高中数学练习题
高中数学导数练习题
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
高中数学练习题大全
高中数学练习题大全一、整式1. 将下列各数相加或相减得到一个数:(1) $-5$,$7$,$-3.5$;(2) $\sqrt{3}-\sqrt{2}$,$2\sqrt{2}+\sqrt{3}$,$2\sqrt{2}-\sqrt{6}$。
2. 计算下列各式的值:(1) $-3a+4b$,当$a=2$,$b=-1$;(2) $(x-y)(x+y)$,当$x=-2$,$y=3$。
3. 将下列各式进行因式分解:(1) $2xy-3y^2$;(2) $x^2-9$;(3) $x^2-4xy+4y^2$。
4. 将下列各式进行合并同类项:(1) $3a-2b-4a-b-5b+6a$;(2) $2x^2y+xy^2-4x^2y-3xy^2+5xy$。
5. 将下列各式进行展开:(1) $(x+1)(x-2)$;(2) $(3a+2b)^2$。
6. 将下列各式进行分解因式:(1) $x^2+5x+6$;(2) $x^2-5x+6$;(3) $4a^2-12ab+9b^2$。
二、一次函数1. 已知直线$l$的方程为$y=2x+3$,求$l$与$x$轴和$y$轴的交点坐标。
2. 求过点$P(2,-1)$且垂直于$y=3x-4$的直线的方程。
3. 若直线$l$与$x$轴交点为$(3,0)$,斜率为$-2$,求$l$的方程。
4. 已知点$P(4,5)$,$Q(1,-3)$,求线段$PQ$的中点坐标。
5. 若函数$y=kx+3$经过点$P(2,5)$,求$k$的值。
三、二次函数1. 求解方程$x^2-3x+2=0$的解。
2. 已知抛物线$y=ax^2+bx+3$的顶点坐标为$(2,-1)$,求$a$和$b$的值。
3. 若抛物线$y=ax^2+bx+1$与$x$轴有两个交点,且交点的横坐标之和为$5$,求$a$和$b$的值。
4. 若函数$y=ax^2+2x+5$的图像与$y$轴相交于点$A$,与$x$轴相交于点$B$和$C$,且$\angle ABC=90^\circ$,求$a$的值。
高中数学练习题及答案
高中数学练习题及答案【一】函数与方程1. 已知函数 \(f(x)\) 满足 \(f(x+1) = 3x^2 - 2x + 1\),求 \(f(2)\) 的值。
答案:将 \(x+1\) 替换为 \(x\),得到 \(f(x) = 3(x-1)^2 - 2(x-1) + 1\)。
将 \(x\) 替换为 2,得到 \(f(2) = 3(2-1)^2 - 2(2-1) + 1 = 4\)。
2. 解方程组:\[\begin{align*}2x + 3y &= 7 \\4x + 6y &= 14\end{align*}\]答案:将第一个方程两倍后与第二个方程相减,得到 \(0 = 0\)。
因此两个方程是同一直线上的无穷多解。
【二】数列与数列求和1. 求等差数列 \(1, 4, 7, 10, \ldots\) 的第 15 项。
答案:首项 \(a_1 = 1\),公差 \(d = 4 - 1 = 3\)。
第 15 项为 \(a_{15} = a_1 + (15-1)d = 1 + 14 \times 3 = 43\)。
2. 求等比数列 \(3, 6, 12, 24, \ldots\) 的前 10 项和。
答案:首项 \(a_1 = 3\),公比 \(r = \frac{6}{3} = 2\)。
前 10 项和为\(S_{10} = \frac{a_1(r^{10}-1)}{r-1} = \frac{3(2^{10}-1)}{2-1} = 3 \times (2^{10}-1) = 3072\)。
【三】平面解析几何1. 已知平面上点 \(A(-1, 2)\),直线 \(l\) 过点 \(A\) 且与直线 \(x - y + 3 = 0\) 平行,求直线方程。
答案:直线 \(x - y + 3 = 0\) 的法向量为 \(\vec{n} = (1, -1)\)。
因为直线 \(l\) 平行于该直线,所以它的法向量也为 \(\vec{n}\)。
高中数学练习题及答案
高中数学练习题及答案高中数学练习题及答案高中数学是学生们学习过程中的一大挑战。
掌握数学的基本概念和解题技巧对于学生们来说是至关重要的。
然而,要真正掌握数学,仅仅依靠理论知识是不够的。
实践和练习是提高数学能力的关键。
本文将介绍一些高中数学练习题及其答案,帮助学生们更好地巩固和应用所学的知识。
一、代数题1. 解方程:2x + 5 = 17答案:x = 62. 化简表达式:(3x + 2y)²答案:9x² + 12xy + 4y²3. 因式分解:x² + 6x + 9答案:(x + 3)²二、几何题1. 计算三角形面积:已知三角形的底边长为8cm,高为6cm,求其面积。
答案:三角形的面积为24平方厘米。
2. 判断三角形形状:已知三条边长分别为3cm、4cm和5cm,判断该三角形是什么形状?答案:该三角形是直角三角形。
3. 计算圆的面积:已知圆的半径为5cm,求其面积。
答案:圆的面积为25π平方厘米。
三、函数题1. 求函数的定义域:已知函数f(x) = √(2x - 1),求f(x)的定义域。
答案:2x - 1 ≥ 0,即x ≥ 1/2。
所以f(x)的定义域为[x ≥ 1/2)。
2. 求函数的值域:已知函数g(x) = x² + 3x + 2,求g(x)的值域。
答案:首先,g(x)是一个二次函数,开口向上,所以最小值为函数的顶点。
顶点的横坐标为-x/2a,即x = -3/2。
代入函数得到g(-3/2) = 1/4。
所以g(x)的值域为[g(x) ≥ 1/4)。
四、概率题1. 计算概率:从一副扑克牌中随机抽取一张牌,求抽到红心的概率。
答案:一副扑克牌中有52张牌,其中红心有13张。
所以抽到红心的概率为13/52,即1/4。
2. 计算条件概率:在一副扑克牌中,已知抽到的牌是红心,求下一张牌是梅花的概率。
答案:由于已知抽到的牌是红心,所以剩下的牌中只有26张梅花牌。
高中数学练习题及答案
高中数学练习题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 5,求f(2)的值。
A. 9B. 15C. 17D. 192. 一个圆的半径为3,求该圆的面积。
A. 28πB. 9πC. 18πD. 36π3. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。
A. 17B. 14C. 21D. 204. 直线y = 2x + 1与x轴的交点坐标是什么?A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (1, 0)5. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。
A. 6B. 3√3C. 4√3D. 5√3二、填空题6. 函数y = 3x^3 - 2x^2 + x - 5的导数是______。
7. 已知抛物线y^2 = 4x,求该抛物线的焦点坐标。
8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
9. 已知一个球的体积为(4/3)π,求该球的半径。
10. 已知正弦函数sin(x)的周期是2π,求余弦函数cos(x)的周期。
三、解答题11. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。
12. 解不等式:2x^2 - 5x + 2 > 0。
13. 已知点A(1, 2)和点B(4, 6),求直线AB的斜率和方程。
14. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。
15. 已知函数h(x) = √x,求该函数的定义域和值域。
答案:1. B2. A3. A4. A5. B6. 9x^2 - 4x + 17. 焦点坐标为(1, 0)8. 59. √(3/π)10. 2π11. 极小值点x = 1,极大值点x = 512. x < 1/2 或 x > 213. 斜率k = 2,方程为2x - y - 2 = 014. 证明略15. 定义域为[0, +∞),值域为[0, +∞)本试卷涵盖了高中数学的多个知识点,包括函数、导数、不等式、几何图形、三角函数等,旨在帮助学生全面复习和巩固所学知识。
高中数学排列组合专题练习题
高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。
所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。
2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。
若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。
所以共有\(2×6×4 = 48\)种排法,故选 B。
3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。
偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。
0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。
此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。
高中教材练习题及讲解答案数学
高中教材练习题及讲解答案数学### 高中数学练习题及讲解答案#### 一、基础练习题1. 题目一:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 2 \) 时的导数值。
2. 题目二:解不等式 \( |x - 3| < 5 \) 并表示解集。
3. 题目三:已知 \( a \) 和 \( b \) 是正数,求证\( \frac{1}{a} + \frac{1}{b} \geq 4 \)。
#### 二、中等难度练习题4. 题目四:计算定积分 \( \int_{1}^{2} (4x - 3) \, dx \)。
5. 题目五:给定圆 \( x^2 + y^2 = 9 \),求圆上点到直线 \( 2x - y + 6 = 0 \) 的最短距离。
6. 题目六:证明等差数列的前 \( n \) 项和公式 \( S_n =\frac{n(a_1 + a_n)}{2} \)。
#### 三、高难度练习题7. 题目七:已知 \( \sin(x) + \cos(x) = \frac{1}{2} \),求\( x \) 的值。
8. 题目八:求函数 \( y = x^3 - 3x^2 + 2 \) 的极值点。
9. 题目九:解方程组:\[\begin{cases}x^2 + y^2 = 4 \\x + y = 2\end{cases}\]#### 四、讲解与答案1. 解答一:首先求导 \( f'(x) = 6x - 2 \),代入 \( x = 2 \)得 \( f'(2) = 10 \)。
2. 解答二:解不等式得 \( -5 < x - 3 < 5 \),即 \( -2 < x < 8 \)。
3. 解答三:利用调和平均数的性质,\( \frac{1}{a} + \frac{1}{b} \geq 2 \times \frac{2ab}{ab} = 4 \)。
高中数学集合精选练习题及答案
B、 丨 m<6
C、 丨 m ≥− 2
D、 丨 m>5
8、下列各式中,正确的个数是( )
① 1∈ 2,4,6 ; ② 2,3,5 ⊆ 5,3,2 ; ③∅⊆ 0 ;
④9= 9 ;
⑤ 0∈ 0 ;
⑥ 8, − 8 ⊆ (8, − 8)
A、5
B、4
C、3
D、2
9、已知集合 A= 丨 2 − 3x ≤ 0, ∈ 若 M=A∪B,则 M 的子集共有( ) A、64 C、48
则集合 B 的子集个数是
。
12、不等式
x2
x2 −
− 3>0 的解集为 5x + 4<0
A,则퐶푅A=
。
13、已知集合 A= 丨 2 − 6x + 8 = 0 ,B= 丨 a 2 − x + 2 = 0 ,且 B⊆A
则 a 的取值范围是
。
14、若集合 A 满足 7,8 ∪A= 7,8,9 ,请用列举法列出集合 A
(2)若 A∪B=A,求 a 的取值范围.
17、已知集合 U= 丨 2 − 13x + 12 ≤ 0,x ∈ Z ,集合 A= 3,6,9 集合 B= 8,10 (1)求 A∪B;
(2)求(퐶푈A)∩B .
18、已知集合 U=R,集合 A= 丨 2 − 11x + 18<0 ,集合 B= 丨 2 − 3x − 10 ≤ 0 . (1)求 A∩B; (2)B∪(퐶푈A) .
,B= 丨x = a2 − 1 , ∈
B、52 D、24
10、设集合 A= 2, A、-6
,B= − ,2 +
,4 − ,若 A⊂B,则 m=( ) B、0
C、4
D、8
高中基础数学题练习册刷题
高中基础数学题练习册刷题【练习一:代数基础】1. 计算下列表达式的值:(a) \( 3x^2 - 5x + 2 \) 当 \( x = 2 \)(b) \( \frac{2}{x} + 3x \) 当 \( x = -1 \)2. 解以下方程:(a) \( 2x + 5 = 11 \)(b) \( 3x^2 - 4x - 5 = 0 \)3. 简化下列表达式:(a) \( \frac{3x^2 - 6x}{x - 2} \)(b) \( \frac{4x^3 + 16x}{4x} \)【练习二:几何基础】1. 已知三角形ABC中,AB = 5cm,AC = 7cm,BC = 6cm,求角A的余弦值。
2. 圆的半径为10cm,求圆的周长和面积。
3. 已知点A(2, 3)和点B(-1, 5),求直线AB的斜率和方程。
【练习三:函数与图像】1. 已知函数 \( y = 2x - 3 \),求其图像与x轴的交点坐标。
2. 函数 \( f(x) = x^2 + 2x + 1 \) 的图像是否关于y轴对称?为什么?3. 画出函数 \( y = |x| \) 的图像,并解释其特点。
【练习四:概率与统计】1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
2. 掷一枚均匀的硬币两次,求至少一次正面朝上的概率。
3. 一个班级有30名学生,其中10名男生和20名女生。
随机选择一名学生,求选中女生的概率。
【练习五:综合应用】1. 一个长方形的长是宽的两倍,如果周长是24cm,求长方形的长和宽。
2. 一个工厂每天生产100个产品,其中5%是次品。
如果随机抽取5个产品进行检查,求至少有1个次品的概率。
3. 一个圆内接一个等边三角形,求这个三角形的边长,如果圆的半径是6cm。
结束语:通过上述练习,同学们可以加深对高中数学基础概念的理解和应用。
希望这些练习能够帮助大家巩固知识点,提高解题能力。
数学是一门需要不断练习的学科,希望大家能够持之以恒,不断进步。
高中数学练习题(含答案)
第一章 导数及其应用1.已知直线1+=x y 与曲线)ln(a x y +=相切,则=a ( ) A .-1 B .-2 C .0 D .2 2.设函数]65,0[,142cos 3sin 3)(23πθθθ∈-++=x x x x f ,则导数)1('-f 的取值范围是( )A .]343[+,B .]63[,C .]634[,- D .]3434[+-, 3.2222π=--⎰-dx x x m,则m 等于( )A .-1B .0C .1D .24.曲线3:(0)C y x x =≥在点1x =处的切线为l ,则由曲线C 、直线l 及x 轴围成的封闭图形的面积是( ). A .1 B .112 C . 43 D .345.定义方程()'()f x f x =的实数根0x 叫做函数()f x 的 “新驻点”,若函数()g x x =,()ln(1)h x x =+,3()1x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( ) A .γαβ>> B .βαγ>> C .αβγ>> D .βγα>> 6.若()f x 在R 上可导,()()2223f x x f x '=++,则()3f x dx =⎰( )A .16B .54C .﹣24D .﹣187.若)(x f 满足23'22)2(,)(2)(e f e x x xf x f x x-==-.则0>x 时,)(x f ( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,也无极小值8.已知函数2()ln(1)f x a x x =+-在区间(0,1)内任取两个实数p ,q ,且p≠q ,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围为( )A .[15,)+∞B .](,15-∞C .](12,30D .](12,15- 9.已知()()201f x x xf '=--,则()2014f 的值为( )A .20122014⨯B .20132014⨯C .20132015⨯D .20142016⨯10.若函数()y f x '=在区间()12,x x 内是单调递减函数,则函数()y f x =在区间()12,x x 内的图象可以是( )11.设a 为实数,函数f (x )=x 3+ax 2+(a-2)x 的导数是)('x f ,且)('x f 是偶函数,则曲线y=f (x )在原点处的切线方程为( )A .y=-2xB .y=3xC .y=-3xD .y=4x12.已知定义在R 上的函数)(x f 满足(1)1f =,且对于任意的x ,21)(<'x f 恒成立,则不等式22lg 1(lg )22x f x <+的解集为( ) A .1(0,)10 B .1(0,)(10,)10+∞U C .1(,10)10 D .(10,)+∞ 13.曲线y =2x 3-3x +1在点(1,0)处的切线方程为( )A .y =4x -5B .y =-3x +2C .y =-4x +4D .y =3x -314.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为( ) A .1 B 2 C .22D 315.已知函数2221y x x =-+的导数为y ',y '=( )A .22x -B .41x +C .42x -D .21x + 16.已知曲线f (x )=ln x 在点(x 0,f (x 0))处的切线经过点(0,-1),则x 0的值为( ) A .1eB .1C .eD .10 17.已知)(x f '是奇函数)(x f 的导函数,0)1(=-f ,当0>x 时,0)()(>-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是( )A .)1,0()1,(Y --∞B .),1()0,1(+∞-YC .)1,0()0,1(Y -D .),1()1,(+∞--∞Y18.曲线sin e x y x =+(其中e =2.71828…是自然对数的底数)在点(01),处的切线的斜率为 ( )(A )2 (B )3 (C )13(D )1219.曲线324y x x =-+在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C.60° D.120°20.若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k =( )A .1-B .0C .1D .221.计算120(11)x dx +-⎰的结果为( ).A .1B .4πC .14π+D .12π+ 22.函数xxx f +=1cos )(在)1,0(处的切线方程是( ) A .01=-+y x B .012=-+y x C .012=+-y x D .01=+-y x 23.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1xy e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的共有( )A.1个B.2个C.3个D.4个24.【函数f (x )=(x 2﹣2x )e x(e 为自然数的底数)的图象大致是( ).25.若0cos2cos tt xdx =-⎰,其中(0,)t π∈,则t =( ).A.6π B.2π C.56πD.π26.已知函数f(x)=x 3+bx 2+cx+d(b 、c 、d 为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则22)3()21(-++c b 的取值范围是( ). A.()5,237B.)5,5(C.)25,437(D.(5,25)27.已知函数()()12ln +=x x f ,则()='0f ( ) A . 0B . 1C . 2D .28.⎰+1)2(dx x e x 等于 ( )A. 1B. eC. 1-eD. e + 129.已知函数()()y f x x R =∈上任一点00(,())x f x 处的切线斜率200(2)(1)k x x =-+,则该函数()f x 的单调递减区间为( )A.[1,)-+∞B.(,2]-∞C.(,1),(1,2)-∞-D.[2,)+∞ 30.函数1)(23++-=x x x x f 在点(1,2)处的切线的斜率是( ) A .B . 1C . 2D . 331.设()x f '是函数()x f 的导函数,将()x f y =和()x f y '=的图象画在同一个直角坐标系中,不可能正确的是( ) A .B .C .D .32.曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为( ) A. 42ln 2- B. 2ln 2- C. 4ln 2- D. 2ln 233.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围为( ) A .10<≤a B .10<<aC .11<<-aD .210<<a34.已知定义域为R 的奇函数()x f 的图象是一条连续不断的曲线,当()+∞∈,1x 时,()0<'x f ;当()1,0∈x 时()0>'x f ,且()02=f ,则关于x 的不等式()()01>+x f x 的解集为( ) A .(﹣2,﹣1)∪(0,2) B . (﹣∞,﹣2)∪(0.2)C .(﹣2,0)D . (1,2)35.曲线sin e x y x =+(其中e =2.71828…是自然对数的底数)在点(01),处的切线的斜率为( )(A )2 (B )3 (C )13(D )1236.已知函数32()1f x x bx cx =+++有两个极值点12,x x 且12[2,1],[1,2]x x ∈--∈,则(1)f -的取值范围是( )A .[3,12]B .3[,6]2-C .3[,3]2-D .3[,12]2-37.已知函数f (x )=﹣x 3+ax 2﹣x ﹣1在(﹣∞,+∞)上是单调函数,则实数a 的取值范围是A . B . C .D .38.已知函数()sin cos f x x x =+,且'()3()f x f x =,则x 2tan 的值是( )A .34-B .34C .43-D .43 39.过原点作曲线ln y x =的切线,则切线斜率为 ( ) A .2e B .21e C .e D .1e40.曲线sin xy x e =+在点()0,1处的切线方程是( )A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+= 41.由曲线y x =2y x =-及y 轴所围成的图形的面积为( )A .4B .6C .103 D .16342. ()f x '是函数()f x 的导数,函数()xf x e是增函数( 2.718281828e =⋅⋅⋅是自然对数的底数),()f x '与()f x 的大小关系是( )A .()()f x f x '=B .()()f x f x '>C .()()f x f x '≤D .()()f x f x '≥43.已知函数()f x 的定义域是R ,()f x '是()f x 的导数.()514f =-,对R x ∀∈,有()f x e '≤-( 2.71828e =⋅⋅⋅是自然对数的底数).不等式()2215ln 24f x x x x <-的解集是( )A .()0,1B .()1,+∞C .()0,+∞D .1,12⎛⎫⎪⎝⎭44.设''()y f x =是'()y f x =的导数.某同学经过探究发现,任意一个三次函数32()f x ax bx cx d =+++(0a ≠)都有对称中心00(,())x f x ,其中x 0满足''0()0f x =.已知32115()33212f x x x x =-+-,则1232014()()()()2015201520152015f f f f ++++=L ( )A .2012B .2013C .2014D .201545.已知函数x e xx f =)(,给出下列结论:①),1(+∞是)(x f 的单调递减区间;②当)1,(e k -∞∈时,直线k y =与)(x f y =的图象有两个不同交点; ③函数)(x f y =的图象与12+=x y 的图象没有公共点. 其中正确结论的序号是( )A.①②③B.①③C.①②D.②③ 46.定义在(0,)2π上的函数()f x ,()'f x 是它的导函数,且恒有()()'tan f x f x x >⋅成立.则( )A 3()()63f ππ<B .)1(1cos 2)6(3f f ⋅>⋅πC 6()2()64f ππ>D 2()()43f ππ> 47.已知函数)(x f 满足x e x xf x f x x =+')(2)(2,8)2(2e f =,则当0>x 时,)(x f ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,也有极小值D .既无极大值,也无极小值48.定义在R 上的可导函数()f x ,当()1,x ∈+∞时,()()()10x f x f x '-->恒成立,()())12,3,2122a fb fc f ===,则,,a b c 的大小关系为( ) A .c a b << B .b c a << C .a c b << D .c b a <<49.若不等式2229t t a t t +≤≤+在(]2,0∈t 上恒成立,则a 的取值范围是( )A .⎥⎦⎤⎢⎣⎡1,61 B .⎥⎦⎤⎢⎣⎡134,61 C .⎥⎦⎤⎢⎣⎡1,132 D .⎥⎦⎤⎢⎣⎡22,6150.已知函数231()1()32mx m n x f x x +++=+的两个极值点分别为12,x x ,且1(0,1),x ∈2x ∈()1,+∞,点(,)P m n 表示的平面区域为D ,若函数log (4),(1)a y x a =+>的图像上存在区域D 内的点,则实数a 的取值范围是( ) A .(]1,3 B . ()3,+∞ C .()1,3 D .[)3,+∞51.若存在直线l 与曲线1C 和曲线2C 都相切,则称曲线1C 和曲线2C 为“相关曲线”,有下列四个命题:①有且只有两条直线l 使得曲线221:4C x y +=和曲线222:4240C x y x y +-++=为“相关曲线”; ②曲线211:12C y x =+和曲线221:12C y x =-是“相关曲线”; ③当0b a >>时,曲线21:4C y ax =和曲线2222:-C x b y a +=()一定不是“相关曲线”; ④必存在正数a 使得曲线1C :ln y a x =和曲线2:C 2y x x =-为“相关曲线”. 其中正确命题的个数为( )A .1B .2C .3D .4 52.已知函数()12()ln ,(2f x xg x x a a ==+为常数),直线l 与函数()(),f x g x 的图像都相切,且l 与函数()f x 的图像的切点的横坐标为1,则a 的值为( )A .1B .1-C .12-D .2 53.某工厂生产的机器销售收入1y (万元)是产量x (千台)的函数:2117x y =,生产总成本2y (万元)也是产量x (千台)的函数;)0(2232>-=x x x y ,为使利润最大,应生产( ) A .9千台 B .8千台 C .7千台 D .6千台54.函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为 .55.已知函数()x f y =的图象在3=x 处的切线方程为72+-=x y ,则()()33f f '+的值是 56.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,则不等式0)()1(2>-x f xf x 的解集为 .57.已知函数f (x )=x 3+ax 2﹣a (a∈R),若存在x 0,使f (x )在x=x 0处取得极值,且f (x 0)=0,则a 的值为 .58.若函数()x f 在定义域D 内某区间I 上是增函数,且()xx f 在I 上是减函数,则称()x f y =在I 上是“弱增函数”.已知函数()()b x b x x h +--=12在(0,1]上是“弱增函数”,则实数b的值为59.已知点P 在曲线14+=x e y 上,α为曲线在点P 处切线的倾斜角,则α的取值范围是 .60.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .61.曲线y =xln x 在点(e ,e )处的切线与直线x +ay =1垂直,则实数a 的值为________. 62.函数()3123f x x x =-+,()3xg x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 .63.若曲线ln y ax x =-在()1,a 处的切线平行于x 轴,则实数a = .64.已知函数()y f x =的导函数()y f x '=的图象如下,则()y f x =有 个极大值点.65.已知函数()326)1(f x x mx m x ++++=存在极值,则实数m 的取值范围为_ _________.66.求曲线y=ln (2x-1)上的点到直线2x-y+3=0的最短距离_______.67.曲线21y x =-与直线2,0x y ==所围成的区域的面积为 . 68.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .69.已知函数()f x 的定义域是R ,()f x '是()f x 的导数,()1f e =,()()()g x f x f x '=-,()10g =,()g x 的导数恒大于零,函数()()xh x f x e =-( 2.71828e =⋅⋅⋅是自然对数的底数)的最小值是 . 70.对于函数b x a x a x x f +-+-=)3(231)(23有六个不同的单调区间,则a 的取值范围为 .ACP BD71.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),3A B ϕ>;②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 72.已知22:1O x y +=e .若直线2y k x =+上总存在点P ,使得过点P 的O e 的两条切线互相垂直,则实数k 的最小值为 . 73.已知()1cos f x x x =,则()2f f ππ⎛⎫'+= ⎪⎝⎭. 74.已知函数),(ln )(R n m nx x m x f ∈+= ,曲线()y f x =在点()()1,1f 处的切线方程为220x y --=.(1)=+n m ;(2)若1x >时,()0kf x x+<恒成立,则实数k 的取值范围是 .75.对于函数()f x ,若对于任意的123,,x x x R∈,()()()123,,f x f x f x 为某一三角形的三边长,则称()f x 为“可构成三角形的函数”.已知函数()1x x e tf x e +=+是“可构成三角形的函数”,则实数t 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .[]0,1C .[]1,2D .()0,+∞76.已知函数2()ln()f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程5()2f x x b =-+在区间[0,2]上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式34249+++ (21)ln(1)n n n++>+都成立.77.已知函数f (x )=alnx ﹣ax ﹣3(a <0). (Ⅰ)求函数f (x )的单调区间;(Ⅱ)若函数y=f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t∈[0,1],函数g (x )=x 3+x 2[f′(x )+m]在区间(t ,2)上总不是单调函数,其中f′(x )为f (x )的导函数,求实数m 的取值范围.78.已知函数()ln 1,.f x x ax a R =++∈ (Ⅰ)求()1f x x =在处的切线方程;(Ⅱ)若不等式()0f x ≤恒成立,求a 的取值范围;(Ⅲ)数列11{},2,21n n n a a a a +==+中,数列{}n b 满足ln ,{}n n n b n a b =记的前n 项和为n T ,求证:124.2n n n T -+<-79.已知函数()23bx ax x f +=的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x+9y=0垂直.(1)求实数b a ,的值;(2)若函数()x f 在区间[]1,+m m 上单调递增,求m 的取值范围80.已知函数()()R a ax x f ∈=,()1ln -=x x g .(1)若函数()()()x x f x x g x h 221--+=存在单调递减区间,求a 的取值范围; (2)当0>a 时,试讨论这两个函数图象的交点个数.81.已知()x a x f ln =,()()cx bx x f x g ++=2,且()12='f ,()x g 在21=x 和2=x 处有极值.(1)求实数c b a ,,的值;(2)若0>k ,判断()x g 在区间()k k 2,内的单调性.82.设函数()()0ln >--=a x a x x f .(1)若,1=a 求()x f 的单调区间及()x f 的最小值;(2)若0>a ,求()x f 的单调区间;(3)试比较222222ln 33ln 22ln nn +++Λ与()()()12121++-n n n 的大小.其中()2≥∈*n N n 且,并证明你的结论.83.已知函数)0()(>++=a c x b ax x f 的图象在点))1(,1(f 处的切线方程为1-=x y . (1)用a 表示出b ,c ;(2)证明:当21≥a 时,x x f ln )(≥在),1[+∞上恒成立; (3)证明:)()1(2)1ln(131211*N n n n n n ∈+++>++++Λ.84.已知函数()()2f x x x a =-,()()21g x x a x a =-+-+(其中a ∈R ).(Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并直接写出函数()f x 的单调区间;(Ⅱ)令()()()F x f x g x =-,讨论函数()y F x =在区间[]1,3-上零点的个数。
高中数学专题同步练习训练大全
高中数学专题同步练习训练大全高中数学集合练习题一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a 的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a 的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1 0 ,m∈R}, 若A∩B=φ, 且A∪B=A,求m的取值范围.高中数学数列练习题一、选择题:(本大题共10小题,每小题5分,共50分)1.设数列,,2,,……则2是这个数列的 ( )D.第九项 A.第六项 B.第七项 C.第八项2.若a≠b,数列a,x1,x 2 ,b和数列a,y1 ,y2 , y3,b都是等差数列,则A.2 3B.3 4x2x1 ( ) y2y1C.1D.4 33. 等差数列{an}中,若a3+a4+a5+a6+a7=450 ,则前9项和S9= ( )A.1620B.810C.900D.6754.在-1和8之间插入两个数a,b,使这四个数成等差数列,则 ( )A. a=2,b=5B. a=-2,b=5C. a=2,b=-5D. a=-2,b=-55.首项为24的等差数列,从第10项开始为正数,则公差d的取值范围是( )A.d 888B.d 3C.≤d 3D. d≤3 p= 3336.等差数列{an}共有2n项,其中奇数项的和为90,偶数项的和为72,且a2na133,则该数列的公差为 ( )A.3B.-3C.-2D.-17.在等差数列{an}中,a100,a110,且a11|a10|,则在Sn中最大的负数为( )A.S17B.S18C.S19D.S208.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( )A.a11B.a10C.a9D.a89.设函数f(x)满足f(n+1)=A.95 2f(n)n_(n∈N)且f(1)=2,则f(20)为 ( ) 2 C.105 D.192B.9710.已知无穷等差数列{a n},前n项和S n 中,S 6 S 8 ,则 ( )A.在数列{a n }中a7 最大;B.在数列{a n }中,a 3 或a 4 最大;C.前三项之和S 3 必与前11项之和S 11 相等;D.当n≥8时,a n 0.二、填空题:(本大题共4小题,每小题5分,共20分)11.集合Mmm6n,nN_,且m60中所有元素的和等于_________.a1a2a3an,则S13_____ 12、在等差数列{an}中,a3a7a108,a4a1114.记Sn 13、已知等差数列{an}中,a7a916,a41,则a16的值是.Sn5n1a=,f(n)n;Tn3n1bn14.等差数列{an}、{bn}、{cn}与{dn}的前n项和分别记为Sn、Tn、Pn、Qn.f(n)cn5n2P=,g(n)n.则的最小值= g(n)dn3n2Qn三、解答题:15.(12分)(1)在等差数列{an}中,d1,a78,求an和Sn; 3(2)等差数列{an}中,a4=14,前10项和S10185.求an;16.(13分)一个首项为正数的等差数列{an},如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大17.(13分)数列{an}中,a18,a42,且满足an22an1an0|a1||a2||an|,求Sn。
高中数学练习题及答案
高中数学练习题及答案高中数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
以下是店铺为大家收集的高中数学练习题及答案,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学练习题及答案11.3 交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}答案:A2.设S={x||x|3},T={x|3x-51},则ST=()A. B.{x|-33}C.{x|-32}D.{x|23}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为()A.{x=1,或y=2}B.{1,2}C.{(1,2)}D.(1,2)解析:AB=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR 且x+y=1,则AB的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,即AB={(1,0),(0,1)}.答案:C6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案:C7.已知方程x2-px+15=0与x2-5x+q=0的'解分别为M和S,且MS={3},则pq=________.解析:∵MS={3},3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.答案:438.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.解析:SA={x|x1}.答案:{x|15}9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范围是________.解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.答案:{a|a0或a6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.答案:{1,3,7,8}11.满足条件{1,3}A={1,3,5}的所有集合A的个数是________个.答案:4能力提升12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()A.{x|-11}B.{x|x0}C.{x|01}D.解析:∵A={x|-11},B={y|y0}AB={x|01}.答案:C13.若A、B、C为三个集合,且有AB=BC,则一定有()A.ACB.CAC.AD.A=答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB=________解析:UA={c,d},UB={a},UAUB={a,c,d}.答案:{a,c,d}15.(2013上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa-1},若AB=R,则a的取值范围为________.解析:当a1时,A={x|x1或xa},要使AB=R,则a1,a-112;当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.综上,a答案:{a|a2}16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.解析:|x+2|-3x+2-51,A={x|-51},又∵AB=(-1,n),-1是方程(x-m)(x-2)=0的根,即m=-1,此时B={x|-12},AB=(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:(1)AP;(2)若xA,则2xA;(3)若xPA,则2xPA.解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A={x|x+10或x-40},B={x|2aa+2}.(1)若A,求实数a的取值范围;(2)若AB=B,求实数a的取值范围.解析:(1)A={x|x-1或x4},∵A,2a2+a,a+24或2aa+2,2a-1.a=2或a-12.综上所述,实数a的取值范围为aa-12或a=2.(2)∵AB=B,BA.①B=时,满足BA,则2aa+22,②B时,则2aa+2,a+2-1或2aa+2,2a4.即a-3或a=2.综上所述,实数a的取值范围为{a|a-3或a=2}.高中数学练习题及答案21.1 集合的含义及其表示一位渔民非常喜欢数学,但他怎么也不明白集合的意义,于是他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家很难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家非常激动,高兴地告诉渔民:“这就是集合!”你能理解数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64, 14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b}B.{a}{a,b}C.a{a}D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素都是正整数,且若aM,则6-aM,则所有满足条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素可以是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2B.{xR|x2-1=0}C.{xR|x2+x+1=0}D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a=-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k +1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满足mN+,且8-mN+,则集合M 的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③能力提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,此时A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,此时A =-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2014+b2013的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2014+b2013=(-1)2014+02013=1.17.设正整数的集合A满足:“若xA,则10-xA”.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)这样的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地出现在A中.同理,2和8,3和7,4和6成对地出现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,1-1a1+1a=a-1a+1M,1+a-1a+11-a-1a+1=aM.∵a0且a1,a,1+a1-a,-1a,a-1a+1互不相等集合M中至少有4个元素.【高中数学练习题及答案】。
高中数学向量专项练习(含答案)
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
数学高中难度练习题及讲解
数学高中难度练习题及讲解### 练习题1:函数的性质题目:已知函数 \( f(x) = ax^2 + bx + c \),其中 \( a \neq 0 \)。
如果 \( f(1) = 0 \),求 \( b \) 的值。
解答:将 \( x = 1 \) 代入函数 \( f(x) \) 中,得到:\[ f(1) = a(1)^2 + b(1) + c = a + b + c \]根据题意,\( f(1) = 0 \),因此:\[ a + b + c = 0 \]由于 \( f(1) = 0 \),我们可以得出:\[ b = -a - c \]### 练习题2:三角函数的恒等变换题目:如果 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos(\alpha) \) 的值。
解答:在第一象限,\( \sin(\alpha) \) 和 \( \cos(\alpha) \) 都是正数。
利用毕达哥拉斯恒等式:\[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \]将 \( \sin(\alpha) \) 的值代入,得到:\[ \left(\frac{3}{5}\right)^2 + \cos^2(\alpha) = 1 \]\[ \frac{9}{25} + \cos^2(\alpha) = 1 \]\[ \cos^2(\alpha) = 1 - \frac{9}{25} \]\[ \cos^2(\alpha) = \frac{16}{25} \]由于 \( \alpha \) 在第一象限,\( \cos(\alpha) \) 为正,因此:\[ \cos(\alpha) = \sqrt{\frac{16}{25}} = \frac{4}{5} \]### 练习题3:不等式的解法题目:解不等式 \( |x - 2| < 4 \)。
高中数学练习试题
高中数学练习试题1. 解方程:求方程3x + 2 = 11的解。
2. 求函数的定义域:给定函数f(x) = √(4 - x),求f(x)的定义域。
3. 求函数的极限:计算lim(n→∞) (1 + 1/n)^n。
4. 求平面上两点间的距离:已知平面上两点A(2, -3)和B(-1, 4),求AB的长度。
5. 算法题:请写出计算一个整数的平方根的算法。
6. 线性规划:某工厂生产产品A和B,每单位A需耗时3小时,每单位B需耗时2小时。
每天共有100个小时可用于生产。
产品A的利润为600元,产品B的利润为800元。
求最大化当天的利润。
7. 求导数:求函数f(x) = 3x^4 + 2x^3 - 5x^2的导数。
8. 求不等式的解集:求不等式2x - 5 > 3x + 7的解集。
9. 求概率:一副标准扑克牌,从中随机抽取一张牌,求抽取的牌为红心的概率。
10. 三角函数:已知一直角三角形的斜边长为5,其中一个锐角的正弦值为4/5,求另一个角的余弦值。
11. 几何问题:在平面上给定三点A(2, -4),B(-1, 3)和C(5, 1),求三角形ABC的周长。
12. 等比数列:已知等比数列的首项为2,公比为3,求第n项的表达式。
13. 求矩阵的逆:已知矩阵A = [[1, 2], [3, 4]],求其逆矩阵A^-1。
14. 概率分布:一个骰子被投掷6次,求投掷结果中恰好出现四次6的概率。
15. 函数求值:给定函数f(x) = 2x^2 + 3x - 1,求f(2)的值。
16. 复数运算:计算复数z = 3 + 4i与w = 1 - 2i的乘积。
17. 二次方程:求方程x^2 - 5x + 6 = 0的根。
18. 立体几何:已知正方体的体积为27立方厘米,求其表面积。
19. 解三角形:已知一等腰三角形的顶角为30度,边长为5,求底边长。
20. 统计问题:有一组数据集{2, 4, 6, 8, 10},求其平均值和标准差。
高中数学计算练习题
高中数学计算练习题一、代数部分1. 计算下列表达式的值:- \( (3x^2 - 2x + 1) - (5x^2 + 3x - 7) \)- \( \frac{2}{x} + \frac{3}{x+1} \)2. 解下列方程:- \( 2x^2 + 5x - 3 = 0 \)- \( \frac{1}{x} - 2 = 0 \)3. 简化下列分式:- \( \frac{4x^3 - 4x^2 + x}{x^2 - 1} \)二、几何部分1. 已知三角形ABC的三边长分别为a, b, c,且满足以下条件:- \( a^2 + b^2 = c^2 \)- \( a + b + c = 24 \)- \( ab + bc + ac = 90 \)求三角形ABC的面积。
2. 已知圆的半径为r,求圆的面积和周长。
三、三角函数部分1. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos \alpha \) 和 \( \tan \alpha \)。
2. 计算下列三角函数表达式的值:- \( \sin(30^\circ) + \cos(60^\circ) \)- \( \tan(45^\circ) \)四、概率统计部分1. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少一个红球的概率。
2. 抛一枚硬币两次,求正面朝上的次数为1的概率。
五、综合应用题1. 某工厂生产的产品合格率为90%,如果随机抽取100件产品,求至少有85件产品合格的概率。
2. 一个班级有30名学生,其中10名男生和20名女生。
随机选取5名学生参加数学竞赛,求至少有3名女生的概率。
结束语通过这些练习题,学生可以加深对高中数学知识点的理解和应用,提高解题速度和准确率。
希望这些练习题能够帮助学生在数学学习中取得更好的成绩。
高中数学练习册必刷题
高中数学练习册必刷题一、选择题1. 若函数\( f(x) = ax^2 + bx + c \)的图象关于直线\( x = 1 \)对称,则下列哪个选项是正确的?A. \( a = 0 \)B. \( b = 2a \)C. \( c = 0 \)D. \( b = -2a \)2. 已知等差数列\( \{a_n\} \)的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)的值。
A. 23B. 25C. 27D. 293. 函数\( y = \log_2 x \)的定义域是:A. \( x > 0 \)B. \( x \geq 0 \)C. \( x < 0 \)D. \( x \leq 0 \)二、填空题4. 若\( \sin \alpha = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos \alpha \)的值。
5. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),\( a +b = 4 \),求\( ab \)的值。
三、解答题6. 证明:若\( \triangle ABC \)是直角三角形,且\( \angle C =90^\circ \),求证\( a^2 + b^2 = c^2 \)。
7. 已知\( \triangle ABC \)中,\( AB = 5 \),\( AC = 3 \),\( BC = 4 \),求\( \sin A \)的值。
四、应用题8. 某工厂生产一批零件,每个零件的成本为10元,售价为15元,若工厂希望获得的利润是总成本的20%,求工厂至少需要生产多少个零件。
9. 某公司计划在一条直线上建两个仓库,仓库A和仓库B,仓库A到公司的距离是2公里,仓库B到公司的距离是5公里。
如果公司希望两个仓库之间的距离不超过3公里,问公司应该在何处建立仓库B?五、综合题10. 已知函数\( f(x) = x^3 - 3x^2 + 2x \),求导数\( f'(x) \),并求\( f(x) \)在区间\( [0, 3] \)上的极值。
高中数学《函数单调性》练习题
函 数 单 调 性一、 选择题1.已知函数y =f (x )是定义在R 上的增函数,则f (x )=0的根 A .有且只有一个 B .有2个 C .至多有一个 D .以上均不对2.若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是 A .[-3,-1] B .(-∞,-3]∪[-1,+∞)C .[1,3] D .(-∞,1]∪[3,+∞) 3.已知f (x )=⎩⎨⎧≥<+-)1(log )1(4)13(x xx a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 A .(0,1) B .(0,31) C .[71,31) D .[71,1)4.函数f (x )在R 上是增函数,若a +b ≤0,则有( )A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )5.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x1-x+2.其中在(-∞,0)上为减函数的是( ) A .① B .④ C .①④ D .①②④ 6.函数y =-x 2的单调减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0)D .(-∞,+∞)7若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( ) A .单调递增 B .单调递减 C .先减后增 D .无法判断 8设函数f (x )在(-∞,+∞)上为减函数,则( )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 9.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数; ④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个二、填空题10已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值范围是 .11.已知下列四个命题:①若f (x )为减函数,则-f (x )为增函数;②若f (x )为增函数,则函数g (x )=)(1x f 在其定义域内为减函数;③若f (x )与g (x )均为(a ,b )上的增函数,则f (x )·g (x )也是区间(a ,b )上的增函数;④若f (x )与g (x )在(a ,b )上分别是递增与递减函数,且g (x )≠0,则)()(x g x f 在(a ,b )上是递增函数.其中正确命题的序号是 .12若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 13已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为 函 数 性 质(一)一选择题1函数()412x xf x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称2设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -= (A )-3 (B )-1 (C )1 (D)33给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,在(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④ 4若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数 5已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 6定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则(A)(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-< (C) (2)(1)(3)f f f -<< (D)(3)(1)(2)f f f <<-7函数22xy x =-的图像大致是8下列命题中,真命题是(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数函 数 的 性 质(二)一选择题1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象上的是( )A . (())a f a ,-B . (())--a f a ,C . (())---a f a ,D .(())a f a ,-2如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( )A .增函数,最小值是-5B .增函数,最大值是-5C .减函数,最小值是-5D .减函数,最大值是-53已知函数)(1222)(R x a a x f x x ∈+-+⋅=是奇函数,则a 的值为( )A .1-B .2-C .1D .24.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( )A .)2()2()(f f f >->-ππ B .)()2()2(ππ->->f f fC .)2()2()(ππ->>-f f f D .)()2()2(ππ->>-f f f5已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数6下面四个结论中,正确命题的个数是 ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A.1B.2C.3D.4二、填空题7若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ .8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为_______________9已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________. 10给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ). 在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.11已知分段函数)(x f 是奇函数,当),0[+∞∈x 时的解析式为2x y =,则这个函数在区间)0,(-∞上的解析式为 .。
高中数学计算练习题
高中数学计算练习题一、集合与函数1. 计算下列集合的交集和并集:A = {x | x² 3x + 2 = 0},B = {x | x² 4x + 3 = 0}2. 已知函数f(x) = 2x + 3,求f(2)和f(1)的值。
3. 设函数g(x) = x² 5x + 6,求g(x)在区间[1, 3]上的最大值和最小值。
4. 计算下列函数的定义域:h(x) = √(4 x²)5. 已知函数f(x) = (x 1) / (x + 2),求f(x)的值域。
二、三角函数与解三角形6. 已知sinα = 3/5,α为第二象限角,求cosα和tanα的值。
7. 计算sin(π/6 + π/4)的值。
8. 在△ABC中,a = 5, b = 8, C = 120°,求c的长度。
9. 已知tanA = 1/2,求sinA和cosA的值。
10. 计算下列各式的值:(1) cos²30° sin²30°(2) sin(45° + 30°) cos(45° 30°)三、数列11. 已知数列{an}的通项公式为an = 2n 1,求前10项的和。
12. 计算等差数列5, 8, 11, 14, 的第10项。
13. 已知等比数列的首项为3,公比为2,求前5项的和。
14. 设数列{bn}的通项公式为bn = 3n + 1,求证数列{bn}为递增数列。
15. 计算数列1, 1/2, 1/4, 1/8, 的前n项和。
四、平面向量与复数16. 已知向量a = (2, 3),求向量a的模。
17. 计算向量b = (4, 1)与向量c = (2, 3)的夹角。
18. 已知向量d = (m, 2),向量e = (3, m),且向量d与向量e共线,求m的值。
19. 计算复数(1 + i)²的值。
20. 已知复数z = 3 + 4i,求z的模和辐角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三[A 组基础巩固]1.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是()A.y 2=-11x B.y 2=11x C.y 2=-22xD.y 2=22x解析:在方程2x -4y +11=0中,令y =0得x =-112,∴抛物线的焦点为-112,0即p 2=112,∴p =11,∴抛物线的方程是y 2=-22x ,故选C.答案:C2.已知直线y =kx -k 及抛物线y 2=2px (p >0),则()A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点解析:∵直线y =kx -k =k (x -1),∴直线过点(1,0).又点(1,0)在抛物线y 2=2px 的内部.∴当k =0时,直线与抛物线有一个公共点;当k ≠0时,直线与抛物线有两个公共点.答案:C3.过抛物线y 2=2px (p >0)的焦点作一直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则k OA ·k OB 的值为()A.4B.-4C.p2D.-p2解析:k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2,根据焦点弦的性质x 1x 2=p 24,y 1y 2=-p 2,故k OA ·k OB =-p2p 24=-4.答案:B4.已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若|AF |=2|BF |,则k 的值是()A.13B.223C.22D.24解析:根据题意画图,如图所示,直线m 为抛物线的准线,过点A作AA 1⊥m ,过点B 作BB 1⊥m ,垂足分别为A 1,B 1,过点B 作BD ⊥AA 1于点D ,设|AF |=2|BF |=2r ,则|AA 1|=2|BB 1|=2|A 1D |=2r ,所以|AB |=3r ,|AD |=r ,则|BD |=22r .所以k =tan ∠BAD =|BD ||AD |=2 2.选C.答案:C5.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A.2B.3C.1728D.10解析:设直线AB 的方程为x =ny +m (如图),A (x 1,y 1),B (x 2,y 2),∵OA →·OB →=2,∴x 1x 2+y 1y 2=2.又y 21=x 1,y 22=x 2,∴y 1y 2=-2.2=x ,=ny +m ,得y 2-ny -m =0,∴y 1y 2=-m =-2,∴m =2,即点M (2,0).又S △ABO =S △AMO +S △BMO =12|OM ||y 1|+12|OM ||y 2|=y 1-y 2,S △AFO =12|OF |·|y 1|=18y 1,∴S △ABO +S △AFO =y 1-y 2+18y 1=98y 1+2y 1≥298y 1·2y 1=3,当且仅当y 1=43时,等号成立.答案:B6.直线y =x -1被抛物线y 2=4x 截得的线段的中点坐标是________.解析:将y =x -1代入y 2=4x ,整理,得x 2-6x +1=0.由根与系数的关系,得x 1+x 2=6,x 1+x 22=3,∴y 1+y 22=x 1+x 2-22=6-22=2.∴所求点的坐标为(3,2).答案:(3,2)7.过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为________.解析:抛物线的焦点为F (1,0),准线方程为x =-1.由抛物线的定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52.因此,点M 到抛物线准线的距离为52+1=72.答案:728.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为________.解析:抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p 2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限,所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43.答案:439.已知抛物线y 2=6x ,过点P (4,1)引一弦,使它恰在点P 被平分,求这条弦所在的直线方程.解析:设弦的两个端点为P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减得(y 1+y 2)(y 1-y 2)=6(x 1-x 2).①∵y 1+y 2=2,代入①得k =y 2-y 1x 2-x 1=3.∴直线的方程为y -1=3(x -4),即3x -y -11=0.10.已知抛物线y 2=4x 截直线y =2x +m 所得弦长AB =35,(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求P 点的坐标.2=4x ,=2x +m ,⇒4x 2+4(m -1)x +m 2=0,由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,|AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·1-m2-4·m 24=51-2m.由|AB |=35,即51-2m=35⇒m =-4.(2)设P (a,0),P 到直线AB 的距离为d ,则d =|2a -0-4|22+-12=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP|AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).[B 组能力提升]1.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为()A.14,±24 B.18,±24C.14,24D.18,24解析:设抛物线的焦点为F ,因为点P 到准线的距离等于它到顶点的距离,所以点P 为线段OF 的垂直平分线与抛物线的交点,易求点P 的坐标为18,±24.答案:B2.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为()A.y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16xD.y 2=2x 或y 2=16x解析:由已知得抛物线的焦点F p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF →=p2,-2,AM →=y 202p ,y 0-2.由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M 8p ,4.由|MF |=5得,8p -p22+16=5,又p >0,解得p =2或p =8,故选C.答案:C3.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析:设AB 的方程为x =my +4,代入y 2=4x 得y 2-4my -16=0,则y 1+y 2=4m ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16m 2+32当m =0时,y 21+y 22最小值为32.答案:324.如图,抛物线C 1:y 2=2px 和圆C 2:(x -p 2)2+y 2=p 24,其中p >0,直线l 经过C 1的焦点,依次交C 1,C 2于A ,B ,C ,D 四点,则AB →·CD →的值为________.解析:易知AB →·CD →=|AB |·|CD |,圆C 2的圆心即为抛物线C 1的焦点F .当直线l 的斜率不存在时,l 的方程为x =p 2,所以A (p 2,p ),B (p 2,p 2),C (p 2,-p2),D (p 2,-p ),|AB →|=|CD →|=p 2,所以AB →·CD →=p 2·p 2=p24;当直线l 的斜率存在时,设A (x 1,y 1),D (x 2,y 2),则|AB |=|FA |-|FB |=x 1+p 2-p 2=x 1,同理|CD |=x 2,设l 的方程为y =k (x -p 2),=k x -p22=2px,可得k 2x 2-(pk 2+2p )x +k 2p 24=0,则AB →·CD →=|AB |·|CD |=x 1·x 2=p 24.综上,AB →·CD →=p 24.答案:p 245.如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.证明:设k AB =k (k ≠0),∵直线AB ,AC 的倾斜角互补,∴k AC =-k (k ≠0),∵AB 的方程是y =k (x -4)+2.=k x -4+2,2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0.∵A (4,2),B (x B ,y B )是上述方程组的解.∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k 2,以-k 代换x B 中的k ,得x C =4k 2+4k +1k2,∴k BC =y B -y Cx B -x C =k x B -4+2-[-k x C -4+2]x B -x C=k x B +x C -8x B -x C=-8k k2=-14.∴直线BC 的斜率为定值.6.(2016·高考全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解析:(1)如图,由已知得M(0,t ),又N 为M 关于点P 的对称点,故故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p.因此所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p2tx ,即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.习题四[A 组基础巩固]1.方程xy 2-x 2y=2x 所表示的曲线()A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于x-y=0对称解析:同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.答案:C2.方程x+|y-1|=0表示的曲线是()解析:方程x+|y-1|=0可化为|y-1|=-x≥0,∴x≤0,故选B.答案:B3.已知动点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线中点的轨迹方程是() A.y=2x2B.y=8x2C.2y=8x2-1D.2y=8x2+1解析:设AP中点为(x,y),则P(2x,2y+1)在2x2-y=0上,即2(2x)2-(2y+1)=0,∴2y=8x2-1.答案:C4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x-1)2+y2=4C.y2=-2x D.(x-1)2+y2=2解析:如图,设P(x,y),圆心为M(1,0).连接MA,则MA⊥PA,且|MA|=1,又∵|PA|=1,∴|PM|=|MA|2+|PA|2= 2.即|PM|2=2,∴(x-1)2+y2=2.答案:D5.已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是()A.a>1B.0<a<1C.0<a<1或a>1D.a∈∅解析:当0<a≤1时,两曲线只有一个交点(如图(1));当a>1时,两曲线有两个交点(如图(2)).答案:A6.方程x 2+2y 2-4x+8y+12=0表示的图形为________.解析:对方程左边配方得(x-2)2+2(y+2)2=0.∵(x-2)2≥0,2(y+2)2≥0,∴x-22=0,2y+22=0,解得x=2,y=-2.从而方程表示的图形是一个点(2,-2).答案:一个点(2,-2)7.设圆C 与圆x 2+(y-3)2=1外切,与直线y=0相切,则圆心C 的轨迹方程为________.解析:设圆心C(x,y),由题意得x-02+y-32=y+1(y>0),化简得x 2=8y-8.答案:x 2=8y-88.已知l 1是过原点O 且与向量a=(2,-λ)垂直的直线,l 2是过定点A(0,2)且与向量b=-1,λ2平行的直线,则l 1与l 2的交点P 的轨迹方程是________,轨迹是________.解析:∵kl 1=2λ,∴l 1:y=2λx;kl 2=-λ2,l 2:y=-λ2x+2,∴l 1⊥l 2,故交点在以原点(0,0),A(0,2)为直径的圆上但与原点不重合,∴交点的轨迹方程为x 2+(y-1)2=1(y≠0).答案:x 2+(y-1)2=1(y≠0)以(0,1)为圆心,1为半径的圆(不包括原点)9.已知定长为6的线段,其端点A、B 分别在x 轴、y 轴上移动,线段AB 的中点为M,求M 点的轨迹方程.解析:作出图象如图所示,根据直角三角形的性质可知|OM|=12|AB|=3.所以M 的轨迹为以原点O 为圆心,以3为半径的圆,故M 点的轨迹方程为x 2+y 2=9.10.在平面直角坐标系中,已知动点P(x,y),PM⊥y 轴,垂足为M,点N 与点P 关于x 轴对称,且OP →·MN →=4,求动点P 的轨迹方程.解析:由已知得M(0,y),N(x,-y),∴MN →=(x,-2y),∴OP →·MN →=(x,y)·(x,-2y)=x 2-2y 2,依题意知,x 2-2y 2=4,因此动点P 的轨迹方程为x 2-2y 2=4.[B 组能力提升]1.已知A(-1,0),B(2,4),△ABC 的面积为10,则动点C 的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:由两点式,得直线AB 的方程是y-04-0=x+12+1,即4x-3y+4=0,线段AB 的长度|AB|=2+12+42=5.设C 的坐标为(x,y),则12×5×|4x-3y+4|5=10,即4x-3y-16=0或4x-3y+24=0.答案:B2.“点M 在曲线y 2=4x 上”是点M 的坐标满足方程y=-2x的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:点M 在曲线y 2=4x 上,其坐标不一定满足方程y=-2x,但当点M 的坐标满足方程y=-2x时,则点M 一定在曲线y 2=4x 上,如点M(4,-4).答案:B3.已知两点M(-2,0),N(2,0),点P 满足PM →·PN →=12,则点P 的轨迹方程为________.解析:设P(x,y),则PM →=(-2-x,-y),PN →=(2-x,-y).于是PM →·PN →=(-2-x)(2-x)+y 2=12,化简得x 2+y 2=16,此即为所求点P 的轨迹方程.答案:x 2+y 2=164.直线l:y=k(x-5)(k≠0)与圆O:x 2+y 2=16相交于A,B 两点,O 为圆心,当k 变化时,则弦AB 的中点M 的轨迹方程为________.解析:设M(x,y),易知直线恒过定点P(5,0),再由OM⊥MP,得|OP|2=|OM|2+|MP|2,所以x 2+y 2+(x-5)2+y 2=25,整理得+y 2=254.因为点M 应在圆内,故所求的轨迹为圆内的部分.+y 2=254,2=16得两曲线交点的横坐标为x=165,故所求轨迹方程为+y 2+y 25.已知等腰三角形的顶点是A(4,2),底边一个顶点是B(3,5),求另一个顶点C 的轨迹方程,并说明它的轨迹是什么?解析:设另一顶点C 的坐标为(x,y),依题意,得|AC|=|AB|,由两点间距离公式,得x-42+y-22=4-32+2-52.化简,得(x-4)2+(y-2)2=10.因为A,B,C 为三角形的三个顶点,所以A,B,C 三点不共线,即点B,C 不能重合,且B,C 不能为⊙A 的一直径的两个端点.①因为B,C 不重合,所以点C 的坐标不能为(3,5),②又因为点B 不能为⊙A 的一直径的两个端点,由x+32=4,得x=5.点C 的坐标不能为(5,-1).如图,故点C 的轨迹方程为(x-4)2+(y-2)2=10点C 的轨迹是以点A(4,2)为圆心,以10为半径的圆,除去点(3,5),(5,-1).6.已知直线y=mx+3m和曲线y=4-x2有两个不同的交点,求实数m的取值范围.解析:直线y=m(x+3)过定点(-3,0),曲线y=4-x2即x2+y2=4(y≥0)表示半圆,由图可知m的取值范围是0,255.。