等式ax2+bx+c≥0的解集是)【答案】(―1,―43【分析】(1)根据抛物线的对称轴和抛物线过点范围即可.【详解】解:∵抛物线y=ax2+bx+c的对称轴为直线x=―1,与x轴的一个交点坐标为(3,0),∴与x轴的另一个交点坐标为(―5,0),∴y>0时,x的取值范围为:―5<x<3,故答案为:―5<x<3.【点睛】本题考查了抛物线与x轴的交点及二次函数的性质,解题的关键是根据对称轴求得另一个交点坐标,难度不大.考点6:利用不等式求自变量、函数值的范围【分析】先求出二次函数的对称轴和顶点坐标,再利用二次函数的增减性即可得出结论.【详解】解:∵y=x2+2x―3=(x+1)2―4,∴该抛物线的对称轴为直线x=―1,当x=―3时,y=9―6―3=0,当x=―1时,最小值为y=―4,当y=1时,y=1+2―3=0,∴―4≤y<0,故答案为:―4≤y<0.【点睛】本题主要考查二次函数的增减性和最值,关键是要牢记抛物线的对称轴的公式,理解抛物线的增减性.考点7:抛物线与x轴的交点问题【答案】49【分析】过点C作CD⊥x轴于点=4,设点A的坐标为(m,0),则式和顶点式,即可求解.【详解】解:过点C作CD⊥x轴于点∵二次函数y=ax2+bx+c的图象与AB=3,∴AD=BD=12∵AC=5,∴CD=AC2―AD2=4,设点A的坐标为(m,0),则B(m同步过关一、单选题1.(2023·安徽·九年级专题练习)已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是( )A.k≥3B.k<3C.k≤3且k≠2D.k<2【答案】C【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴k―2≠0△=22―4(k―2)=12―4k⩾0,解得:k≤3且k≠2.故选C.【点睛】考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.2.(2022·浙江·九年级专题练习)二次函数y=x2-x-12与y轴的交点坐标为()A.-3,0B.6,0C.0,-12D.2,16【答案】C【分析】图象与y轴相交则x=0,代入得到y的值,即可解答.【详解】解:由图象与y轴相交则x=0,代入得:y=-12,∴与y轴交点坐标是0,-12;故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式.3.(2022秋·山东枣庄·九年级统考期末)抛物线y=x2+x―2与y轴的交点坐标是()A.(0,2)B.(0,-2)C.(-2,0)D.(-2,0)、(1,0)【答案】B【分析】令x=0,求出y的值即可.【详解】解:令x=0,则y=−2,∴抛物线y=x2+x−2与y轴的交点坐标是(0,−2).故选:B.【点睛】本题考查的是二次函数图象上点的坐标特点,熟知y轴上点的坐标特点是解答此题的关键.4.(2022秋·广东珠海·九年级珠海市第九中学校考阶段练习)已知抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣2,0),(5,0),则一元二次方程ax2+bx+c=0的两个解是( )A.x1=﹣2,x2=5B.x1=2,x2=﹣5C.x1=﹣2,x2=﹣5D.x1=2,x2=5∵抛物线与y轴的交点为(∴当y=3时x的值为0∴当函数值y<3时,0<故选:A.【点睛】本题考查了二次函数的性质,解题的关键是根据对称轴和与【详解】当x=0时,y=2×(0―1)×(0―m―3)=2m+6,∵函数图像与y轴的交点坐标是(0,2m+6).∵该函数图象与y轴交点在x轴上方,∴2m+6>0,∴m>―3.故选B.【点睛】本题考查了二次函数的图像与性质,二次函数与坐标轴的交点问题,熟练掌握二次函数的图像与与坐标轴的交点是解答本题的关键.13.(2023秋·安徽淮北·九年级阶段练习)已知函数与x轴交点是(m,0),(n,0),则的值是()A.2013B.2014C.2015D.2023【答案】B【详解】试题分析:∵抛物线与x轴的交点为(m,0),(n,0),∴,且m,n是一元二次方程的两个根∴.故选B考点:抛物线与x轴的交点点评:本题考查了抛物线与x轴的交点,揭示了二次函数与一元二次方程间的联系,应用了方程的根的定义14.(2023·山东临沂·统考模拟预测)关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是( )A.对任意实数k,函数图象与x轴都没有交点B.对任意实数k,函数图象没有唯一的定点C.对任意实数k,函数图象的顶点在抛物线y=﹣x2﹣x﹣1上运动D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大二、填空题16.(2023·全国·九年级专题练习)如图,已知抛物线y=ax2+bx+c与直线y=kx+m交于A(―4,―1)、B(0,2)两点,则关于x的不等式ax2+bx+c>kx+m的解集是______.【答案】―4<x<0【分析】根据图象,写出抛物线在直线上方部分的x的取值范围即可.【详解】由图象可知,当―4<x<0时,抛物线在直线的上方,∴关于x的不等式ax2+b+c>kx+m的解集是―4<x<0,故答案为:―4<x<0.【点睛】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x的取值范围.17.(2023秋·北京海淀·九年级期末)如果二次函数y=mx2―2mx―3m的图象与y轴的交点为(0,3),那么m=______________.【答案】-1【分析】把(0,3)代入函数解析式即可求出m的值.【详解】解:把(0,3)代入y=mx2―2mx―3m得,3=―3m,解得m=―1,故答案为:-1.【点睛】本题考查了二次函数的性质,解题关键是把点的坐标代入求未知系数的值.18.(2022秋·江苏南通·九年级校考阶段练习)若抛物线y=x2﹣6x+m与x轴有两个公共点,则m的取值范围是________.【答案】m<9【分析】根据抛物线y=x2﹣6x+m与x轴有两个公共点,可知b2﹣4ac>0,从而可以求得m的取值范围.【详解】解:∵抛物线y=x2﹣6x+m与x轴有两个公共点,∴Δ=b2―4ac=(﹣6)2﹣4m>0,解得:m<9,故答案为:m<9.【点睛】此题考查了二次函数与x轴的交点问题,解题的关键是明确题意,熟练掌握二次函数与x轴的交点个数和判别式的关系.抛物线与x轴交点个数由Δ决定:当Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;当Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.19.(2022秋·九年级单元测试)如果抛物线y=(x―2)2+k不经过第三象限,那么k的值可以是______.(只需写一个)【答案】k=2(答案不唯一)【分析】抛物线y=(x―2)2+k不经过第三象限,可得抛物线与y轴的交点在y轴的正半轴或原点,可得4+k≥0,从而可得答案.【详解】解:∵抛物线y=(x―2)2+k的开口向上,又不经过第三象限,∴抛物线与y轴的交点在y轴的正半轴或原点,而当x=0时,y=4+k,∴4+k≥0,解得:k≥―4,所以当k=2时,符合题意,故答案为:k=2(答案不唯一)【点睛】本题考查的是抛物线的性质,掌握“抛物线与y轴的交点的位置与图象的关系”是解本题的关键. 20.(2023秋·九年级单元测试)二次函数y=x2+x―2与x轴交于点________,与y轴交于点________.(填点的坐标)【答案】(―2, 0)(1, 0),(0, ―2)【分析】根据抛物线与x轴的交点问题,通过解方程x2+x−2=0可得到二次函数图象与x轴的交点坐标,然后计算自变量为0时的函数值可确定二次函数图象与y轴的交点坐标.【详解】当y=0时,x2+x−2=0,解得x1=−2,x2=1,则二次函数图象与x轴的交点坐标为(−2,0),(1,0);当x=0时,y=x2+x−2=−2,则二次函数图象与y轴的交点坐标为(0,−2).故答案为(−2,0),(1,0);(0,−2).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题是解决本题的关键.21.(2022秋·北京顺义·九年级统考期末)若抛物线y=x2―2x+k―1与x轴有交点,则k的取值范围是令y=0,则x2+4x―12=0,解得,x1=―6,x2=2,∵图象与x轴的一个交点坐标是(2,0),∴它与x轴的另一个交点坐标是(―6,0),故答案为:(―6,0).【点睛】本题考查了求解二次函数交点坐标,正确理解交点坐标的特征是解题关键,另外,此题还可以运用韦达定理求解.三、解答题26.(2022春·九年级课时练习)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题:(1)写出方程ax2+bx+c=0的根;(2)写出不等式ax2+bx+c<0的解集;(3)若方程ax2+bx+c=k无实数根,写出k的取值范围.【答案】(1)x1=0,x2=2;(2)x<0或x>2;(3)k>2【分析】(1)找到抛物线与x轴的交点,即可得出方程ax2+bx+c=0的两个根;(2)找出抛物线在x轴下方时,x的取值范围即可;(3)根据图象可以看出k取值范围.【详解】解:(1)观察图象可知,方程ax2+bx+c=0的根,即为抛物线与x轴交点的横坐标,∴x1=0,x2=2.(2)观察图象可知:不等式ax2+bx+c<0的解集为x<0或x>2.(3)由图象可知,k>2时,方程ax2+bx+c=k无实数根.【点睛】本题考查了二次函数的图象与方程和不等式的关系,求方程ax2+bx+c=0的两个根,即为抛物线与x轴的交点的横坐标;判断y>0,y=0,y<0时,x的取值范围,要结合开口方向,图象与x轴的交点而定;方程ax2+bx+c=k有无实数根,看顶点坐标的纵坐标即可.(1)求a的值和该抛物线顶点(2)请你设计一种平移的方法,使平移后抛物线经过原点,并写出平移后抛物线的解析式.【答案】(1)a=1,P【分析】(1)把C(5,4(2)根据原点坐标(0,【详解】(1)把C(5,42-5x+4=(x―29.(2022秋·河南新乡·九年级校考阶段练习)如图,已知抛物线y=x2与直线y=―x+2交于A、B两点.(1)求交点A、B的坐标;(2)直接写出不等式x2≤―x+2的解集.【答案】(1)A―2,4,B1,1(2)―2≤x≤1【分析】(1)将抛物线y=x2与直线y=―x+2联立解方程组y=x2y=―x+2即可得到A、B的坐标;(2)直接观察图象,抛物线在直线下方的符合题意,即可得到答案.【详解】(1)解:解方程组y=x2y=―x+2得:x1=―2y1=4,x2=1y2=1,∴A―2,4,B1,1;(2)解:由图象观察可得:不等式x2≤―x+2的解集为:―2≤x≤1.【点睛】本题考查了二次函数与一元二次方程,函数图象的性质,解题的关键是列出方程组y=x2y=―x+2,解方程组得到点A、B的坐标.30.(2022秋·广东广州·九年级广州市第三中学校考期中)如图,在平面直角坐标系中,抛物线y1=ax2+x +m(a≠0)的图象与x轴交于A、C两点,与直线y2=―x―4交于点A、B,其中点B坐标为(0,―4),点C坐标为2,0(1)求此抛物线的函数解析式.(3)由图象可得,当―1【点睛】本题主要考查了二次函数的顶点式、二次函数的图象、二次函数的性质等知识点,准确画出二次函数的图象成为解答本题的关键.32.(2022秋·北京朝阳·九年级北京市陈经纶中学校考期中)在初中阶段的函数学习中我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程分过程,请按要求完成下列各小题(1)自变量x的取值范围是全体实数,与(3)根据函数图象,下列关于该函数性质的说法正确的有①该函数图象是轴对称图形,它的对称轴为②该函数在自变量的取值范围内,没有最大值,但有最小值③当x=―2时,函数取得最小值0④当x<―2或x>0时,y随x的增大而减小;当(4)在同一坐标系中作出函数y=x解__________________.(保留1位小数,误差不超过【答案】(1)1.5,(2)画图见解析;(2)描点:(―1,0.5),(0,0),(1,1.5),(2,4),再用平滑的曲线连接各点补全图像如下:(3)由函数的图像可得:该函数图象是轴对称图形,它的对称轴为直线x=―1,故①错误;该函数在自变量的取值范围内,没有最大值,但有最小值,说法正确,故②正确;当x=―2或x=0时,函数取得最小值0,故③正确;当x<―2或―1<x<0,y随x的增大而减小,当-2<x<―1或x>0时,y随x的增大而增大,故④错误;综上:正确的有:②③.故答案为:②③.(4)∵函数y=x+1,令y=0,则x=―1,令x=0,则y=1,∴函数y=x+1过(―1,0),(0,1),画出函数图像如图示:x2+x|=x+1时,由图像可得:当|12x≈―0.3或x≈1.4.故答案为:x≈―0.3或x≈1.4.【点睛】本题考查的是探究绝对值函数的图像与性质,二次函数的图像与性质,同时考查描点法画函数图像,利用函数图像求解方程的近似解,掌握以上知识是解题的关键.33.(2022秋·吉林长春·九年级校考期中)如图,在平面直角坐标系中,抛物线点A和点B(点A在点B的左侧),第一象限内的点。

中考数学专题复习课件 --- 第十五讲函数与方程(组)、不等式

中考数学专题复习课件 --- 第十五讲函数与方程(组)、不等式

的取值范围.
【思路点拨】把(-1,0),(0,3)分别代入y=-x2+bx+c,得关
于b、c的二元一次方程组,解方程组得b、c的值,从而得到函 数值y为正数时,自变量x的取值范围.
【自主解答】(1)把(-1,0),(0,3)分别代入y=-x2+bx+c, 得 1 b c 0 ,解得
所以直线AB与直线CD的交点坐标为(-2,2).
1.(2010· 孝感中考)若直线x+2y=2m与直线2x+y=2m+3(m为常 数)的交点在第四象限,则整数m的值为( (A)-3,-2,-1,0 )
(B)-2,-1,0,1
(C)-1,0,1,2
(D) 0,1,2,3
【解析】选B.解方程组 x 2y 2m
x 2 2 x 2 8. (2010·黄冈中考)若函数 y , 则当函数值 2x x 2
y=8时,自变量x的值是( (A) 6 (C) 6 或4
)
(B)4 (D)4或 6
【解析】选D.本题函数有两种情况(1)y=x2+2,当 y=8时 ,有
3 y x,整理得 3.5 2
4.(2011·连云港中考)因长期 干旱,甲水库蓄水量降到了正 常水位的最低值.为灌溉需要, 由乙水库向甲水库匀速供水, 20 h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20 h,甲水库打开另一个排灌闸同时灌溉,再经过40 h,乙水库 停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表
【例3】(2010 ·株洲中考)二次函数 y=x2-mx+3的图象与x轴的交点如图所 示,根据图中信息可得到m的值是_____. 【思路点拨】由图象可以看出抛物线与 x轴的一个交点的坐标,把这个交点坐标 代入二次函数y=x2-mx+3,解方程得m的值.

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。

专题05 二次函数与一元二次方程、不等式(原卷版)

专题05 二次函数与一元二次方程、不等式(原卷版)

专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x2+5x-2≥0;(3)x2-4x+5>0.变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围.变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集.考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2}D .{x |2<x <3}2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .105.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2}D .{m |-2<m <2}6.不等式x 2-4x +4≤0的解集是________. 7.不等式x 2+3x -4<0的解集为________.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集.10.若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R?11.下列四个不等式:①-x2+x+1≥0;②x2-25x+5>0;③x2+6x+10>0;④2x2-3x+4<1.其中解集为R的是()A.①B.②C.③D.④12.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为()A.{x|0<x<2} B.{x|-2<x<1}C.{x|x<-2或x>1} D.{x|-1<x<2}13.若关于x的方程(a-2)x2-2(a-2)x+1=0无实数解,则a的取值范围是________.14.已知不等式x2-2x+5≥a2-3a对∀x∈R恒成立,则a的取值范围为________.考点2:等式性质与不等式性质知识点用一元二次不等式解决实际问题的步骤1.理解题意,搞清量与量之间的关系;2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题.3.解决这个一元二次不等式,得到实际问题的解.题型1:分式不等式的解法例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1.变式 解下列不等式: (1)2x -13x +1≥0;(2)2-x x +3>1.题型2:一元二次不等式的实际应用例2 某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点. (1)写出降税后税收y (万元)与x 的关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.变式 北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x5万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?考点2:练习题1.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2或x ≤34 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥34 2.与不等式x -32-x ≥0同解的不等式是( )A .(x -3)(2-x )≥0B .0<x -2≤1 C.2-x x -3≥0 D .(x -3)(2-x )>03.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +bx -2>0的解集为( )A .{x |x >1或x <-2}B .{x |1<x <2}C .{x |x >2或x <-1}D .{x |-1<x <2}4.已知不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( ) A .{a |-1≤a ≤4} B .{a |-1<a <4} C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}5.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是( ) A .{x |10≤x <16} B .{x |12≤x <18} C .{x |15<x <20}D .{x |10≤x <20}6.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},则不等式2a +bx +c >bx 的解集为________.7.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.8.某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速不低于________ km/h. 9.解关于x 的不等式a -xx +1>0(a ∈R ).10.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?11.不等式x 2-x -2x -2>0的解集为( )A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2}12.若a >0,b >0,则不等式-b <1x<a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <1b C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1b D.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a 13.不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC.∅D.{x|x<-2或x>2}14.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m.又知甲、乙两种车型的刹车距离s m与车速x km/h之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.这次事故的主要责任方为________.。

专题08一次函数与方程不等式的三种考法(原卷版)

专题08一次函数与方程不等式的三种考法(原卷版)

专题08 一次函数与方程、不等式的三种考法类型一、利用图像解一元一次方程例1.如图,在平面直角坐标系中,直线2y x =-和 1.2y ax =+相交于点(,1)A m ,则方程2 1.2x ax -=+的解为( )A .12x =-B .1x =C .=1x -D .12x =例2.如图,一次函数y ax b =+的图象经过点()2,4,()4,1,则方程4ax b +=的解是_______.【变式训练1】一次函数y kx b =+(k b 、是常数,且0k ≠)的图像如图所示,则方程0kx b +=的解为_______.【变式训练2】如图,直线AB 是一次函数1y kx k =+-的图象,若关于x 的方程10kx k +-=的解是23x =-,则直线AB 的函数关系式为_________.【变式训练3】如图,已知直线y ax b =+,则方程1ax b +=的解为__________.【变式训练4】如图,已知直线y =ax +b ,则方程ax =1﹣b 的解为x =_____.类型二、利用图像解一元一次方程组例1.如图,在同一平面直角坐标系中,直线y 14=x 12+与直线y =kx +b 相交于点A (m ,2),则关于x 的方程kx +b 14=x 12+的解是( )A .x =1B .x =2C .x =4D .x =6例2.在平面直角坐标系内,一次函数11y k x b =+与22y k x b =+的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .42x y =-⎧⎨=-⎩C .(24x y =-⎧⎨=-⎩D .03x y =⎧⎨=-⎩【变式训练1】如图,已知y =ax +b 和y =kx 的图象交于点P ,根据图象可得关于x 、y 的二元一次方程组00ax y b kx y -+=⎧⎨-=⎩的解是_____.【变式训练2】两直线11y mx =+和23y nx =+的图象如图所示,则关于x 的一元一次方程()2m n x -=的解是_________.【变式训练3】如图,一次函数1y x b =+与一次函数24y kx =+的图像交于点P (1,3),则关于x 的方程=4x b kx ++的解是_____.类型三、利用直线方程解不等式例1.如图,在平面直角坐标系中,一次函数y ax b =+经过A ,B 两点,若点B 的坐标为(30),,则不等式0ax b +>的解是( )A .0x >B .3x >C .0x <D .3x <例2.如图,函数2y x =和4y ax =+的图象相交于点332A ⎛⎫ ⎪⎝⎭,,则不等式24x ax <+的解集为( )A .32x <B .3x <C .32x >D .x >3【变式训练1】如图,函数12y x =与()240y ax a =+≠的图象相交于点(),3A m ,则关于x 的不等式24x ax <+的解集是( )A .32x >B .3<2xC .3x >D .3x <【变式训练2】如图,直线y kx b =+与直线y x =-相交于点A ,则关于x 的不等式kx b x +<-的解集为______.【变式训练3】如图在同一平面直角坐标系中,函数111y k x b =+与222y k x b =+的图像相交于点()1,2P -,则关于x 的不等式()()112211k x b k x b -+>-+的解集为______.【变式训练4】如图,平面直角坐标系中,经过点()4,0B -的直线y kx b =+与直线2y mx =+相交于点()2,1A --,则不等式20mx kx b +<+≤的解集为______.。

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知a,b 为正实数且a +b =2,则ba +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可.解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D2、已知正数x ,y 满足2x+3y+13x+y=1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解. 令x +3y =m ,3x +y =n ,则2m +1n =1, 即m +n =(x +3y )+(3x +y )=4(x +y ), ∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34, 当且仅当m4n =2n4m ,即m =2+√2,n =√2+1时,等号成立, 故选:A.3、已知关于x 的不等式(2a +3m )x 2−(b −3m )x −1>0(a >0,b >0)的解集为(−∞,−1)∪(12,+∞),则下列结论错误的是()A.2a+b=1B.ab的最大值为18C.1a +2b的最小值为4D.1a+1b的最小值为3+2√2答案:C分析:根据不等式的解集与方程根的关系,结合韦达定理,求得2a+3m=2,b−3m=−1,可判定A正确;结合基本不等式和“1”的代换,可判断B正确,C错误,D正确.由题意,不等式(2a+3m)x2−(b−3m)x−1>0的解集为(−∞,−1]∪[12,+∞),可得2a+3m>0,且方程(2a+3m)x2−(b−3m)x−1=0的两根为−1和12,所以{−1+12=b−3m2a+3m−1×12=−12a+3m,所以2a+3m=2,b−3m=−1,所以2a+b=1,所以A正确;因为a>0,b>0,所以2a+b=1≥2√2ab,可得ab≤18,当且仅当2a=b=12时取等号,所以ab的最大值为18,所以B正确;由1a +2b=(1a+2b)(2a+b)=4+ba+4ab≥4+2√ba⋅4ab=4+4=8,当且仅当ba =4ab时,即2a=b=12时取等号,所以1a+2b的最小值为8,所以C错误;由1a +1b=(1a+1b)(2a+b)=3+ba+2ab≥3+2√ba⋅2ab=3+√2,当且仅当ba =2ab时,即b=√2a时,等号成立,所以1a +1b的最小值为3+2√2,所以D正确.故选:C.4、已知a=√2,b=√7−√3,c=√6−√2,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a答案:B分析:通过作差法,a−b=√2+√3−√7,确定符号,排除D选项;通过作差法,a−c=2√2−√6,确定符号,排除C选项;通过作差法,b−c=(√7+√2)−(√6+√3),确定符号,排除A选项;由a−b=√2+√3−√7,且(√2+√3)2=5+2√6>7,故a>b;由a−c=2√2−√6且(2√2)2=8>6,故a>c;b−c=(√7+√2)−(√6+√3)且(√6+√3)2=9+2√18>9+2√14=(√7+√2)2,故c>b.所以a>c>b,故选:B.5、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.6、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.7、若a>b>0,则下列不等式中一定成立的是()A.ba >b+1a+1B.a+1a>b+1bC.a+1b>b+1aD.2a+ba+2b>ab答案:C分析:根据不等式的性质,对选项逐一判断对于A,ba −b+1a+1=b−aa(a+1),因为a>b>0,故ba−b+1a+1=b−aa(a+1)<0,即ba<b+1a+1,故A错;对于B,a+1a −(b+1b)=(a−b)(1−1ab)不确定符号,取a=1,b=12则a+1a<b+1b,故B错误;对于C,a+1b −(b+1a)=(a−b)(1+1ab),因为a>b>0,故a+1b −(b+1a)=(a−b)(1+1ab)>0,即a+1b>b+1a,故C正确;对于D,2a+ba+2b −ab=(b+a)(b−a)(a+2b)b,因为a>b>0,故2a+ba+2b −ab=(b+a)(b−a)(a+2b)b<0,即2a+ba+2b<ab,故D错误.故选:C8、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B多选题9、若a>1,b<2,则()A.a−b>−1B.(a−1)(b−2)<0C .a +1a−1的最小值为2D .12−b≥b答案:ABD分析:利用不等式的性质可判断ABD 选项;利用基本不等式可判断C 选项. 因为b <2,所以−b >−2,又a >1,所以a −b >−1,A 正确;因为a >1,b <2,则a −1>0,b −2<0,所以(a −1)(b −2)<0,B 正确; 因为a >1,所以a −1>0,所以a +1a−1=a −1+1a−1+1≥2√(a −1)⋅1a−1+1=3, 当且仅当a =2时,等号成立,C 不正确;因为b <2,则b (b −2)+1=(b −1)2≥0,所以,b (2−b )≤1, 因为2−b >0,所以12−b≥b ,D 正确.故选:ABD.10、已知不等式ax 2+bx +c >0的解集为{x|−12<x <2},则下列结论正确的是( ) A .a >0B .b >0C .c >0D .a +b +c >0 答案:BCD分析:对A ,根据一元二次方程与一元二次函数的关系即可判断;对B ,C ,利用韦达定理即可判断;对D ,根据韦达定理以及b >0,即可求解.解:对A ,∵不等式ax 2+bx +c >0的解集为{x|−12<x <2}, 故相应的二次函数y =ax 2+bx +c 的图象开口向下, 即a <0,故A 错误;对B ,C ,由题意知: 2和−12是关于x 的方程ax 2+bx +c =0的两个根, 则有ca =2×(−12)=−1<0,−ba =2+(−12)=32>0, 又∵a <0,故b >0,c >0,故B ,C 正确; 对D ,∵c a =−1, ∴a +c =0, 又∵b >0,∴a+b+c>0,故D正确.故选:BCD.11、《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB上取一点C,使得AC=a,BC=b,过点C作CD⊥AB交以AB为直径,O为圆心的半圆周于点D,连接.下面不能由OD≥CD直接证明的不等式为()A.√ab≤a+b2(a>0,b>0)B.√ab≥2aba+b(a>0,b>0)C.a2+b2≥2ab(a>0,b>0)D.a+b2≤a2+b22(a>0,b>0)答案:BCD解析:由AC=a,BC=b,得到OD=12(a+b),然后利用射影定理得到CD2=ab判断. 因为AC=a,BC=b,所以OD=12(a+b),因为∠ADB=90∘,所以由射影定理得CD2=ab,因为OD≥CD,所以√ab≤a+b2,当且仅当a=b时取等号,故选:BCD12、若1≤x≤3≤y≤5,则()A.4≤x+y≤8B.x+y+1x +16y的最小值为10C.−2≤x−y≤0D.(x+1y )(y+4x)的最小值为9OD答案:AB分析:根据不等式的基本性质和基本不等式进行求解判断即可.因为1≤x ≤3≤y ≤5,所以4≤x +y ≤8,−4≤x −y ≤0,故A 正确,C 错误; 因为x +y +1x +16y=x +1x +y +16y≥2√x ⋅1x +2√y ⋅16y=10,当且仅当x =1,y =4时,等号成立,所以x +y +1x +16y的最小值为10,因此B 正确;因为(x +1y )(y +4x )=xy +4xy +5≥2√4+5=9,当且仅当xy =2时,等号成立,但1≤x ≤3≤y ≤5,xy 取不到2,所以(x +1y )(y +4x )的最小值不是9,因此D 不正确, 故选:AB13、若a <b <0,则下列不等式恒成立的是( ) A .1a−b <1a B .1|a |>1|b |C .(a +1b )2>(b +1a )2D .(a +1a )2>(b +1b )2答案:AC分析:根据作差法比较大小或者取特殊值举反例即可. 对于A 选项, 由于a <b <0,故a −b <0,所以1a−b −1a =a−(a−b )a (a−b )=b a (a−b )<0, 即1a−b <1a ,故A 选项正确; 对于B 选项, 由于a <b <0,故a −b <0, 1|a|−1|b|=|b |−|a ||a ||b |=a−b |a ||b |<0,故1|a|<1|b |,故B 选项错误;对于C 选项, 因为a <b <0,故0>1a >1b ,所以0>b +1a >a +1b ,所以(a +1b )2>(b +1a )2,故C 选项正确; 对于D 选项,令a =−2,b =−12,则a +1a =b +1b =−52,所以(a +1a )2>(b +1b )2不成立,故D 选项错误;故选:AC小提示:本题考查不等式的性质,作差法比较大小,考查运算求解能力,是中档题.本题解题的关键在于利用不等式的性质或者作差法比较大小,进而判断. 填空题14、不等式ax 2+x +1>0的解集为(m,1),则m =__________. 答案:−12##−0.5分析:利用一元二次方程根与系数的关系可求得m 的值.由已知,关于x 的二次方程ax 2+x +1=0的两根分别为m 、1,且a <0, 所以,{a +2=01⋅m =1a,解得{a =−2m =−12.所以答案是:−12.15、函数y =2√x 2+1的最小值是___________.答案:4分析:根据基本不等式可求出结果. 令t =√x 2+1≥1,则y =2√x 2+1=t +4t≥4,当且仅当t =2,即x =±√3时,y min =4.所以函数y =2√x 2+1的最小值是4.所以答案是:4小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、已知a >0,b >0,且ab =1,则12a+12b+8a+b的最小值为_________.答案:4分析:根据已知条件,将所求的式子化为a+b 2+8a+b ,利用基本不等式即可求解. ∵a >0,b >0,∴a +b >0,ab =1,∴12a+12b +8a+b=ab 2a+ab 2b+8a+b=a+b 2+8a+b ≥2√a+b 2×8a+b =4,当且仅当a +b =4时取等号,结合ab =1,解得a =2−√3,b =2+√3,或a =2+√3,b =2−√3时,等号成立. 所以答案是:4小提示:本题考查应用基本不等式求最值,“1”的合理变换是解题的关键,属于基础题. 解答题17、如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为20m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小? 答案:(1)长为92m ,宽为185m(2)长为5m ,宽为4m分析:(1)设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy ,可得出4x +5y =36,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为xm ,宽为ym ,则xy =20,利用基本不等式可求得钢筋网总长4x +5y 的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论. (1)解:设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy , 由已知可得4x +5y =36,由基本不等式可得S =xy =120⋅4x ⋅5y ≤120×(4x+5y 2)2=815(m 2),当且仅当{4x =5y4x +5y =36,即当{x =92y =185时,等号成立, 因此,每间虎笼的长为92m ,宽为185m 时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为xm ,宽为ym ,则xy =20, 钢筋网总长为4x +5y ≥2√20xy =40(m ),当且仅当{4x =5y xy =20,即当{x =5y =4时,等号成立,因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 18、实数a 、b 满足−3≤a +b ≤2,−1≤a −b ≤4. (1)求实数a 、b 的取值范围; (2)求3a −2b 的取值范围. 答案:(1)a ∈[−2,3],b ∈[−72,32](2)[−4,11]分析:(1)由a =12[(a +b )+(a −b )],b =12[(a +b )−(a −b )]根据不等式的性质计算可得;(2)求出3a −2b =12(a +b)+52(a −b),再利用不等式的性质得解. (1)解:由−3≤a +b ≤2,−1≤a −b ≤4,则a =12[(a +b )+(a −b )],所以−4≤(a +b )+(a −b )≤6,所以−2≤12[(a +b )+(a −b )]≤3,即−2≤a ≤3,即实数a 的取值范围为[−2,3]. 因为b =12[(a +b )−(a −b )], 由−1≤a −b ≤4,所以−4≤b −a ≤1,所以−7≤(a +b )−(a −b )≤3, 所以−72≤12[(a +b )−(a −b )]≤32, ∴−72≤b ≤32,即实数b 的取值范围为[−72,32].(2)解:设3a −2b =m (a +b )+n (a −b )=(m +n )a +(m −n )b , 则{m +n =3m −n =−2,解得{m =12n =52,∴3a−2b=12(a+b)+52(a−b),∵−3≤a+b≤2,−1≤a−b≤4.∴−32≤12(a+b)≤1,−52≤52(a−b)≤10,∴−4≤3a−2b≤11,即3a−2b的取值范围为[−4,11].。

专题02 一元二次函数、方程与不等式(解析版)备考2025高考数学一轮知识清单

专题02  一元二次函数、方程与不等式(解析版)备考2025高考数学一轮知识清单

专题02一元二次函数、方程与不等式(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1等式性质与不等式性质1、等式性质性质文字表述性质内容注意1对称性a b b a =⇔=可逆2传递性,a b b c a c ==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向2、不等式性质性质别名性质内容注意1对称性a >b ⇔b <a可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点2一元二次不等式的解集1、重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式:()2222()()ab a b a b R +≥+∈,22a b +≤(1)基本不等式成立的条件:0,0a b >>(2)等号成立的条件:当且仅当a b =时取等号.(3)算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为2a b +,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.3、利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)重难点01利用基本不等式求最值的方法法一、直接法:条件和问题间存在基本不等式的关系【典例1】(2024·重庆·模拟预测)若实数a ,b 满足2ab =,则222a b +的最小值为()A .2B .22C .4D .42【答案】D【解析】2222222222242a b a b +≥=⨯=当且仅当222a b =时,等号成立.故选:D.【典例2】(2024·四川成都·三模)若正实数,a b 满足22a b m +=,则a b +的最大值为()A 2mB 2mC .2mD .2m【答案】A【解析】因为22a b m +=,0,0a b >>,所以2222a b a b ++≤,即2222a b a b m +⋅+当且仅当2ma b ==时等号成立,所以a b +2m 故选:A.法二、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

函数与方程组不等式

函数与方程组不等式

知识回顾
重点解析
探究拓展
真题演练
第 十 四 讲
二次函数与一元二次不等式
第 十


1. 一元二次不等式 ax2+ bx+ c> 0(或< 0)的解集,即函数 y= ax2+ bx+ c 使其


次方程 x2- 6x+ n= 0 的一个解为 x1= 1,则另一个解 x2=
.



【答案】 5
复习目标
知识回顾
重点解析
探究拓展
真题演练
7. (2011·江苏南京)已知函数 y= m x2- 6x+ 1(m 是常数).



(1)求证:不论 m 为何值,该函数的图象都经过 y 轴上的一个定点;
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
复习目标
知识回顾
重点解析
探究拓展
真题演练
【解析】 (1)设生产 A 种产品 x 件,则生产 B 种产品(10- x)件,于是有



x+ 3(10- x)= 14,解得 x= 8,


则 10- x= 10- 8= 2(件)∴应生产 A 种产品 8 件,B 种产品 2 件.
2. 解一元一次不等式可以看作:当一次函数值大于(或小于)0 时,求
相应的取值范围.
复习目标
知识回顾
重点解析
探究拓展
真题演练

3. 每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从
十 四

“数”的角度看,解方程组相当于考虑自变量为何值时两个

专题3 二次函数与一元二次方程不等式

专题3 二次函数与一元二次方程不等式

专题3 二次函数与一元二次方程不等式知识点一 一元二次不等式的概念解析只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式.ax 2+bx +c >0,ax 2+bx +c <0,ax 2+bx +c ≥0,ax 2+bx +c ≤0,其中a ≠0,a ,b ,c 均为常数. 思考 a 2b +2ab 2+8>0(ab ≠0)可看作一元二次不等式吗?可以,把b 看作常数,则是关于a 的一元二次不等式;把a 看作常数,则是关于b 的一元二次不等式. 知识点二 二次函数与一元二次方程、不等式的解的对应关系有两个相等的实数根20ax bx c ++>意味着c bx ax y ++=中0>y 部分,0<++c bx ax 意味着c bx ax y ++=中0<y 部分 ,0))((212=--=++x x x x a c bx ax ,求出两个根1x ,2x ;根据图像可知:开口向上时,大于取两边,小于取中间,反之亦然.【例1】解关于x 的不等式 0322>+--x x . 【例2】解关于x 的不等式1112≥+-x x . 【例3】已知关于x 的不等式0232>+-x ax 的解集为1|{<x x 或}b x >. (1)求a ,b ;(2)解关于x 的不等式)(0)(2R c bc x b ac ax ∈<++-.知识点三 一元二次不等式与韦达定理①已知关于x 的不等式02>++c bx ax 的解集为),(n m (其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为),(n m ,得:01)1(2>++c x b x a 的解集为)1,1(mn ,即关于x 的不等式02>++a bx cx 的解集为)1,1(mn .②已知关于x 的不等式02>++c bx ax 的解集为),(n m ,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为),(n m ,得:01)1(2≤++c x b x a 的解集为),1[]1,(+∞-∞mn 即关于x 的不等式02≤++a bx cx 的解集为),1[]1,(+∞-∞mn .③已知关于x 的不等式02>++c bx ax 的解集为),(n m (其中0>>n m ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为),(n m ,得:01)1(2>+-c x b x a 的解集为)1,1(nm --即关于x 的不等式02>+-a bx cx 的解集为)1,1(n m --.④已知关于x 的不等式02>++c bx ax 的解集为),(n m ,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为),(n m ,得:01)1(2≤+-c x b x a 的解集为),1[]1,(+∞---∞nm 即关于x 的不等式02≤+-a bx cx 的解集为),1[]1,(+∞---∞nm , 以此类推.【例4】不等式02>++c bx ax 的解集为}42|{<<x x ,则不等式02<++a bx cx 的解集为( )A .41|{<x x 或}21>xB .}41|{<x xC .}21|{>x xD .}4121|{<<x x知识点四 二次项系数含参的一元二次不等式问题 (1)分析当0=a 时的情况.(2)十字相乘得到))((21x x x x a --,求出两个根1x ,2x ,若不能十字相乘,则要讨论∆的情况. (3)比较两个根的大小,21x x =;21x x >;21x x <,并分别进行讨论. (4)其中一种情况涉及到0>a 以及0<a ,再分开口方向讨论. 【例5】解关于x 的不等式:)(222R a ax x ax ∈-≥-.知识点五 乘除的等价原理和穿根法(1)若0)()(<x g x f ,则)(x f 与)(x g 异号,0)()(<∴x g x f .(2)若0)()(≤x g x f ,则()()f x g x 与异号,0)()(≤∴x g x f ,且0)(≠x g . (3)若0)()(>x g x f ,则()()f x g x 与同号,0)()(>∴x g x f .(4)若0)()(≥x g x f ,则()()f x g x 与同号,0)()(≥∴x g x f ,且0)(≠x g .数轴穿根法0))...()(()(21>---=n x x x x x x x f 或者0))...()(()(21<---=n x x x x x x x f口诀:移项调号,分解排序,奇穿偶回,分母非零,参数讨论,小心等号. 【例6】解关于x 的不等式:02<--ax ax (R a ∈). 【例7】解关于x 的不等式:a x x-<-11. 【例8】解关于x 的不等式:)23(0)3)(2(-≠≠<-+-a a x x ax ,且知识点六 对勾函数解决恒成立和实根分布问题对勾函数是一种类似于反比例函数的一般函数,形如bx ax x f +=)( 当b a ,同为正数时,b x ax x f +=)(的图象是由直线ax y =与双曲线bxy =构成,形状酷似双勾.故称“对勾函数”,也称“耐克函数”.耐克函数的顶点:)2,(ab a b 和)2,(ab a b--【例9】已知函数01)(2≥+-=ax x x f 对于一切]21,0(∈x 成立,求a 的取值范围.【例10】方程042=+-ax x 在区间]1,0[内有解 ,求a 的取值范围.知识点七 二次函数轴动区间定和轴定区间动口诀:轴在区间内,顶点定;轴在区间外,单调定.【例11】若函数728)(2--=kx x x f 在]51[,上为单调函数,则实数k 的取值范围是( ) A .]8(,-∞B .),∞+40[C .)40[]8(∞+-∞,,D .]408[,【例12】已知函数542+-=x x y 在闭区间]0[m ,上有最大值5,最小值1,则m 的取值范围是( ) A .]10[,B .]21[,C .]20[,D .]42[,【例13】若函数9)(2+-=tx x x f ,若对任意]51[,∈x 不等式0)(≥x f 恒成立,则实数t 的最大值为 . 归纳总结:在关于二次函数轴动区间定的题型时,若只考查单调性,显然直接法更简单,遇到恒成立或者零点分布类型题目时,显然参变分离更简单.轴定区间动显然还是直接讨论并卡根更加直截了当.关于零点分布,进行区间端点和对称轴一起来“卡根”,端点值往往形成一种“定海神针”感觉,接下来我们通过题目分析这类方法.【例14】(2022•长沙月考)设函数1)(2++=ax x x f .(1)已知函数)(log )(2x f x g =的定义域为R ,求实数a 的取值范围;(2)已知方程0)(=x f 有两个实数根1x ,2x ,且1x ,)20(2,∈x ,求实数a 的取值范围. 归纳总结 此题明显参变分离解题更为简单,下面我们将系统分析参变分离和定海神针方法各自的适用范围.【例15】(2022•湖北月考)已知函数2()1f x ax x a =+++. (1)若函数x x f y +=)(有唯一的零点,求a 的值;(2)设0>a ,若对任意的]21[,∈x ,不等式)(2x f x ≤恒成立,求a 的取值范围.知识点八 二次函数零点分布之两零点分布在同一区间型二次函数的两个零点位于同一区间或者在某个区间存在零点时,参变分离转化为区间的值域或者交点问题,显然事半功倍.【例16】(2022•安徽月考)已知2()234f x x mx m =+++. (1)若1m =-且]30[,∈x ,求()f x 的单调区间; (2)当m 为何值时,()f x 有2个零点,且均比1-大.【例17】(2022•襄阳月考)若关于x 的一元二次方程2(3)10mx m x +-+=至少有一个正根,求m 的取值范围.知识点九 二次函数单零点分布之卡根法第一类 恒成立(能成立)的异号类二次函数开口方向和不等号方向反向,即)0(02><++a c bx ax 恒成立,或者)0(02<>++a c bx ax 恒成立.【例18】不等式22(2)0x a x a --+<对任意(15)x ∈,恒成立,则实数a 的取值范围为( ) A .5a >B .5≥aC .55a -<<D .55≤≤-a第二类 零点问题的分散或者范围内单个零点如果两个零点在不同区间或者某个区间只有一个零点时,端点值的正负号将决定参数的取值范围. 【例19】若方程02)11(52=-+-+a x a x 的一个根在)10(,内,另一个根在)21(,内,则实数a 的取值范围是( )A .)234(,B .)2(∞+,C .)434(,D .)42(,【例20】已知关于x 的方程025222=---k x kx 的两个实数根一个小于1,另一个大于1,则实数k 的取值范围是 .第三类 综合问题的处理策略在轴动区间定的情况下,若参变分离出现正负号不确定时也需要分类讨论,不等号方向涉及改变,此时只需分两类,而常规的定海神针卡根法需要分三类.【例21】已知函数a ax x x f -++=3)(2,若]22[,-∈x 时,0)(≥x f 恒成立,求a 的取值范围.【例22】(2007•广东)已知a 是实数,函数a x ax x f --+=322)(2,如果函数)(x f y =在区间]11[,-上有零 点,求a 的取值范围.1.(2015•广东)不等式2340x x --+>的解集为 .(用区间表示)2.(2015•上海)函数224y x x =-+,[0x ∈,2]的值域为 [3,4] .3.(2017•北京)已知0x ,0y ,且1x y +=,则22x y +的取值范围是 1[2,1] .4.(2022•雨花区开学)一条抛物线2y ax bx c =++的顶点为(4,11)-,且与x 轴的两个交点的横坐标为一正一负,则a 、b 、c 中为正数的( ) A .只有aB .只有bC .只有cD .只有a 和b5.(2015•四川)如果函数21()(2)(8)1(02f x m x n x m =-+-+,0)n 在区间1[,2]2上单调递减,那么mn 的最大值为( ) A .16B .18C .25D .8126.(2022•龙凤区期末)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为( ) A .6B .7C .9D .107.(2022•浙江开学)已知实数m ,n ,函数2()f x x mx n =++,满足f (2)f ⋅(3)0,则22m mn +的最大值为( ) A .163B .815C .813D .1658.(2022•连云区开学)若不等式23208kx kx +-<对一切实数x 都成立,则实数k 的取值范围是( )A .30k -<<B .30k -C .30k -<D .3k <-或0k9.(2022•榆林期末)若关于x 的不等式220ax x -+>的解集为{|2}x x b -<<,则函数()2f x bx =+在区间[0,9]上的最小值为( ) A .1-B .0C .2D .310.(2022•双鸭山期末)已知关于x 的不等式20ax bx c ++>的解集为(2,4)-,则不等式20cx bx a -+<的解集是( )A .1{|2x x <-或1}4x >B .{11|}42x x -<<C .1{|4x x <-或1}2x >D .11{|}24x x -<<11.(2022•兴化市模拟)若正实数a ,b 满足1a b +=,则函数2()(31)36f x abx b x ab =++-的零点的最大值为( )A B C .2D .312.下列结论错误的是( )A .若函数2(0)y ax bx c a =++≠对应的方程没有根,则不等式20ax bx c ++>的解集为RB .不等式20(0)ax bx c a ++≠在R 上恒成立的条件是0a <且△240b ac =-C .若关于x 的不等式210ax x +-的解集为R ,则14a -D .不等式11x>的解为1x < 13.(2022•义乌期末)已知二次函数2()f x ax bx c =++,若360a b c ++=,(0)0f <,f (1)0<,则()0f x =的根的分布情况可能为( )A .()0f x =可能无解B .()0f x =有两相等解0x ,且0(0,1)x ∈C .()0f x =有两个不同解1x ,2(0,1)x ∈D .()0f x =有两个都不在(0,1)内的不同解1x ,2x14.(2022•雨花区开学)二次函数2(0)y ax bx c a =++≠的大致图象如图所示,顶点坐标为(2,9)a --,下列结论:①0abc >;②420a b c ++<;③90a b c -+=;④若方程(5)(1)1a x x +-=-有两个根1x 和2x ,且12x x <,则1251x x -<<<;⑤若方程2||1ax bx c ++=有四个根,则这四个根的和为8-,其中正确的结论有 个.15.(2022•长沙月考)已知不等式04211<⋅+-+x x a 对一切)1[∞+∈,x 恒成立,则实数a 的取值范围是 .16.(2022•嘉兴期末)已知函数2)(2++=ax x x f .(1)当3=a 时,解不等式0)(<x f ;(2)当]21[,∈x 时,0)(≥x f 恒成立,求a 的取值范围. 17.(2022•定州期中)已知函数2()24()f x x mx m m R =-+-∈. (1)当1m =时,求不等式0)(≥x f 的解集;(2)当2x >时,不等式1)(-≥x f 恒成立,求m 的取值范围.18(2022•佛山期末)设二次函数为mxx x f +=2)(.(1)若对任意实数]10[,∈m ,0)(>x f 恒成立,求实数x 的取值范围; (2)若存在]43[0,-∈x ,使得4)(0-≤x f 成立,求实数m 的取值范围. 19.若函数2()4f x x kx =-+在区间)61(,内有零点,求k 的取值范围.20.(2007•湖北)设二次函数a ax x x f ++=2)(,方程0)(=-x x f 的两根1x 和2x 满足1021<<<x x . (1)求实数a 的取值范围; (2)试比较)0()1()0(f f f -⋅与151的大小,并说明理由. 21.(2022•南京模拟)已知函数2()22f x x ax =++. (1)当1a =时,求函数()f x 在23x -<上的取值范围; (2)当1a =-时,求函数()f x 在1t x t +上的最大值. 22.(2022•北京期末)已知函数2()3f x x ax a =--+.(Ⅰ)设()f x 的两个零点分别为1x ,2x ,若1x ,2x 同号,且12x x ≠,求a 的取值范围; (Ⅱ)()f x 在区间[1,)+∞上的最小值为3,求a 的值.。

专题10 二次函数与一元二次方程、不等式(原卷版)

专题10 二次函数与一元二次方程、不等式(原卷版)

专题10 二次函数与一元二次方程、不等式题组1 一元二次不等式的解法1.下列不等式中是一元二次不等式的是()A.a2x2+2≥0B.21x x<3C.-x2+x-m≤0D.x3-2x+1>02.不等式(x+5)(3-2x)≥6的解集为()A.B.C.D.3.不等式3x2-7x+2<0的解集为()A.B.C.D.{x|x>2}4.解关于x的不等式x2-(a+a2)x+a3>0(a∈R).5.已知f(x)=ax2+x-a,a∈R.(1)若a=1,解不等式f(x)≥1;(2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围;(3)若a<0,解不等式f(x)>1.6.(1)已知当-1≤a≤1时,不等式ax2-(3a+2)x+6≤0恒成立,求实数x的取值范围.(2)解关于x的不等式ax2-(3a+2)x+6≤0.题组2 “三个二次”的对应关系的应用7.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.{x|2<x<3}B.{x|-3<x<-2}C.{x|-<x<-}D.{x|<x<}8.设f(x)=x2+bx+1,且f(-1)=f(3),则f(x)>0的解集是()A.(-∞,-1)∪(3,+∞)B.RC.{x|x≠1}D.{x|x=1}9.不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},则()A.a=-8,b=-10B.a=-1,b=9C.a=-4,b=-9D.a=-1,b=2题组3 分式不等式的解法10.设集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},则A∩B等于()A.(-3,-2]B.(-3,-2]∪[0,]C.(-∞,-3]∪[,+∞)D.(-∞,-3)∪[,+∞)11.关于x的不等式ax+b>0的解集为{x|x>2},则关于x的不等式>0的解集为()A.{x|-2<x<-1或x>3}B.{x|-3<x<-2或x>1}C.{x|-1<x<2或x>3}D.{x|x<-1或x<3}题组4 一元二次不等式的应用12.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速(km/h)满足下列关系:s=+(n为常数,且n∈N*),做了两次刹车试验,有关试验数据如图所示,其中(1)求n的值;(2)要使刹车距离不超过12.6 m,则行驶的最大速度是多少?13.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加费,为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P%(即每百元征收P元)时,每年的销售量减少10P万件,据此,问:(1)若税务部门对商品M每年所收税金不少于96万元,求P的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P值?(3)若仅考虑每年税收金额最高,又应如何确定P值?题组5 一元二次不等式恒成立问题14.若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是()A.0B.-2C.-D.-315.关于x的不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是()A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)16.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞)B.[0,+∞)C.[0,4)D.(0,4)17.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.18.已知不等式x2-x-m+1>0.(1)当m=3时,求此不等式的解集;(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.19.(1)解不等式-3<4x-4x2≤0;(2)若不等式mx2+2mx-4<2x2+4x对任意x均成立,求实数m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程、不等式相结合问题一、考情分析函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段.二、经验分享(1) 确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(3) 已知函数零点情况求参数的步骤①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围.(4)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(5)“a=f(x)有解”型问题,可以通过求函数y=f(x)的值域解决.三、知识拓展1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 2.三个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 四、题型分析(一) 函数与方程关系的应用函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点. 【例1】已知函数2||()2x f x kx x =-+(x R ∈)有四个不同的零点,则实数k 的取值范围是 【分析】把函数2||()2x f x kx x =-+(x R ∈)有四个不同的零点转化为方程1(2)k x x =+有三个不同的根,再利用函数图象求解【点评】()()y f x g x =- 零点问题也可转化为方程()()f x g x =的根的问题,()()f x g x =的根的个数问题,可以转化为函数()y f x =和()y g x =图象交点的个数问题,通过在直角坐标系中作出两个函数图象,从而确定交点的个数,也就是方程()()f x g x =根的个数. 【小试牛刀】【优质试题届2江苏徐州丰县高三上学期调考】.设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数),若曲线sin y x =上存在一点00(,)x y 使得00(())f f y y =,则a 的取值范围是 . 【答案】[]1,e【解析】由题设00(())f f y y =及函数的解析式可知11,0)(≤≤-≥y x f ,所以10≤≤y .由题意问题转化为“存在]1,0[∈x ,使得x a x e x =-+有解”,即a x x e x +-=2在]1,0[有解,令x x e x h x +-=2)(,则12)(/+-=x e x h x ,当0>x 时,函数x x e x h x +-=2)(是增函数;所以10≤≤x ,当)1()()0(h x h h ≤≤,即e x h ≤≤)(1.所以[]1,e ,故应填答案[]1,e . (二) 函数与不等式关系的应用函数与不等式都是高中数学的重要内容,也都是高考的重点,在每年的高考试题中这部分内容所占的比例都是很大的.函数是高中数学的主线,方程与不等式则是它的重要组成部分.在很多情况下函数与不等式也可以相互转化,对于函数y =f (x ),当y >0时,就转化为不等式f (x )>0,借助于函数图像与性质解决有关问题,而同时研究函数的性质,也离不开解不等式的应用.【例2】已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,()|||1|g x x k x =-+-,若对任意的12,x x ∈R ,都有12()()f x g x ≤成立,则实数k 的取值范围为 .【分析】根据题中条件:对任意的12,R x x ∈,都有12()()f x g x ≤成立,将问题转化为maxmin ()()f x g x ≤.再由题中所给两函数的特征:函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩是一确定的分段函数,由它的图象不难求出函数的最大值max ()f x =14;而另一个函数()|||1|g x x k x =-+-中含有绝对值,由含有绝对值的不等式可求出它的最小值min ()|1|,g x k =-,即可得到不等式1|1|4k -≥,则可求出k 的取值范围.【点评】本题考查了分段函数、对数函数和二次函数的性质,主要考察了不等式的恒成立问题和函数的最值问题. 注意不等式:≤±≤-||||||b a b a ||||b a +对,a b ∈R 是恒成立的.特别要注意等号成立的条件. 渗透到方程问题、不等式问题、和某些代数问题都可以转化为函数知识.且涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,它们是高考中考查的重点,所以在教学中我们应引引起高度的重视.【小试牛刀】【优质试题届江苏省南京市高三12月联考】若不等式()()2225ln ln 0y x y x x y ⎡⎤+--⋅-≤⎣⎦对任意的()0,y ∈+∞恒成立,则实数x 的取值集合为________.【答案】52⎧⎫⎨⎬⎩⎭(三) 函数、方程和不等式关系的应用函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念.也体现了函数图像与方程、不等式的内在联系,在高中阶段,应该让学生进一步深刻认识和体会函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学习的基本指导思想,这也是高中数学最为重要的内容之一.而新课程标准中把这个联系提到了十分明朗、鲜明的程度.因此,在高三的复习中,对这部分内容应予以足够的重视.【例3】已知函数e ()ln ,()exx f x mx a x m g x =--=,其中m ,a 均为实数. (1)求()g x 的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x ==成立,求m 的取值范围.【分析】(1)求()g x 的极值,就是先求出'()g x ,解方程'()0g x =,此方程的解把函数的定义域分成若干个区间,我们再确定在每个区间里'()g x 的符号,从而得出极大值或极小值;(2)此总是首先是对不等式21()()f x f x -<2111()()g x g x -恒成立的转化,由(1)可确定()f x 在[3,4]上是增函数,同样的方法(导数法)可确定函数1()g x 在[3,4]上也是增函数,不妨设21x x >,这样题设绝对值不等式可变为2()f x -1()f x <21()g x 11()g x -,整理为212111()()()()f x f x g x g x -<-,由此函数1()()()u x f x g x =-在区间[3,4]上为减函数,则21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立,要求a 的取值范围.采取分离参数法得11e ex x a x x---+≥恒成立,于是问题转化为求11e ()ex x v x x x--=-+在[3,4]上的最大值;(3)由于0x 的任意性,我们可先求出()g x 在(0,]e 上的值域(0,1],题设“在区间(0,e]上总存在1212,()t t t t ≠,使得1()f t =2()f t 0()g x =成立”,转化为函数()f x 在区间(0,]e 上不是单调函数,极值点为2m(20e m <<),其次()1f e ≥,极小值2()0f m ≤,最后还要证明在2(0,)m上,存在t ,使()1f t ≥,由此可求出m 的范围.【解析】(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x a f x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数.设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-,即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x-'=--⋅≤在(3,4)上恒成立.∴11e ex x a x x---+≥恒成立. 设11e ()ex x v x x x --=-+,∵112e (1)()1ex x x v x x ---'=-+=121131e [()]24x x ---+,x [3,4],∴1221133e [()]e 1244x x--+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 22e 3. ∴a ≥322e 3,∴a 的最小值为3 22e 3. (3)由(1)知()g x 在(0,e]上的值域为(0,1]. ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.x(∞,1) 1 (1,∞)()g x '0 g (x )↗极大值↘当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m <<,即2em >.① 此时()f x 在2(0,)m上递减,在2(,e)m上递增, ∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.② 由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m=≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立. 再证()e m f -≥1. ∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 【点评】本题主要考查了导数的应用,求单调区间,极值,求函数的值域,以及不等式恒成立等函数的综合应用. 对于不等式的解法要熟练地掌握其基本思想,在运算过程中要细心,不可出现计算上的错误.解决不等式与函数、方程之间联系的题目时不仅要理解其内在的联系,还应注意转化的思想和数形结合的思想应用. 有关恒成立问题、能成立问题、恰好成立问题在新课标高考试题中经常出现,要理解各自的区别.在求函数在闭区间上的最值问题可采用以下方法:先求出函数在导数为零的点、不可导点、闭区间的端点的函数值,然后进行比较,最大的函数值就是函数的最大值,最小的函数值就是函数的最小值.【小试牛刀】已知定义在()0,+∞的函数()()41f x x x =-,若关于x 的方程()()()2320f x t f x t +-+-=有且只有3个不同的实数根,则实数t 的取值集合是 . 【答案】{}2,522-五、迁移运用1.【江苏省南通市优质试题届高三上学期第一次调研】已知函数()()221,0,{ ,0,x ax a x f x ln x x --+≥=-< ()212g x x a =+-.若函数()()y f g x =有4个零点,则实数a 的取值范围是________. 【答案】()51,11,2⎛⎫⋃+∞ ⎪⎪⎝⎭【解析】令()()0,f t t g x ==当10a -<时()f t 有两个零点121,1t t =->,需1211a a --∴当1=0a -时()f x 有三个零点, 1231,0,=2t t t =-=, 121a -=- 所以函数()()y f g x =有5个零点,舍;当10a ->时,由于121a ->-所以24440a a ∆=+-> ,且2112a a a a +->- ,所以5-112a <<综上实数a 的取值范围是()51,11,2⎛⎫-⋃+∞⎪⎪⎝⎭2.【江苏省如皋市优质试题--优质试题学年度高三年级第一学期教学质量调研】已知函数()()212f x x mx x R =++∈,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为_______.【答案】()01,【解析】若0m ≥,则()212f x x mx =++在[]0,2上递增, ()212f x x mx =++有最小值12,不合题意, 0m ∴<,要使()f x 在[]0,2的最大值为12,如果22m-≥,即4m ≤-,则()91222f m =+≤,得522m -≤≤-矛盾,不合题意;如果22m-<,则2915222{ { 22112242m m m m m +≤-≤≤-⇒⇒=-≥--≤, 2m ∴=-, ()2122f x x x =-+,若()()2g x f x ax =-有四个零点,则()y f x =与2y ax =有四个交点,只有2y ax =开口向上,即0a >,当2y ax =与2122y x x ⎛⎫=--+ ⎪⎝⎭有一个交点时,方程221202ax x x +-+=有一个根, 0∆=得1a =,此时函数()()2g x f x ax =-有三个不同的零点,要使函数()()2g x f x ax =-有四个不同的零点, 2y ax =与2122y x x ⎛⎫=--+ ⎪⎝⎭有两个交点,则抛物线2y ax =的开口要比2y x =的开口大,可得1a <, 01a ∴<<,即实数a 的取值范围为()0,1,故答案为()0,1.3.【南京市、盐城市优质试题届高三年级第一次模拟】设函数()f x 是偶函数,当x ≥0时, ()f x =()3,03,{ 31,>3x x x x x-≤≤-+,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是________.【答案】91,4⎡⎫⎪⎢⎣⎭【解析】作图,由图可得实数m 的取值范围是91,4⎡⎫⎪⎢⎣⎭4.【江苏省泰州中学优质试题届高三12月月考】若函数()21f x x =-,则函数()()()ln g x f f x x =+在()01,上不同的零点个数为__________. 【答案】3【解析】因为()14102{ 14312x lnx x g x x lnx x -+<≤=-+<<, ()0g x =可转化为: 10,2x ⎛⎫∈ ⎪⎝⎭,函数41y x =-与ln y x =-以及1,12x ⎛⎫∈ ⎪⎝⎭,函数43y x =-与ln y x =-交点的个数;作出函数图象如图:由函数图象可知零点个数为3个.5.【江苏省常熟市优质试题届高三上学期期中】已知函数(),0{21,0lnx x f x x x >=+≤,若直线y ax =与()y f x =交于三个不同的点()(),A m f m , ()(),B n f n , ()(),C t f t (其中m n t <<),则12n m++的取值范围是__________. 【答案】11,e e ⎛⎫+ ⎪⎝⎭【解析】作出函数(),0{21,0lnx x f x x x >=+≤,的图象如图:设直线y=ax 与y=lnx 相切于(x 0,lnx 0),则001y | x x x '==, ∴曲线y=lnx 在切点处的切线方程为y ﹣lnx 0=1x (x ﹣x 0), 把原点(0,0)代入可得:﹣lnx 0=﹣1,得x 0=e .要使直线y=ax 与y=f (x )交于三个不同的点,则n ∈(1,e ),联立1{ 21y x e y x ==+,解得x=12ee-. ∴m ∈(12e e -,12-),1m ∈(﹣2, 12e -+), ∴12n m ++的取值范围是(1, 1e e+).故答案为:(1, 1e e+)..6.【江苏省徐州市第三中学优质试题~优质试题学年度高三第一学期月考】已知函数()22,0{313,0x x f x x x ≤=--+>,若存在唯一的整数x ,使得()0f x a x->成立,则实数a 的取值范围为__________. 【答案】[]0,2 []3,8⋃7.【江苏省启东中学优质试题届高三上学期第一次月考】已知函数f (x )是以4为周期的函数,且当-1<x ≤3时, ()21,11{12,13x x f x x x --<≤=--<≤ 若函数()y f x m x =- 恰有10个不同零点,则实数m 的取值范围为______.【答案】1,8156⎛- ⎝【解析】根据题意,得到()f x 的图象如下:由图可知, ()f x 是偶函数,又()y f x m x =-恰有10个不同零点,即()y f x =与y m x =的图象有10个交点,根据偶函数的特点,则在0x >的图象中,有5个交点,如图中红色直线和蓝色直线就是两种极限情况.红色直线:过()6,1,则16m =;蓝色直线:与区间()3,4处的曲线2815y x x =-+-相切, 所以2815=x x mx -+-只有一个解,解得8215m =-182156m ∴<<-8.【优质试题江苏徐州丰县民族中学高三上学期第二次月考】已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且22()(22)5af m f m m -->-+-,则m 的取值范围是 . 【答案】1122m ≤<【解析】由题设可得032=+-a ,即5=a ,故)22()1(22-+->--m m f m f 可化为)22()1(22+->+m m f m f ,又3221,31122≤+-≤≤+≤m m m ,故2122122<⇒+-<+m m m m ,且21-≥m .故应填答案1122m ≤<. 9.已知a R ∈,函数()1,0{ ,0x a x f x xe x -+><,若存在三个互不相等的实数123,,x x x ,使得()()()123123f x f x f x e x x x ===-成立,则a 的取值范围是__________.【答案】(,2e -∞-【解析】若存在三个互不相等的实数123,,x x x ,使得()()()123123f x f x f x e x x x ===-成立,则方程()f x ex =-存在三个不相等的实根,当0x <时, ()x f x e ex -==-,令()(0)x g x e ex x -=+<,则()x g x e e --'=+,令()0g x '=,得1x =-,当1x <-时, ()0g x '<,即()g x 在(),1-∞-上为减函数,当10x -<<时, ()0g x '>,即()g x 在()1,0-上为增函数,∴()()min 10g x g e e =-=-=,则()f x ex =-在(),0-∞上存在一个实根,∴()f x ex =-在()0,+∞上存在两个不相等的实根,即1a ex x+=-, 210ex ax ++=有两个不相等的实根,∴20{240a ea e ->∆=->,∴2a e <-,故答案为(),2e -∞-10.已知函数()()()2,0{0,0k x x f x k lnx x +≤=<->,若函数()()1y f f x =-有3个零点,则实数k 的取值范围为 __________ . 【答案】k 1-<11.【江苏省南京师范大学附属中学、天一、海门、淮阴四校优质试题届高三联考】已知函数()()ln ,,f x x ax g x ex a R =-=∈(e 是自然对数的底数) (1)若直线y ex =为曲线()y f x =的一条切线,求实数a 的值;(2)若函数()()y f x g x =-在区间()1,+∞上为单调函数,求实数a 的取值范围; (3)设()()()[],1,H x f x g x x e =⋅∈,若()H x 在定义域上有极值点(极值点是指函数取。

相关文档
最新文档