(完整word版)1粘土矿物的结晶结构及基本特征
黏土矿物组成
黏土矿物组成摘要:1.引言2.黏土矿物的定义与分类3.黏土矿物的主要成分4.黏土矿物的性质与特征5.黏土矿物的形成与分布6.黏土矿物的应用7.结论正文:【引言】黏土矿物是一类广泛存在于自然界的重要矿物,它们具有独特的物理、化学和矿物学特性。
黏土矿物的研究不仅有助于我们了解地球表层系统的演化过程,还可以为各类工程和技术应用提供重要参考。
本文将对黏土矿物的组成、性质、特征、形成与分布以及应用等方面进行详细介绍。
【黏土矿物的定义与分类】黏土矿物是一类主要由硅、铝、铁等元素组成的层状硅酸盐矿物。
它们具有较低的结晶度和较广泛的分布,是地球表层系统中最常见的一类矿物。
根据黏土矿物的成分和结构特征,可以将其分为高岭石、伊利石、蒙脱石和绿泥石等主要类型。
【黏土矿物的主要成分】黏土矿物的主要成分是硅、铝和铁,它们在黏土矿物中的含量和比例决定了黏土矿物的矿物组成和性质。
其中,硅是黏土矿物的主要成分,占黏土矿物总重量的50% 以上;铝和铁则分别占20% 和10% 左右。
此外,黏土矿物中还包含少量的钾、钙、镁等元素。
【黏土矿物的性质与特征】黏土矿物具有以下特征:首先,黏土矿物的结晶度较低,一般为1-2 个晶胞层;其次,黏土矿物具有良好的塑性,能够在外力作用下发生变形;第三,黏土矿物具有较高的比表面积,能够吸附大量水分和其他物质;最后,黏土矿物具有较低的溶解度和较高的抗蚀性。
【黏土矿物的形成与分布】黏土矿物的形成主要与地球表层系统的风化、沉积和成岩作用有关。
在风化作用中,岩石中的硅酸盐矿物经过水解和离子交换等过程,形成黏土矿物;在沉积作用中,黏土矿物通过水体的搬运和沉积,形成黏土矿床;在成岩作用中,黏土矿物在高温、高压条件下发生变质,形成各类岩石。
黏土矿物广泛分布于地球表层系统,包括土壤、河流、湖泊、海洋和地下水等。
【黏土矿物的应用】黏土矿物在工程和技术领域具有广泛的应用,主要包括以下几个方面:一是作为建筑材料,如制作砖、瓦、陶器等;二是作为陶瓷工业的原料,如制作瓷器、陶器等;三是作为催化剂和吸附剂,如用于催化剂载体、废水处理等;四是作为钻井泥浆的重要成分,如提高泥浆的性能等。
粘土矿物1
三、非硅酸盐粘土矿物
粘土矿物组成中,除 层状硅酸盐外,还含有一 类矿物结构比较简单、水 化程度不等的铁、锰、铝 和硅的氧化物及其水合物 和水铝英石。
(一)氧化铁
土壤中常见的氧 化铁矿物是针铁矿和 赤铁矿。
针铁矿(α-FeOOH)
一般晶体都很小,比较大 的带黄色,较小的带棕色,常 呈针状,故称为针铁矿。
4、同晶替代
(1)什么是同晶替代?
同晶替代是指组 成矿物的中心离子被 电性相同、大小相近 的离子所替代而晶格 构造保持不变的现象
(2)同晶替代的条件
① 离子半径 替代和被替代离子的大小要 相近,只有这样才能保证替代后 晶形不发生改变。 如Fe3+离子的半径为0.064nm, 与八面体的中心离子Al3+(半径 0 . 0 5 7 nm) 的 半 径 相 近 , 可 发 生 替代而不改变晶形。
(2)非膨胀性
在相邻晶层的层面不同,一 个是硅片的氧面,一个是铝片的 氢氧面,两个晶层间产生了键能 较强的氢键,使相邻晶层间产生 了较强的连接力,晶层的距离不 变,不易膨胀,膨胀系数一般小 于5%。高岭石层间间距约为 0.72nm。
(3)电荷数量少
晶层内部硅片和铝片中没有 或极少同晶替代现象,其负电 荷的来源:
(三)水铝英石
水铝英石 ( xAl2O3·ySiO2·nH2O), 是 由 氧化硅、氧化铝和水组成的非晶 质硅酸盐矿物,Si/Al比在1~2之 间变化。
水铝英石具有较高的阳离子 交位晶片
从化学上来看,四面体 为 ( SiO4)4-, 八 面 体 为 (AlO6)9-,它们都不是化 合物,在它们形成硅酸盐粘 土矿物之前,四面体和八面 体分别各自聚合。
(1)四面体片(简称硅片)
粘土矿物和粘土胶体化学基础
粘土矿物和粘土胶体化学基础第一节粘土矿物的晶体构造与性质粘土作为钻井液的重要组成成分,其晶体构造与性质对钻井液性能有十分重要的影响。
钻井过程中井眼的稳定性、油气层的保护均与地层中粘土矿物类型和特性密切相关。
粘土主要是由粘土矿物(含水的铝硅酸盐)组成的。
某些粘土除粘土矿物外,还含有不定量的非粘土矿物,如石英、长石等。
许多粘土还含有非晶质的胶体矿物,如蛋白石、氢氧化铁、氢氧化铝等。
有人把任何细粒的、天然的、土状的物料都叫做粘土,这种提法并不确切。
大多数粘土颗粒的粒径小于2μm,它们在水中有分散性、带电性,离子交换以及水化性,这些性能都是在处理与配制钻井液时需要考虑的因素。
一、粘土矿物的分类和化学组成1.粘土矿物的分类粘土矿物的分类方法很多,现根据其单元晶层构造的特征进行分类,见表2-1。
表2-1的资料说明,粘土矿物按两种晶片的配合比例可分为1:1型(一层硅氧四面体晶片与一层铝氧八面体晶片相结合构成单元晶层)、2:1型(两层硅氧四面体晶片中间夹一层铝氧八面体晶片构成单元晶层)、2:2型(硅氧四面体晶片与铝(镁)氧八面体晶片交替排列的四层晶片构成单元晶层)以及层链状结构(硅氧四面体组成的六角环依上下相反方向对列)等几类。
*以前称为蒙脱石族,1975年国际粘土研究会命名委员会决定采用蒙皂石族来代替蒙脱石族的称呼。
2.粘土矿物的化学组成粘土中常见的粘土矿物有三种:高岭石、蒙脱石(也叫微晶高岭石、胶岭石等),伊利石(也称水云母)。
它们的化学组成见表2-2。
从表2-2可以看出,不同类型的粘土矿物其化学成分是不同的。
如高岭石,其氧化铝含量较高,氧化硅含量较低;而蒙脱石的氧化铝含量较低,氧化硅含量较高;伊利石的特点是含有较多的氧化钾。
上述各类粘土矿物化学成分的特点是用化学分析方法鉴别粘土矿物类型的依据。
二、几种主要粘土矿物的晶体构造 1.粘土矿物的两种基本构造单元 (1)硅氧四面体与硅氧四面体晶片硅氧四面体中有一个硅原子与四个氧原子,硅原子在四面体的中心,氧原子(或氢氧原子团)在四面体的顶点,硅原子与各氧原子之间的距离相等(见图2-1a)。
粘土矿物物相分析
高温实验必须在整个过程设若干个恒温点 ,每个点一般恒温 2 h 以上 ,恒温时间短不 能代表该物相在该温度时的状态,时间长 则影 响整个实验过 程。如用日本理学公 司的15 0 0 型高温装置 ,升温率为 10°/m i n,激发功率为 55kV /14 5m A ( 铜靶)。
实验条件的确定
1.2高岭石结晶度的测定
目前广泛使用欣克利方法 ,即测量 (11-0) 和 (111-)面的结晶度指数,如图 所示。 图中 A和 B分别为该面衍射峰的高度 ,At 为(11-0) 面衍射峰的顶点至背景线的 距离 ,结晶指数S=(A+B)/At,当S值大 时表示结晶度好, 则反之结晶度不好
,
二、物相定性分析
X 射线从 窗口 射 出来进入高温炉,又 经 过试样表面再衍射出来 ,然后进入探测器( 计数管)。X射线先后经过 四层屏蔽,其强 度衰减高达 7 0 % 左右,因此应在大功率 激发状态下进 行实验。目前 ,D/ M A X一 R A 型(1 2 k w)衍射仪是高温分析的理 想设备 。
试样表面的调整
1.1蒙脱石结晶度的测定
样 品经 处理 制成 定 向片后测 量 (100) 面 ,计算其衍射峰的高度(P)与低角区 一侧的高度 V的比值 。
从图 可见 V3/P>V2/P>V1/P,结 晶 良好 的蒙脱 石其 V/P≈1,比值越小 ,,一般认 为结晶度越差 。 海泡石和凹凸棒石结晶度的测定与蒙脱石基本相同,但所用的峰为(100)的面 。
三、粘土矿物的高温衍射分析
所谓高温衍射就是将试样(矿物)放置于高 温炉 内,按指定的升温率 、恒温时间加温 ,在指定温度点或温度范围进行 X 射线衍 射 ,收集样品在某温度时的衍射花样及 其 衍射数据 d 值和 I 值 ,通过衍射花样了解 试样中的物相变化,如非晶化及其温度 、 新相形成及 其温度等。
粘土矿物的晶体构造与性质
三.造浆粘土的选用
钻井泥浆是粘土在水中的分散体系,从钻井工程 的工艺要求出发,需要采用较为优质的膨润土造 浆,即需要选用以含蒙脱石为主的钠膨润土为造 浆材料。 国内外富含蒙脱石的大型优质膨润土矿有不少, 如我国的新疆夏子街、山东高阳、辽宁黑山、浙 江余杭,美国的怀俄明以及南澳大利亚等地都有 高纯度的大型膨润土矿床。泥浆公司和粘土粉生 产厂家从这些地方采取粘土矿原料,做适当的加 工,形成造浆粘土的正规产品。
2、表面羟基与H+与OH-的反应(可变电荷)
在酸性环境中:羟基与H+反应,粘土带正电性。
﹥Al-OH + H+
﹥Al+ + OH-
在碱性或中性条件下:羟基与OH-反应,粘土带负电性。 ﹥Al-OH + OH﹥Al-O- + H2O
3、吸附
力等 物理吸附,氢键,分子 化学吸附,化学键力 离子交换吸附,离子交 换
周围吸附的阳离子数目较多,可发生交换的阳离子数目 多,所以C.E.C大。
E、造浆率高
☞因为蒙脱石具有很强的水化膨胀能力,造浆率高,所以它
是钻井泥浆的主要配浆材料。
(3)伊利石
①伊利石晶体结构示意图
②伊利石特点 A、2:1型粘土矿物 B、存在晶格取代,取代位置主要在 Si-O四面体中,且取代数目比蒙脱 石多,产生的负电荷由等量的K+来 平衡。 C、晶层间引力以静电力为主,引力 强,属非膨胀型粘土矿物。为什么?
⑵蒙脱石
①蒙脱石晶体结构示意图
Si-O Al-O Si-O Si-O Al-O Si-O
②蒙脱石特点
A、2:1型粘土矿物 B、存在晶格取代,取代位置主要在Al-O八面体中,即Al3+ 被Mg2+、Fe2+和Zn2+等取代,产生的负电荷由等量的Na+
黏土矿物形状
黏土矿物形状
黏土矿物是一种常见的矿石,具有多种形状和结构。
它们通常是由细小的颗粒组成的,这些颗粒可以互相黏合在一起形成块状或颗粒状的结构。
在自然界中,黏土矿物可以以不同的形状存在。
有些黏土矿物呈片状,如膨润土。
膨润土是一种吸水性很强的黏土矿物,在水中会膨胀成片状结构。
这种片状结构使得膨润土可以吸附和储存大量的水分,使其成为土壤改良和涂料工业中重要的原料。
另一种常见的黏土矿物形状是颗粒状。
黏土矿物的颗粒可以是微小的粉末状,也可以是较大的颗粒状。
这些颗粒状的黏土矿物通常具有良好的吸附性能,可以吸附并储存有机物和无机物。
除了片状和颗粒状之外,黏土矿物还可以形成纤维状结构。
这种纤维状结构通常是由微细的纤维组成的,这些纤维可以互相交织在一起形成稳定的结构。
纤维状的黏土矿物常用于制造纺织品和过滤材料,因为它们具有良好的强度和过滤性能。
总的来说,黏土矿物具有多种形状和结构,这些形状和结构决定了它们的性质和用途。
通过对黏土矿物形状的研究和了解,我们可以更好地利用它们的特性,满足人类的需求。
无论是片状的膨润土,颗粒状的吸附剂,还是纤维状的过滤材料,黏土矿物都在各个领域发挥着重要的作用。
这些矿物的形状和结构不仅为我们提供了丰富
的资源,也为人类创造了更好的生活环境。
三种主要黏土矿物的性质。
1、试比较三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。
(1)高岭石(1: 1型铝硅酸盐矿物)由一个硅氧片和一个水铝片,通过共用硅氧顶端的氧原子连接起来的片状晶格构造。
每个晶层的一面是011离子组(水铝片上的),另一面是0离子(硅氧片上的),因而叠加时晶层间可形成氢键,使各晶层之间紧密相连从而形成大颗粒,晶粒多呈六角形片状。
其分子结构外形特征为0 H 0 H 0 H ......................... 0 H顶层------------------------------底层-----------------------------0 0 0 0许多晶片相互重叠形成高岭矿物特点:晶层与晶层间距离稳定,连接紧密,内部空隙小,电荷量少, 单位个体小,分散度低。
多出现于酸性土壤。
如高岭石类。
高岭石的性质特点:晶格内的水铝片和硅氧片很少发生同晶替代,因此无永久性电荷。
但水铝片上的一0H在一定条件下解离出氢离子,使高岭石带负电。
晶片与晶片之间形成氢键而结合牢固,水分子及其他离子难以进入层间,并且形成较大的颗粒。
因此其吸湿性、粘结性和可塑性较弱, 富含高岭石的土壤保肥性差。
(2)蒙脱石类(2 : 1型铝硅酸盐矿物)由两片硅氧片和一片水铝片结合成的一个晶片(层)单元,再相互叠加而成的。
每个晶层的两面均由0离子组(硅氧片上的),因而叠加时晶层间不能形成氢键,而是通过“氧桥”联结,这种联结力弱,晶层易碎裂, 其晶粒比高岭石小。
特点:胀缩性大,吸湿性强,易在两边硅氧片中以A13+代Si4+,有时可在硅铝片中,一般以Mg2+代A13+-带负电一吸附负离子。
如蒙脱石,这类矿物多出现于北方土壤。
如东北、华北的栗钙土、黑钙土和褐土等。
(3 )水云母类(2:1型粘土矿物)结构与蒙脱石相类似,只是同晶替代产生的负电荷主要被钾离子中和, 而少量被钙镁离子中和.特点:8、永久性电荷数量少于蒙脱石。
b、层与层之间由钾离子中和,使得各层相互紧密结合。
1粘土矿物的结晶结构及基本特征
3粘土矿物的结晶结构及基本特征3.1粘土矿物概念、类型及其结构化学特征粘土的本质是粘土矿物。
粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。
晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等:含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。
粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。
粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。
四面体的中心是四价的硅Si4+,而四个二价的氧O2「分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。
八面体由六个氧或氢氧原子以等距排列而成,A1 3+(或Mg")居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。
由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。
四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。
由一个四面体层与一个八面体层重复(Van der waals)力,层间联结极弱,易于拆开。
蒙脱石既有外表阳13 髙石厂,.堆叠的称为1:1型结构单位层(如高岭石等),也称为Q C/f\ Q二层型;由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。
在高岭石类粘土矿物中,结构单位层间为0与H0(或0H与0H)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。
粘土主要矿物的结构与性质
粘土主要矿物的结构与性质摘要主要论述了粘土中主要矿物的结构特点,并对各种矿物的主要性能(如可塑性、干燥收缩和膨润性等)进行了综述。
关键词:粘土,高岭石,蒙脱石,伊利石,晶体结构,可塑性,膨润性ABSTRACTMainly discusses the main structure characteristics of clay minerals, and a variety of mineral properties ( such as plasticity, drying shrinkage and swelling etc.) are reviewed.KEY WORDS: Clay, kaolinite, montmorillonite, illite, crystal structure, plasticity, swelling粘土类原料是日用陶瓷、耐火材料等的主要原料之一,它主要是由粘土矿物和其它矿物组成的并具有一定特性的(其中主要是具有可塑性)土状岩石。
粘土矿物主要是一些含水铝硅酸盐矿物,其晶体结构是由[SiO4]四面体组成的(Si2O5)n层和一层由铝氧八面体组成的AlO (OH)2层相互以顶角联接起来的层状结构,这种结构在很大程度上决定了粘土矿物的各种性能。
粘土很少由单一矿物组成,而是多种微细矿物的混合体,其主要矿物是被统称为“粘土矿物”的一些含水铝硅酸盐矿物。
根据矿物的结构和组成的不同,可把粘土中的主要矿物分为高岭石类、蒙脱石类和伊利石类等三种。
在粘土的使用过程中,由于对各种主要矿物的结构认识不足,常常在生产中造成资源的浪费,并且产品达不到理想的性能。
材料的结构决定性能,只有掌握了矿物的的结构与性能的关系,才能对矿物进行合理、充分的利用。
为此,我主要分析一下三种主要粘土矿物的结构与性能。
1 高岭石类高岭石是一般粘土中常见的粘土矿物,主要由高岭石组成的较纯净的粘土称为高岭土。
高岭石首先在我国江西景德镇东部的高岭村山头发现,现在国际上都把这种有利于成瓷粘土称为高岭土,它的主要矿物成分是高岭石和多水高岭石。
粘土矿物2
一[02]__粘土矿物的晶体结构 粘土矿物的晶体结构
有 序 无 序 的 概 念 --
有序--无序是一个结晶学概念。从理论上讲, 有序 无序是一个结晶学概念。从理论上讲,原子或离 无序是一个结晶学概念 子在结晶过程中总是倾向于进入特定的结构位置, 子在结晶过程中总是倾向于进入特定的结构位置,形成有序 结构,从而最大限度地降低内能,达到最稳定的状态。通常 结构,从而最大限度地降低内能,达到最稳定的状态。 所指的结构有序 长程有序, 结构有序是 所指的结构有序是长程有序,也就是全部点阵都作有秩序有 规律的分布。与长程有序相对应的是短程有序,短程有序指 规律的分布。与长程有序相对应的是短程有序,短程有序指 的是镶嵌在一个个小区域(晶畴)内的有序结构。 的是镶嵌在一个个小区域(晶畴)内的有序结构。 结晶过程中的热扰动或晶体的快速生长都会促使原子或 离子随机地占据任何可能的结构位置,从而形成无序结构。 离子随机地占据任何可能的结构位置,从而形成无序结构。 无序结构 由于无序结构中的原子或离子是随机地占据任何可能的结构 位置,内能大,所以,无序结构是一种不稳定的结构。 位置,内能大,所以,无序结构是一种不稳定的结构。 有序--无序之间是可以相互转化的 无序之间是可以相互转化的, 有序 无序之间是可以相互转化的,当温度高于某一临 界值时,有序结构将转变为无序结构;反之, 界值时,有序结构将转变为无序结构;反之,当温度低于这 个临界值时,无序结构又会向有序结构转变。由无序结构向 个临界值时,无序结构又会向有序结构转变。 有序结构的转变作用称为有序化 有序化。 有序结构的转变作用称为有序化。 有序结构有时也称为超结构或超点阵。 有序结构有时也称为超结构或超点阵。
8
一[02]__粘土矿物的晶体结构 粘土矿物的晶体结构
1粘土矿物
(五)粘土的水化膨胀作用及分散 1、表面水化膨胀——晶格膨胀 是由于粘土颗粒吸附水份子,从而形成水化膜。粘土的 内外表面水化时,水在晶层间凝结,引起晶格膨胀。
2、渗透水化膨胀
由于晶层间的阳离子浓度大于液体内部,因而水发生 浓差扩散,进入层间,因此增加晶层间距,引起渗透膨胀。
渗透膨胀引起的体积增加比晶格膨胀大得多。
2、可变(负)电荷 粘土所带电荷的数量随介质的pH值改变而改变。
原因:
(1)铝氧八面体中>Al-OH是两性的,在碱性介质中电出 H+,使粘土带负电荷; 在酸性介质中则电离出OH-,使粘土带正电荷。 一般情况下钻井液呈碱性,所以粘土带负电荷。 (2)粘土晶层在外力作用下发生断裂,则在断裂的边缘处 可能带负电,可能带正电荷。
边缘
AI-O八面体 SI-O四面体
(三)粘土-水界面的吸附作用——离子交换吸附
1、离子交换吸附:
就是一种离子被吸附的同时从吸附剂表面顶替出等电量 的带相同电荷的另一种离子的过程。 由于粘土颗粒带负电荷,它在溶液中能吸附阳离子,进 行阳离子交换吸附。离子交换吸附是经常发生的,例如:在泥 浆中2Na+ 与Ca2+ 的交换吸附,又如饱含盐水泥浆pH下降, Na+与H+的交换吸附。
•如果交换离子是Ca2+,则晶层间的静电吸引力大于晶层间 斥力,只能发生晶格膨胀,只能形成粗分散体系。
•如果是Na+则晶层间的静电吸引力小于晶层间斥力,形成水 化分散好的细分散体系。
蒙脱石水化膨胀过程
(六)粘土-水分散体系的稳定性
1、粘土颗粒表面的双电层结构 扩散双电层特点是粘土表面紧 密吸附着部分阳离子及其部分 水分子,构成了吸附溶剂化层。
它反映了粘土晶体的晶格取代度。
1粘土矿物的结晶结构及基本特征(可编辑修改word版)
3 粘土矿物的结晶结构及基本特征3.1粘土矿物概念、类型及其结构化学特征粘土的本质是粘土矿物。
粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。
晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。
粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。
粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X 轴方向发展。
四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。
八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。
由于单位晶格的大小相近似,四面体层与八面体层很容易沿C 轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。
四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。
由一个四面体层与一个八面体层重复堆叠的称为1:1 型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1 型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中四,面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1 型或2:1 型结构单位层间并不共用氧原子层,层间的联结较弱。
在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH 与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。
黏土矿物的名词解释
黏土矿物的名词解释引言黏土矿物是地球上一类重要的自然资源,广泛存在于陆地、海洋和深海沉积物中。
本文将对黏土矿物进行深入的名词解释,包括其成分、结构、性质及应用等方面。
一、黏土矿物的定义黏土矿物是一类由具有微观层状结构的颗粒组成的矿物质。
其主要成分为硅酸盐矿物,包括硅酸盐矽土、硅酸盐铝土和硅酸盐镁土。
这些矿物质的微观结构由硅氧化物和氢氧化物层状堆积组成,形成了颗粒间的黏着力,使得黏土矿物具有黏性。
二、黏土矿物的成分1. 硅酸盐矽土:矽土是主要由硅氧化物组成的黏土矿物,其含有硅氧化矽的颗粒主要以正交层状叠置的形式存在。
矽土是黏土矿物中最重要的成分之一,具有高黏性和吸水性能。
2. 硅酸盐铝土:铝土是由铝氧化物和硅氧化物层状结构组成的黏土矿物,其颗粒间的黏着力主要来源于氢键。
铝土具有良好的吸附能力和储层性能,广泛应用于环境保护、垃圾处理和土壤修复等领域。
3. 硅酸盐镁土:镁土是由镁氧化物和硅氧化物构成的黏土矿物,其颗粒间的结构更稳定,流动性较低。
镁土具有良好的硬度和负电性,被广泛应用于陶瓷、建筑材料和纺织品等领域。
三、黏土矿物的结构黏土矿物的微观结构主要由层状结构组成,每个层状结构包括两个或多个硅氧化物和氢氧化物堆积层。
这些层状结构之间通过弱的静电力、氢键或范德华力相互吸引,形成黏土矿物颗粒之间的黏着力。
此外,黏土矿物的结构对水分子具有良好的吸附性能,可以有效地吸附和储存水分。
四、黏土矿物的性质1. 黏着性:黏土矿物由于其结构特点,具有较强的黏着力,能够形成胶状物质。
这种黏着性使得黏土矿物在制陶、润滑和粘合等方面具有广泛的应用。
2. 吸附性:黏土矿物具有较大的比表面积和孔隙结构,因此可以有效地吸附气体、水分和有机物质。
黏土矿物的吸附性能使其成为环境修复、水处理和储层勘探等领域的重要材料。
3. 热稳定性:黏土矿物在高温下具有一定的热稳定性,能够保持其结构和性质的稳定性。
这种特点使得黏土矿物常被用于高温矿物填料和耐火材料制备。
第一章 粘土矿物
斥力:双电层斥力、水化膜粘弹性。
引力:范德华力、电解质的聚结作用。
②沉降稳定性: ⑴定义:在重力作用下,分散相颗粒是否容易 下沉的性质。 ⑵影响聚结稳定性的因素 斯托克斯定律:V =2/9×r2(ρ-ρ0)g/μ
两侧硅氧四面体片的顶氧构成铝氧八面体片 的一部分,取代铝氧八面体片的部分羟基。 即四面体片顶端(尖端)指向八面体片。
三、由基本结构层重复堆积引伸出的概念
层状粘土矿物:由上述两种基本结构层重复 堆积而成。
层间域:相邻基本构造层之间的空间。
粘土矿物的单位构造:基本构造层+层间域。
层间物:存在于层间域中的物质。
强
30-150
<5
静电引力+范德 华力
弱
800-1500
90-100
静电引力+范德 2:1 O-O 华力+K+镶嵌作 用
较强
200-400
25
第三节 粘土矿物的性质
一、带电性
电泳试验:粘土颗粒向阳极运动。 试验结论:带负电荷。 电荷种类:永久性负电荷、可变性负
电荷、正电荷。
1、永久负电荷
定 义:由自身结构导致电荷产生的,由晶
③ 外来可溶性盐类的影响
降低电动电位,降低双电层的厚度
④ 有机处理剂的影响
水溶性有机(特别是高分子)处理剂有较多 的亲水基团,吸附于粘土离子表面或将粘土
颗粒包被起来,减弱或阻止水分子的进入,
使粘土粒子的水化性能变弱或不水化。
四、凝聚性和稳定性 1、凝聚性:在一定条件下,粘土矿物颗粒
在水中发生联接的性质。 三种联接方式: ①面—面:引力远远大于斥力,使粒子体积变 大,分散度降低。 ②面—端:引力大于斥力,形成网架结构。 ③端—端:端面水化膜较薄,相对斥力较小, 易使其联接,形成网架结构。
黏土矿物组成
黏土矿物组成
(原创实用版)
目录
1.黏土矿物的概念与分类
2.黏土矿物的主要成分
3.黏土矿物的性质与特点
4.黏土矿物的应用领域
正文
一、黏土矿物的概念与分类
黏土矿物,顾名思义,是指一类具有粘性的天然矿物。
它们主要由硅、铝等元素组成,广泛分布于地球表层,是土壤、岩石和沉积物的重要组成部分。
根据黏土矿物的成分和结构特征,可以将其分为三大类:高岭石、伊利石和蒙脱石。
二、黏土矿物的主要成分
1.高岭石:主要成分为 Al2(Si2O5)(OH)4,它是一种含水硅酸铝矿物,具有较高的塑性和可塑性。
2.伊利石:化学式为 KAl2(AlSi3O10)(OH)2,它是一种水合铝硅酸盐矿物,具有片状结构,有较强的吸附性能。
3.蒙脱石:化学式为 (Na,K,Ca)2(Al2(Si2O5)2)(OH)4,它是一种水合铝硅酸盐矿物,具有较高的离子交换性能。
三、黏土矿物的性质与特点
1.粘性:黏土矿物具有较强的粘性,可以与其他土壤颗粒结合,形成土壤结构。
2.塑性:黏土矿物在一定程度上具有可塑性,可以随着水分的增加而
变得更加柔软。
3.吸附性:黏土矿物具有较强的吸附性能,可以吸附有机物质、微生物和金属离子等。
4.离子交换性:黏土矿物具有较高的离子交换性能,可以与其他离子发生交换反应。
四、黏土矿物的应用领域
1.土壤改良:黏土矿物可以作为一种优质的土壤改良剂,改善土壤结构,提高土壤肥力。
2.陶瓷制品:黏土矿物是制作陶瓷制品的重要原料,如高岭土可用于制作瓷器。
3.环保领域:黏土矿物具有较强的吸附性能,可用于污水处理、废气净化等环保领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3粘土矿物的结晶结构及基本特征3.1粘土矿物概念、类型及其结构化学特征粘土的本质是粘土矿物。
粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。
晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。
粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。
粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。
四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。
八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。
由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。
四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。
由一个四面体层与一个八面体层重复堆叠的称为1:1型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。
在高岭石类粘土矿物中,结构单位层间为O与HO(或OH与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。
即使有表面水合能撑开晶层,但不足以克服晶层间大的内聚力,几乎无阳离子交换(阳离子交换容量很小,其CEC值为3-15毫克当量/100克干土)和类质同象置换现象,其基本层是中性的。
同时,高岭石晶体基面间距(C轴间距或doo1值)小(约7.2 A ),没有容纳阳离子的地方,即晶层无阳离子存在。
高岭石晶体只有外表面,没有内表面,比表面积很小(一般远小于100m2/g ),被吸附的交换性阳离子(如Na+、Ca2+等)仅存于高岭石矿物外表面,这对晶层水合无重要影响,所以高岭石是较稳定的非膨胀性粘土矿物,层间联结强,晶格活动性小,最活跃的表面是在晶体断口、破坏的及残缺部位的边缘部分,浸水后结构单位层间的距离(C轴间距或doo1值)不变,使高岭石膨胀性和压缩性都较小,但有较好的解理面。
蒙脱石类粘土矿物中的结构单位层间为O与O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。
蒙脱石既有外表面,又有内表面,比表面积大(理论值为800m2/g左右),其类质同象置换比较普遍,单位结构层内的阳离子(A13+、Si 4+)能被其它阳离子(Ca2+,Mg2+, Na+)部分置换,一般发生于八面体中(高价阳离子被低价阳离子置换,如A13+被Mg2+置换,Mg2+被Na+置换,有时A13+被Fe3+或Fe2+置换),也发生于四面体中(少量的Si 4+被A13+)。
阳离子交换的结果,一方面是高价被低价置换后所造成的正电荷亏损,由吸附在晶体外表面和晶层间的可交换性阳离子(Ca2+, Mg2+,Na+……)来中和平衡,另一方面是阳离子交换后引起的电荷不均匀,八面体层内的平衡电荷(33%)大于四面体层内的平衡电荷(15%),即阳离子交换后的主要电荷在八面体上,可是它距层间阳离子远,吸引力弱,尤其是对水合阳离子更弱。
因此,层间可交换性的阳离子能自由地进出,为阳离子交换提供了十分有利的条件。
可见,吸附的交换性阳离子(如Na+ , Ca2+等)既存于蒙脱石晶体外表面,也充填于晶体内表面(晶层间),故蒙脱石类粘土矿物的晶格活动性极大,其晶体基面间距(C轴间距或d001,值)和阳离子交换容量比高岭石大(蒙脱石类粘土矿物阳离子交换容量为70~130毫克当量/100克干土),层间无氢键力,仅靠范德华(Van der waals)力联系,联系弱,所以能允许交换性阳离子带着大量水分子和其它极性分子进入晶层(结构层)之间,并将其沿着C轴推动,表现出极强的膨胀性和极高的压缩性。
蒙脱石内外表面能量具有不等价性,即表面的阳离子与一个外部表面相作用,而层间的阳离子与两个表面(内表面)相作用,结果使后者具有较多的配位数,以致使其电场应力减小及它们与其相互作用物质之间的连结减弱,因此,当蒙脱土类粘土矿物水化时,其层间阳离子的配位圈保持水分子的能力将比表面阳离子弱。
伊利石类粘土矿物与蒙脱石类粘土矿物同属于2:1型结构单位层,但在四面体层之间,于D层的六角形网眼之中央嵌有钾离子(K+ )(如图3.5 )。
伊利石阳离子交换容量比蒙脱石少,约1040毫克当量/100克干粘土,其阳离子交换主要发生在Si-O四面体晶片内(Si4+被A13+置换),所以不均衡电荷也主要在四面体晶片内,距层间阳离子很近,当结构层中出现阳离子K+时,便被紧紧地吸附住,并恰好嵌在上下两个四面体晶片氧原子的六角形网眼中(K+离子半径约1.33A,两个四面体六角形网眼为1.34 A,上下两个为2×1.34 A)形成一种强键,致使水难以进入晶层间,不会引起晶层的膨胀,对水的活跃性只是在表面外部。
所以,伊利石属于非膨胀性粘土矿物,其晶格活动、膨胀性及压缩性均介于高岭石与蒙脱石之间。
绿泥石类粘土矿物类似于伊利石结构,即两个Si-O四面体片夹一个八面体片,不同之处是它多出一个氢氧镁石(水镁石)八面体片(如图3.6 )。
绿泥石的阳离子交换容量比蒙脱石少,近似于伊利石。
在绿泥石两个Si-O四面体片夹一个八面体片中,由于低价A13+置换高价Si4+所造成的正电荷亏损,由其附加在晶层间的八面体晶片中的高价阳离子A13+置换低价阳离子Mg2+所赢得正电荷来平衡。
可见,绿泥石的晶层间联系力,除了范德华引力和水镁石八面体上OH原子形成的氢键外,就是阳离子交换后形成的静电力。
所以,绿泥石晶层一般不具有膨胀性。
在一定条件下,由一种形式的结构单位层,过渡为另一种形式的结构单位层,形成一类由两种或两种以上不同结构层,沿C轴方向相间成层堆叠组合成的晶体结构,具这类结构的矿物称为混层粘土矿物,有的称为间层粘土矿物或“混层矿物”。
这类矿物在地层中极为常见,分为有序和无序混层粘土,大多数是膨胀层与非膨胀层粘土相间混层。
除了平坦平行的基面外,所有粘上矿物都有不同发育程度的侧面断口的活化表面,微晶的角、棱部位,其能量的不平衡由符号相反的离子所补偿。
粘土矿物在结构方面的差异使它们与水及水溶液作用时的性质及表现截然不同。
由于粘土矿物表面存在有对水的“活化”吸附中心,所以在固相矿物颗粒与孔隙溶液的界面上便形成了一个水层,其性质既有别于自由的溶液,又不同于固相颗粒。
本实验制备的单一离子粘土矿物有Ca-高岭土、Na-高岭土、Ca-蒙脱土、Na-蒙脱土、标准Na-蒙脱土等,它们的部分性质汇总于表3.10。
3.2粘土矿物的微细结构及其理化特性上述粘土矿物结构化学特征是最基本的理想模型,实际上因粘土矿物晶体的缺陷带来的微细结构将影响其理化性质。
粘土矿物的实际晶体结构与理想模型之间的大多数偏差与下列几方面有关:(1)晶体结构中类质同像置换; (2)四面体和八面体晶格畸变;(3)四面体和八面体晶格在层中和层间相互叠置不规则。
1)粘土矿物的类质同像置换所谓类质同像,就是矿物晶体格架中一部分阳离子被另一部分阳离子置换后,矿物的晶体结构类型保持不变,只是晶格常数、化学成分和物化性质有所改变的现象。
类质同像在粘土矿物中,除了高岭石外,其它粘土矿物如伊利石簇、蒙脱石簇、绿泥石簇、混层粘土矿物等均广泛存在类质同像现象。
无论是四面体晶格,还是八面体晶格均如此。
粘土矿物类质同像置换的结果将导致:①异价阳离子置换后晶体结构的电荷中性被破坏和产生过剩负电荷;②矿物晶体格架中进入新的阳离子,即使这种阳离子的半径与被置换的阳离子很接近,也会引起四面体和八面体晶格几何大小的变化以及四面体阳离子位置的改变,即引起晶格常数的变化; ③类质同像置换引起粘土矿物结构层过剩电荷补偿阳离子的出现,这些补偿阳离子进入结构层之间的空间,分布于晶体边棱上,从根本上影响着粘土矿物的结构特征和物理一化学性质。
2)四面体和八面体晶格畸变八面体层阴离子晶格的畸变:层状硅酸盐的理想结构是假设八面体顶面的一些氧原子呈六角形网格。
实际上,几乎这些晶格的所有结构都变了形,并具有较为复杂的形状。
二八面体粘土矿物中八面体阴离子晶格畸变的主要原因是阳离子所占据的位置不平衡。
这种畸变是由八面体晶格中应力的不平均分布造成的。
该应力是由阳离子A13+的相同电荷相互排斥所引起的。
其结果是使八面体阴离子晶格中O-O, OH-OH和O-OH键的长度发生变形;八面体的公共晶棱受到挤压力而缩短到2.4~2.5A,而非共同的晶棱则相反,稍许伸长至2.8~2.9A。
个别八面体的变形引起所有八面体层结构骨架的畸变,其表现为: ①八面体顶面氧原子的规则正六角形格架被破坏,结果是理想八面体晶格ab面上氧原子的正六角形格架(如图3.7(a))转变成实际结构为复三角形的格架(如图3.7(b));②八面体层沿C轴压缩,而沿ab轴伸展; ③由于一些棱边缩短,另一些延长,充填八面体的上顶面和下底面相对于法线以相反方向旋转3~5º; ④类质同像也将引起八面体阴离子晶格畸变,如类质同像引起阳离子与阴离子之间的长度改变; ⑤具粗大层间阳离子K+的云母,其八面体层阴离子晶格的某些畸变,可能由于晶格的大小与四面体晶格的参数不相应,并缺少靠弯转使四面体缩短的条件之故; ⑥三八面体矿物,由于所有八面体的方位都被充填,其阴离子晶格的变形较轻。
四面体晶格畸变:从大量不同程度类质同像置换的层状硅酸盐结构的实测资料看出,四面体阳离子在结构中的位置可依的A13+含量而改变。
特别是当少量Si4+被Al3+置换时,四面体阳离子则从其几何中心移向四面体的底面而削弱其与顶端氧的相互联系。
当四面体中有相当数量的类质同像置换时,阳离子则移向相反方向,即向四面体的顶尖移动,说明其与基底氧的联系减弱,氧与离子补偿的联系则加强。
可以预料,当八面体中类质同像置换程度很高,而四面体中的置换并不大时,则八面体和四面体共顶点上阴离子价将出现严重的不饱和。