《结构动力学》大作业 -2013

合集下载

结构动力学大作业2

结构动力学大作业2

结构动力学大作业班级:学号:姓名:目录1. Wilson-θ法原理简介 (2)2. Wilson-θ程序验算 (3)2.1△t的影响 (4)2.2 θ的影响 (5)3. 非线性问题求解 (5)4. 附录 (8)Wilson-θ法源程序 (8)1. Wilson -θ法原理简介图1-1Wilson-θ法示意图Wilson-θ法是基于对加速度a 的插值近似得到的,图1-1为Wilson-θ法的原理示意图。

推导由t 时刻的状态求t +△t 时刻的状态的递推公式:{}{}{}{}()t tt t t y y y y tτθτθ++∆=+-∆ (1-1)对τ积分可得速度与位移的表达式如下:{}{}{}{}{}2()2t t t t t t yy y y ytτθττθ++∆=++-∆ (1-2){}{}{}{}{}{}23()26t t t t t t t y y y y y ytτθτττθ++∆=+++-∆ (1-3)其中τ=θt ,由式(1-2)、(1-3)可以解出:{}{}{}{}{}266()2()t t t tt t t y y y y y t tθθθθ+∆+∆=---∆∆(1-4){}{}{}{}{}3()22t t t t t t t tyy y y y t θθθθ+∆+∆∆=---∆(1-5)将式(1-4)、(1-5)带入运动方程:[]{}[]{}[]{}{}m y C y k y P ++=(1-6)[]{}[]{}[]{}{}t t t t t t t tm y C y k y P θθθθ+∆+∆+∆+∆++= (1-7)注意到此时的式子为{{}t t y θ+∆}和上一个时刻{}t y 、{}t y、{}t y 以及t +θ△t 时刻的荷载{}t t P θ+∆相关,可以运用迭代的思想来求解,下图给出线弹性条件下Wilson -θ法的流程图:图1-2Wilson-θ法流程图2.Wilson-θ程序验算对线弹性条件下的Wilson-θ法进行MATLAB编程,源代码见附录。

最新结构动力学大作业

最新结构动力学大作业

结构动力学大作业------------------------------------------作者xxxx------------------------------------------日期xxxx结构动力学大作业班级土木卓越1201班学号U201210323姓名陈祥磊指导老师叶昆2014。

12.30 结构动力学大作业-—SDO F体系在任意荷载作用下的动力响应 一、结构参数计算结构为右图所示的 1、kg m 3101000⨯=m N k /1020006⨯= 2、m m m m N =⋅⋅⋅⋅⋅⋅==21 k k k k N λ==⋅⋅⋅⋅⋅⋅==213、结构参数中5=N ;0.1=λ。

二、确定各阶频率和振型多自由度体系自由振动时的运动方程为012121111=+⋅⋅⋅+++n n y k y k y k y m 022221212=+⋅⋅⋅+++n n y k y k y k ym .。

..。

.12jN-1N02211=+⋅⋅⋅+++n nn n n n y k y k y k y m 写成矩阵形式即为[]{}[]{}{}0=+y K yM 假设此方程的解答为{}{}()αω+=t Y y sin ,带入到运动方程中得到振动方程[][](){}{}02=-Y M K ω此方程要有非零解必须满足频率方程[][]02=-M K ω,可解得各阶主频率i ω再根据 [][](){}(){}02=-i i Y M K ω可求出结构的主振型。

在主振型中,通常将最后一个位移值设定为1,只要在程序中加入下列语句:MDOF .YMa trix(:,i)=MDO F.YMat rix(:,i )/MDOF 。

YMatr ix(MD OF 。

ND,i)运行程序之后得到如下结果: 1、各阶频率i ω和周期i TW1 12.7290261 T1 0。

493610843W 2 37.15584832T 2 0。

湖南大学13年结构动力学考卷

湖南大学13年结构动力学考卷

一、填空题1、由实验测得某单自由度体系阻尼比0.05ξ=,则其自由振动的振幅经3个周期后降为初始振幅的 %。

2、对于有阻尼受迫振动体系,当振动时间足够长时,体系初始状态只对响应的 振动有影响,而对响应的 振动并无太大影响。

3、阻尼比为ξ的单自由度体系,在简谐荷载作用下位移动力系数μ=极值max μ= , 此时,简谐激励频率与结构固有频率之比==ωθβ/ 。

4、悬臂结构和简支结构的各振型所具有的共同特性:(1)、第一主振型 不动点;(2)、第n 主振型具有 个不动点;(3)、两不同振型之间具有 性。

5、分布质量简化为有限自由度体系有三种方法,它们分别是 , , 。

二、1. 图示为一单自由度体系(抗弯刚度EI ,梁自重不计),试建立其振动方程。

2. 下列函数均可作为周期荷载,其周期各等于多少?近似给出下列荷载的幅值谱?(1)()sin(0.25)0.75sin(1.750.5)f t t t ππ=+++(2)()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)f t t t t πππ=+++++(3)()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)0.125sin(3.125 1.25)f t t t t t ππππ=+++++++3. 若取m =600kg,42110MPa E =⨯,I=78cm 4,l =6m,干扰力取为()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)P F t t t t πππ=+++++,试计算体系的自振频率, 并画出上述激励作用下的响应幅值谱(不考虑阻尼影响)。

0.5l 0.5l题二图 三、图示两跨对称、匀质等截面连续梁,各跨跨径均为l ,抗弯刚度均为EI ,单位长度质量均为m 。

在两跨的跨中另置一质块(质量为ml ),试用Rayleigh 法求该结构的基本频率。

题三图 四、图示框架结构,忽略其轴向变形及转动惯量的影响,将质量堆积在结点上1、 建立体系振动方程2、 求系统的自振频率3、 求系统振型并绘出振型图题四图l l。

华科结构动力学_大作业

华科结构动力学_大作业

[9, ]
[9, 1.2]
[9, 1.4]
Questions
1、确定各阶频率和振型; 2、试用能量法计算近似的一阶频率; 3、任选一条地震动并将地震动幅值调整为0.3g,使 用振型分解法计算相应的地震响应; 4、试用迭代法近似求解一阶频率和振型;
5、任选一条地震动并将地震动幅值调整为0.3g,计
算该条地震动的加速度反应谱;
Questions
6、利用振型分解反应谱法确定各质点的地震力大小
设防烈度为8度 设计加速度 0.3g 阻尼比 =5% II类(第1组)场地土 多遇地震: max 0.24 Tg 0.35s
N 5 6 7 8 9
0.6 0.8 1.0 1.2 1.4
Problem description
[N, λ] 组合
[5, 0.6] [6, 0.6] [7, 0.6] [8, 0.6] [5, 0.8] [6, 0.8] [7, 0.8] [8, 0.8] [5, 1.0] [6, 1.0] [7, 1.0] [8, 1.0] [5, 1.2] [6, 1.2] [7, 1.2] [8, 1.2] [5, 1.4] [6, 1.4] [7, 1.4] [8, 1.4]
3任选一条地震动并将地震动幅值调整为03g使用振型分解法计算相应的地震响应
Problem description
mN kN mN-1 mj kj m2 k2 m1 k1
m 1000 103 kg k 2000 106 N /m
m1 m2 k1 k2 mN m kN k

高等结构动力学大作业

高等结构动力学大作业

高等结构动力学大作业在高等结构动力学课程的学习过程中,我们将接触到许多有关结构动力学的理论和方法。

本文将围绕高等结构动力学的内容,探讨其在工程实践中的应用和未来的发展趋势。

一、结构动力学简介结构动力学是研究结构在受到外界力作用下的响应和振动特性的学科。

它广泛应用于桥梁、建筑物、飞机、船舶等工程结构的设计和分析过程中。

在实际工程中,结构动力学的研究对于保证结构的安全性、提高结构的抗震性能至关重要。

二、结构动力学的应用领域1. 桥梁工程:结构动力学在桥梁工程中有着广泛的应用。

通过结构动力学分析,可以评估桥梁的振动响应,预测桥梁的疲劳寿命,并优化桥梁的设计参数,提高桥梁的安全性和使用寿命。

2. 建筑物工程:结构动力学在建筑物工程中也起到关键的作用。

通过结构动力学分析,可以评估建筑物在风荷载和地震荷载下的响应,为建筑物的设计提供科学依据,确保建筑物具备足够的抗震性能和舒适性。

3. 航空航天工程:在航空航天工程中,结构的振动特性和动态响应对于飞行安全至关重要。

结构动力学可以用于评估飞行器的疲劳寿命、优化飞行器的设计,提高飞行器的结构强度和稳定性。

三、结构动力学的方法和技术1. 动力学数学模型:结构动力学利用数学模型描述结构在受力作用下的运动规律。

常见的数学模型包括单自由度振动系统、多自由度振动系统以及连续体振动系统等。

2. 振动试验技术:振动试验技术是结构动力学研究中常用的方法之一。

通过振动试验可以获取结构的振动特性和模态参数,为结构分析和设计提供实验数据支持。

3. 数值计算方法:结构动力学的研究也离不开数值计算方法的支持。

常用的数值计算方法包括有限元法、边界元法、模态超级元法等。

这些方法可以用于求解结构的静力响应和动力响应,预测结构的疲劳寿命和抗震性能等。

四、结构动力学的挑战与前景1. 疲劳寿命与保养:在长期使用过程中,结构的疲劳寿命是一个需要关注的问题。

结构动力学可以通过疲劳寿命评估和振动监测技术帮助我们预测结构的损伤情况,以及制定合理的结构维修和保养策略。

结构动力学大作业1.

结构动力学大作业1.

结构动力学课程论文结构动力学课程论文一、题目1、试设计一个3层框架,根据实际结构参数,求出该结构的一致质量矩阵、一致刚度矩阵;2、至少采用两种方法求3层框架的频率和振型;3、采用时程分析法,输入地震波,求出所设计的3层框架各层的非线性位移时程反应,要求画出所设计的框架图、输入的地震波的波形图、所求得的各楼层位移时程反应图。

二、问题解答1、问题1解答1.1、框架设计框架立面图如下图一所示,梁截面均为400⨯700mm2,柱子的截面均为600⨯600mm2,跨度为7.2m,层高为3.6m,混凝土采用C30。

图一框架立面图设梁、柱均不产生轴向变形,且只考虑在框架的平面内变形,那么有3个平结构动力学课程论文移自由度和12个转角自由度,一共有15个自由度,自由度以及梁柱单元编号如下图二所示:V1V2V3图二单元编号及自由度方向先计算各个单元的一致质量矩阵和一致刚度矩阵,然后把相关的单元叠加组合计算得到整个结构的一致质量矩阵和一致刚度矩阵。

1.2、结构的一致质量矩阵梁:=0.4⨯0.7⨯2500=700kg/m, L=7.2m;梁、柱都为均布质量,故:⎧f⎪f⎪⎨⎪f⎪⎩fI1I2I3I4⎫⎪⎪L⎬=420⎪⎪⎭5622L⎡156⎢5415613L⎢⎢22L13L4L⎢⎣-13L-22L-3L-13L⎤-22L⎥⎥-3L⎥⎥4L⎦221⎫⎧v⎪v⎪⎪ 2⎪⎨⎬3⎪⎪v⎪ 4⎪⎩v⎭结构动力学课程论文结构动力学课程论文柱:=0.6⨯0.6⨯2500=900kg/m,L=3.6m 单元刚度矩阵如下:结构动力学课程论文结构动力学课程论文(m)(n)(p)ˆijˆijˆij由mij=m+m+m+....可计算一致质量矩阵中的各元素:(1)(2)(3)(10)(11)(12)(13)ˆ11ˆ11ˆ11ˆ11ˆ11ˆ11ˆ11m11=m+m+m+m+m+m+m=3⨯5040+ 4⨯1203.43=19933.72(10)(11)(12)(13)ˆ12ˆ12ˆ12ˆ12m12=m+m+m+m=4⨯416.57=1666.28结构动力学课程论文m13=0(10)m14=m15=m16=m17=m14=610.97(10)m18=m19=m1,10=m1,11=m18=-361.03 m1,12=m1,13=m1,14=m1,15=0(4)(5)(6)(10)(11)(12)(13)(14)(15)(16)(17)ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22ˆ22m22=m+m+m+m+m+m+m+m+m+m+m=3⨯5040+8⨯1203.43=24747.44(14)(15)(16)(17)ˆ23ˆ23ˆ23ˆ23m23=m+m+m+m=4⨯416.57=1666.28(10)m24=m25=m26=m27=m24=361.03(14)(10)ˆ28ˆ28m28=m+m=610.97-610.97=0 同理 m29=m2,10=m2,11=0(14)m2,12=m2,13=m2,14=m2,15=m2.03 ,12=-361(7)(8)(9)(14)(15)(16)(17)(18)(19)(20)(21)ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33ˆ33m33=m+m+m+m+m+m+m+m+m+m+m=3⨯5040+8⨯1203.43=24747.44(14)m34=m35=m36=m37=0 m38=m39=m3,10=m3,11=m38=361.03 (14)ˆ3ˆ(18)m3,12=m3,13=m3,14=m3,15=m.97-610.97=0 ,12+m3,12=610(1)(10)(1)ˆ44ˆ44ˆ45m44=m+m=2488.32+399.91=2888.23 m45=m=-1866.24m46=m47=0(10)ˆ48m48=m=-299.93m49=m4,10=m4,11=m4,12=m4,13=m4,14=m4,15=0(2)(1)(2)(11)ˆ56ˆ55ˆ55ˆ55=-1866.24m55=m+m+m=2488.32+2488.32+399.91=5376.55m56=mm57=m58=0(11)ˆ59m59=m=-299.93 m5,10=m5,11=m5,12=m5,13=m5,14=m5,15=0(2)(3)(12)ˆ66ˆ66ˆ66m66=m+m+m=2488.32+2488.32+399.91=5376.55(3)ˆ67m67=m=-1866.24 m68=m69=0(12)ˆ6m6,10=m.93 m6,11=m6,12=m6,13=m6,14=m6,15=0 ,10=-299(3)(13)ˆ77ˆ77m77=m+m=2488.32+399.91=2888.23m78=m79=m7,10=0(13)ˆ7m7,11=m.93 m7,12=m7,13=m7,14=m7,15=0 ,11=-299结构动力学课程论文(4)(10)(14)ˆ88ˆ88ˆ88m88=m+m+m=2488.32+399.91+399.91=3288.14(4)ˆ89m89=m=-1866.24 m8,10=m8,11=0(14)ˆ8m8,12=m.93 m8,13=m8,14=m8,15=0 ,12=-299(4)(5)(11)(15)ˆ99ˆ99ˆ99ˆ99m99=m+m+m+m=2488.32+2488.32+399.91+399.91=5776.46(5)ˆ9m9,10=m.24 ,10=-1866(15)ˆ9.93 m9,14=m9,15=0 m9,11=m9,12=0 m9,13=m,13=-299(5)(6)(12)(16)ˆ10ˆ10ˆ10ˆ10m10,10=m.32+2488.32+399.91+399.91=5776.46 ,10+m,10 +m,10+m,10=2488(6)(16)ˆ10ˆ m10,11=m=-1866.24m=m.93 m10,15=0m=m=010,1210,13,1110,1410,14=-299(6)(13)(17)ˆ11ˆ11ˆ11m11,11=m.32+399.91+399.91=3288.14,11+m,11+m,11=2488m11,12=m11,13=m11,14=0(17)ˆ11m11,15=m.93,15=-299(7)(14)(18)ˆ12ˆ12ˆ12m12,12=m.32+399.91+399.91=3288.14 ,12+m,12+m,12=2488 (7)ˆ12m12,13=m.24 m12,14=m12,15=0 ,13=-1866(7)(8)(15)(19)ˆ13ˆ13ˆ13ˆ13m13,13=m.32+2488.32+399.91+399.91=5776.46 ,13+m,13 +m,13+m,13=2488(8)ˆ13m13,14=m.24 m13,15=0 ,14=-1866(8)(9)(16)(20)ˆ14ˆˆˆm14,14=m+m+m+m.32+2488.32+399.91+399.91=5776.46 ,1414,1 414,1414,14=2488(9)ˆ14m14,15=m.24 ,15=-1866(9)(17)(21)ˆ15ˆ15ˆ15m15,15=m.32+399.91+399.91=3288.14 ,15+m,15+m,15=2488则得:一致质量矩阵(该矩阵为对称矩阵,故下三角省略)单位(kg)结构动力学课程论文0⎡19933.721666.28⎢24747.441666.28⎢⎢24747.44⎢⎢⎢⎢⎢⎢⎢M=⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣610.97361.0302888.23610.97361.030-1866.245376.55610.97361.0300-1866.245376.55610.97361.03000-1866.242888.23-361.030361.03-299.930003288.14-361.030361.030-299.9300-1866.245776.46-361.030361.0300-299.9300-1866.245776.46-361.030361.03000-299.9300-1866.243288.140-361.0300000-299.930003288.14⎤-361.03-361.03-361.03⎥⎥⎥000⎥000⎥⎥000⎥000⎥⎥000⎥000⎥⎥-299.9300⎥⎥0-299.930⎥00-299.93⎥⎥-1866.2400⎥5776.46-1866.240⎥5776.46-1866.24⎥⎥3288.14⎦⎥0001.3、结构的一致刚度矩阵各梁、柱均为等截面,故单元刚度矩阵为:-63L3L⎤⎧v1⎫⎧fs1⎫⎡6⎪f⎪⎪v⎪⎢6-3L-3L⎥⎪s2⎪2EI⎢-6⎪2⎪⎥=⎨⎬⎨⎬ 223⎢⎥f3L-3L2LLL⎪s3⎪⎪v3⎪⎢22⎥⎪⎪f3L-3LL2L⎣⎦⎪⎩v4⎪⎭⎩s4⎭框架梁:C30混凝土E=3⨯107KN/m2,0.40⨯0.73EI=3⨯10⨯=3.43⨯105kN·m2,L=7.2m 127结构动力学课程论文7框架柱:0.60⨯0.603EI=3⨯10⨯=3.24⨯105KN·m2 L=3.6m12结构动力学课程论文结构动力学课程论文结构动力学课程论文ˆ(m)+kˆ(n)+kˆ(p)+....可计算一致刚度矩阵中的各元素:由kij=kijijijˆ(10)+kˆ(11)+kˆ(12)+kˆ(13)=4⨯0.833⨯105=3.332⨯105 k11=k11111111ˆ(10)+kˆ(11)+kˆ(12)+kˆ(13)=4⨯(-0.833k12=k)⨯105=-3.332⨯105 k13=0 12121212 (10)k14=k15=k16=k17=k18=k19=k1,10=k1,11=k14=1.50⨯105k1,12=k1,13=k1,14=k1,15=0ˆ(10)+kˆ(11)+kˆ(12)+kˆ(13)+kˆ(14)+kˆ(15)+kˆ(16)+kˆ(17)=8⨯0.833⨯105=6.664⨯105 k22=k2222222222222222ˆ(14)+kˆ(15)+kˆ(16)+kˆ(17)=4⨯(-0.833k23=k)⨯105=-3.332⨯1052323232310k24=k25=k26=k27=k24=-0.861⨯105ˆ(10)+kˆ(14)=0.861⨯105-0.861⨯105=0 同理 k28=k2828k29=k2,10=k2,11=0结构动力学课程论文ˆ(14)=1.50⨯105 k2,12=k2,13=k2,14=k2,15=k2,12ˆ(14)+kˆ(15)+kˆ(16)+kˆ(17)+kˆ(18)+kˆ(19)+kˆ(20)+kˆ(21)=8⨯0.833⨯105=6.664⨯105 k33=k3333333333333333k34=k35=k36=k37=0(14)k38=k39=k3,10=k3,11=k38=-1.50⨯105ˆ(14)+kˆ(18)=1.50⨯105-1.50⨯105=0 k3,12=k3,13=k3,14=k3,15=k3,123,12ˆ(1)=0.953⨯105 ˆ(1)+kˆ(10)=1.906⨯105+3.60⨯105=5.506⨯105 k=kk44=k44444545 k46=k47=0ˆ(10)=1.80⨯105k48=k48k49=k4,10=k4,11=k4,12=k4,13=k4,14=k4,15=0ˆ(1)+kˆ(2)+kˆ(11)=1.906⨯105+1.906⨯105+3.60⨯105=7.412⨯105k55=k555555ˆ(2)=0.953⨯105 k56=k56k57=k58=0 ˆ(11)=1.80⨯105 k59=k59k5,10=k5,11=k5,12=k5,13=k5,14=k5,15=0ˆ(2)+kˆ(3)+kˆ(12)=1.906⨯105+1.906⨯105+3.60⨯105=7.412⨯105k66=k666666ˆ(3)=0.953⨯105 k67=k67ˆ(12)=1.80⨯105 k=k=k=k=k=0 k68=k69=0 k6,10=k6,116,126,136,146,156,10ˆ(3)+kˆ(13)=1.906⨯105+3.60⨯105=5.506⨯105k77=k7777k78=k79=k7,10=0ˆ(13)=1.80⨯105 k=k=k=k=0 k7,11=k7,127,137,147,157,11ˆ(4)+kˆ(10)+kˆ(14)=1.906⨯105+3.60⨯105+3.60⨯105=9.106⨯105k88=k888888ˆ(4)=0.953⨯105 k89=k89ˆ(14)=1.80⨯105 k=k=k=0 k8,10=k8,11=0 k8,12=k8,138,148,158,12ˆ(4)+kˆ(5)+kˆ(11)+kˆ(15)=1.906⨯105+1.906⨯105+3.60⨯105+3.60⨯105k99=k999999 99=11.012⨯105 14结构动力学课程论文ˆ(5)=0.953⨯105 k9,10=k9,10k9,14=k9,15=0k9,11=k9,12=0ˆ(15)=1.80⨯105 k9,13=k9,13ˆ(5)+kˆ(6)+kˆ(12)+kˆ(16)=1.906⨯105+1.906⨯105+3.60⨯105+3.60⨯105k10,10=k10,1010,1010,1010,10=11.012⨯1055ˆ(6)=0.953⨯105 kˆ(16)k10,11=k10,12=k10,13=0 k10,14=k10,14=1.80⨯10 k10,15=0 10,11ˆ(6)+kˆ(13)+kˆ(17)=1.906⨯105+3.60⨯105+3.60⨯105=9.106⨯105k11,11=k11,1111,1111,11ˆ(17)=1.80⨯105 k11,12=k11,13=k11,14=0 k11,15=k11,15 ˆ(4)+kˆ(7)+kˆ(18)=1.906⨯105+3.60⨯105+3.60⨯105=9.106⨯105k12,12=k12,1212,1212,12ˆ(7)=0.953⨯105 kk12,13=k12,14=k12,15=0 12,13ˆ(7)+kˆ(8)+kˆ(15)+kˆ(19)=1.906⨯105+1.906⨯105+3.60⨯105+3.60⨯105k13,13=k13,1 313,1313,1313,13=11.012⨯105ˆ(8)=0.953⨯105 kk13,14=k13,15=0 13,14ˆ(8)+kˆ(9)+kˆ(16)+kˆ(20)=1.906⨯105+1.906⨯105+3.60⨯105+3.60⨯105k14,14=k14,1 414,1414,1414,14=11.012⨯105ˆ(9)=0.3125⨯105k14,15=k14,15ˆ(9)+kˆ(17)+kˆ(21)=1.906⨯105+3.60⨯105+3.60⨯105=9.106⨯105k15,15=k15,1515,1515,15得到一致刚度矩阵(该矩阵为对称矩阵,故下三角省略)单位(kN/m)⎡3.332⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢K=105⨯⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣-3.3326.6640-3.3326.6641.50-1.5005.5061.50-1.5000.9537.4121.50-1.50000.9537.4121.50-1.500000.9535.5061.500-1.501.800009.1061.500-1.5001.80000.95311.0121.500-1.50001.80000.95311.0121.500-1.500001.80000.9539.10601.50000001.800009.10601.500000001.80000.95311.01201.5000000001.80000.95311.01201.50000000001.80000.9539.106⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦结构动力学课程论文 2 问题2 解答2.1采用振型分解反应谱法,求解框架的频率和振型ˆ}={0}的特征值得到频率ω和振型φ:由[K]-ω2[M]{v在Matlab中导入质量矩阵[M]和刚度矩阵[K],输[v,ω2]=eig(K,M);ω=sqrt(ω2)可得框架的频率为: []ωT={ω1ω2ω3........ω14ω15}={32.861, 109.022, 199.133, 234.897, 299.589, 307.809 , 378.000, 388.414, 454.501, 480.646, 583.896 , 637.664, 747.045, 828.365, 1056.507 }框架的振型为[φ]=[{φ1}{φ2}{φ3}......{φ14}{φ15}]=φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8φ9 φ10 φ11 φ12 φ13 φ14 φ15结构动力学课程论文2.2 用Stodola法计算三层框架的频率和振型此结构的柔度矩阵是f=K-1=D=fm=⎡52612⎢34661⎢⎢13564⎢⎢-2919⎢-2009⎢⎢-2009⎢-2919⎢10-5⨯⎢-4627⎢-3739⎢⎢-3739⎢⎢-4627⎢-4436⎢⎢-3429⎢-3429⎢⎢⎣-4436453153846316844-648-547-547-648-3237-2622-2622-3237-5313-4034-4034-5313179831712511915-95-55.4-55.4-95-395-408-408-395-2546-1883-1883-2546 1933.61502.4600.3585.14-403.97.9103-69.43-330.8-46.98-141.3-151.2-164.3-169.8-202-2022088.51495.3606.51-631828.14-463.5-16.66-39.22-52.13-197.9-226.6-226.6-114.2-168.9-189.520471488.4605.89-7.983-467.4891.72-635.4-193.6-45.69-344.3-30.81-189.2-169.2-112.1-227.41933.61502.4600.3-69.437.9103-403.9585.14-151.2-141.3-46.98-330.8-202-149.4-169.8-164.3-959-507-53.6-141139.935.2281.15567.3-144114.5114.5109.7-71.595.5537.1-466.3-466.3-74.97214.41-174.8143.1345.392-214.1713.23-171.7134.55129.58-99.996.75140.084-885-466-7545.39143.1-175214.4134.6-172713.2-21440.0896.75-99.9129.6-959.1-507.2-53.6281.15235.225139.93-141.1109.67114.46-143.6567.357.99237.09595.548-71.52-959.1-507.2-53.6281.15235.225139.93-141.1109.67114.46-143.6567.357.99237.09595.548-71.52-768.9-687.5-306.5-28.0246.216-14.4511.743129.09-99.9796.6839.588-186.8664.53-159.7122.14-768.9-687.5-306.511.743-14.4546.216-28.0239.58896.68-99.97129.09122.14-159.7664.53-186.8-898.5⎤-828.5⎥⎥-387.3⎥⎥-1.176⎥7.242⎥⎥-15.89⎥45.168⎥⎥58.04⎥37.49⎥⎥95.943⎥⎥-71.48⎥113.72⎥⎥107.89⎥-127.1⎥⎥525⎥⎦结构动力学课程论文V1(1)=DV1(0)迭代过程列表如下根据D V1(0)⎡52612⎢34661⎢⎢13564⎢⎢-2919⎢-2009⎢⎢-2009⎢-2919⎢10-5⨯⎢-4627⎢-3739⎢⎢-3739⎢⎢-4627⎢-4436⎢⎢-3429⎢-3429⎢⎢-4436⎣453153846316844-648-547-547-648-3237-2622-2622-3237-5313-4034-4034-5313179831712511915-95-55.4-55.4-95-395-408-408-395-2546-1883-1883-2546 1933.61502.4600.3585.14-403.97.9103-69.43-330.8-46.98-141.3-151.2-164.3-169.8-202-2022088.51495.3606.51-631828.14-463.5-16.66-39.22-52.13-197.9-226.6-226.6-114.2-168.9-189.520471488.4605.89-7.983-467.4891.72-635.4-193.6-45.69-344.3-30.81-189.2-169.2-112.1-227.41933.61502.4600.3-69.437.9103-403.9585.14-151.2-141.3-46.98-330.8-202-149.4-169.8-164.3-959-507-53.6-141139.935.2281.15567.3-144114.5114.5109.7-71.595.5537.1-466.3-466.3-74.97214.4-174.8143.145.39-214.1713.2-171.7134.5129.5-99.996.7540.08-885-466-7545.39143.1-175214.4134.6-172713.2-21440.0896.75-99.9129.6-959.1-507.2-53.6281.1535.22139.93-141.1109.67114.46-143.6567.357.9937.0195.54-71.52-959.1-507.2-53.6281.1535.22139.93-141.1109.67114.46-143.6567.357.9937.0995.54-71.52-768.9-768.9-687.5-306.5-28.0246.21-14.4511.74129.1-99.9796.6839.58-186.8664.5-159.7122.14-687.5-306.511.743-14.4546.216-28.0239.58896.68-99.97129.09122.14-159.7664.53-186.8-898.5⎤-828.5-387.3⎥-1.1767.242-15.89⎥45.1658.04⎥37.4995.94⎥-71.48113.7107.8⎥-127.1525⎦⎥⎡1⎤⎢1⎥⎢⎥⎢1⎥⎢⎥⎢1⎥⎢1⎥⎢⎥⎢1⎥⎢1⎥⎢⎥⎢1⎥⎢1⎥⎢⎥⎢1⎥⎢⎥⎢1⎥⎢1⎥⎢⎥⎢1⎥⎢1⎥⎢⎥⎢⎣1⎥⎦V1(1) V1(1) V1(2) V1(2) V1(3) V1(3) V1(4) V1(4 ) V1(5)⎡116889⎤⎢91257.8⎥⎢⎥⎢43091⎥⎢⎥-3558.1⎢⎥⎢-2480.4⎥⎢⎥⎢-2412.9⎥⎢-3571.2⎥⎢⎥-8221.3⎢⎥⎢-6697.9⎥⎢⎥⎢-6710.8⎥⎢⎥-8217.2⎢⎥⎢-12347⎥⎢⎥-9334.2⎢⎥⎢-9331.7⎥⎢⎥⎢⎣-12348⎥⎦10.7810.369-0.03-0.02-0.02-0.03-0.07-0.06-0.06-0.07-0.11-0.08-0.08-0.11949641928321926271926086917330082-3452-2444-2446-3451-7208-5858-5857-7208-9276-7082-7082-9276712580.7504311920.3285-3477-0.037-2465-0.026-2465-0.026-3477-0.037-7335-0.077-5965-0.063-5965-0.063-7335-0.077-9574-0.101-7305-0.077-7305-0.077-9574-0.101693690.7473301840.3252-3454-0.037-2446-0.026-2448-0.026-3454-0.037-7221-0.078-5868-0.063-5868-0.063-7221-0.078-0.1-9304-7103-0.077-7103-0.077-0.1-9304691890.747300910.325-3452-0.04-2444-0.03-2446-0.03-3451-0.04-7209-0.08-5859-0.06-5858-0.06-7209-0.08-9278-0.1-7084-0.08-7084-0.08-9278-0.1则得到第一振型形式为φ1=(-0.1585 -0.1184 -0.0515 0.005910.00418 0.00419 0.00591 0.01234 0.01003 0.01002 0.01234 0.01588 0.01212 0.01212 0.01588)再用公式ω12=(V1)TmV1(0)(V)mV(1)T1(1)1(1),将数据代入得ω1=32.75。

结构动力学大作业分析

结构动力学大作业分析

结构动力学大作业姓名:学号:习题1用缩法减进行瞬态构造动力学剖析以确立对有限上涨时间得恒定力的动力学响应。

是一根钢梁支撑着集中质量并蒙受一个动向荷载。

实质构造钢梁长L,支撑着一个集中质量M。

这根梁蒙受着一个上涨时间为t,最大值为F1的动向荷载F(t)。

梁的质量能够忽视,需确立产生最大位移响应时间t max及响应y max 。

同时要确立梁中的最大曲折应力bend。

:资料特征:E x 2E5 MPa ,质量M=,质量阻尼ALPHAD=8;几何尺寸:L=450mm mm4h=18mm;荷载为:F1=20N t =提示:减少法需定义主自由度。

荷载需三个荷载步〔0至加质量,再至,最后至1s〕ANSYS命令以下:FINISH/CLE$/CONFIG,NRES,2000/prep7L=450$H=18ET,1,BEAM3ET,2,MASS21,,,4R,1,1,800.6,18R,2,30!MASS21的实常数次序N,1,0,0,0N,2,450/2,0,0N,3,450,0,0E,1,2$E,2,3!创办单元TYPE,2$REAL,2E,2M,2,UYFINISH/SOLU!进入求解层ANTYPE,TRANSTRNOPT,REDUC!定义时间积分步长ALPHAD,8 !质量阻尼为8D,1,UY$D,3,UX,,,,,UY!节点1Y方向,拘束节点3X、Y方向拘束F,2,FY,0LSWRITE,1 !生成荷载步文件1FDELE,ALL,ALLF,2,FY,20LSWRITE,2 !生成荷载步文件 2TIME,1LSWRITE,3 !生成荷载步文件 3LSSOLVE,1,3,1!求解荷载文件1,2,3FINISH/SOLU!扩展办理SOLVEFINISH/POST26NUMVAR,0FILE,fdy,rdsp!注意,成立的工程名称为fdy,否那么高出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL PLVAR,2 !时间位移曲线PRVAR,2 !得出在该时间点上跨中位移最大/POST1 !查察某个时辰的计算结果SET,FIRSTPLDISP,1 !系统在秒时总变形图ETABLE,Imoment,SMISC,6 !单元I点弯矩ETABLE,Jmoment,SMISC,12 !单元J点弯矩ETABLE,Ishear,SMISC,2 !单元I点剪力ETABLE,Jshear,SMISC,8 !单元J点剪力PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力争结果以下;跟着时间位移的大小:可知系统在秒时总变形最大。

结构动力学大作业

结构动力学大作业

结构动力学作业姓名:学号:目录1.力插值法 (1)1.1分段常数插值法 (1)1.2分段线性插值法 (4)2.加速度插值法 (7)2.1常加速度法 (7)2.2线加速度法 (9)附录 (12)分段常数插值法源程序 (12)分段线性插值法源程序 (12)常加速度法源程序 (13)线加速度法源程序 (13)1.力插值法力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。

1.1分段常数插值法图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。

图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。

图1-1 单自由度无阻尼系统示意图图1-2 矩形脉冲荷载示意图对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到:0()sin ()2 (1cos )(1cos ) (0)tst st d P y t t d m ty t y t t Tωττωπω=-=-=-≤≤⎰(1-1)如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为:02()cos sin (1cos) (0)st d y ty t y t t y t t Tπωωω=++-≤≤& (1-2)图1-3 分段常数插值法微段示意图对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为:1cos t sin t (1cos t)iii i y P y y kωωωω+=∆+∆+-∆& (1-3)i+1/sin t cos t sin t iii y P y y kωωωωω=-∆+∆+∆&& (1-4)程序流程图如下i+1cos t sin t (1cos t)iii y P y y kωωωω=∆+∆+-∆i+1/sin t cos t sin ti i i y Py y kωωωωω=-∆+∆+∆图1-4 分段常数插值法流程图根据流程图可以编写相应的算法,利用MATLAB 进行编程,程序源代码见附录。

华科土木结构动力学-作业题汇总精选全文完整版

华科土木结构动力学-作业题汇总精选全文完整版

《结构动力学》课后习题1试确定图示各体系的动力自由度,忽略弹性杆件自身的质量和轴向变形。

(a)4个动力自由度(b)2个动力自由度(c)2个动力自由度(d)2个动力自由度m(e )3个动力自由度(f )3个动力自由度(g)2个动力自由度(h)3个动力自由度(i)2个动力自由度(j)1个动力自由度m(k )2个动力自由度(l )2个动力自由度2试比较下列图式结构(a )、(b)固有频率的大小,并说明理由。

解:(a )结构滑动铰支座刚度无穷大,而(b )结构由于二力杆可以轴向变形,所以(a )结构刚度大于(b )结构刚度;而两结构质量相等,根据ω=可以知道,(a )结构故固有频率大于(b)结构固有频率。

m(a )(b )3下图为刚性外伸梁,C 处为弹性支座,刚度系数为k ,梁端A ,D 处分别有m 和质量m /3,同时梁受集中荷载F P (t )的作用,试建立刚性梁的运动方程。

解:单自由度体系,设刚性梁转角为ϕm(t)(my )(y )3A A D D F ϕϕϕϕδδδ=-⋅+-⋅+ (1)其中A y l ϕ=2D y l ϕ= 设刚梁顺时针转动为正①当在A 处作用单位力F=1时,2()3C F =↓234329A l k klϕδ=+÷=+②当在D 处作用单位力F=1时,4()3C F =↑438329A l k klϕδ=+÷=+③当作用F p (t )时,(t)()3p C F F =↑(t)2(t)3329p p FF F l k kl ϕδ=÷=代入(1)式得:2(t)4m 8(m )((2)9399p F l l kl kl klϕϕϕ=-⋅+-⋅⋅+整理得:2(t)28279p F m k klϕϕ+=4求图示结构的自振频率ωEI =∞kθlθm解:如图所示,该体系只有一个自由度。

设固定支座处出为原点,距离原点x处的质点(mdx )位移为x θ,惯性力为()mdx x mx dx θθ''-=- 。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。

2. 描述阻尼对结构动力响应的影响。

三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。

若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。

答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。

2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。

二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。

它的重要性在于:- 预测结构在动态载荷下的响应。

- 为控制结构的振动提供基础数据。

- 优化设计,提高结构的抗震性能。

2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。

- 改变系统的自然频率和模态形状。

- 影响系统的动态响应时间。

三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。

- 应用逆变换得到位移响应的解析解或数值解。

位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。

具体的数值需要根据系统参数和初始条件进行计算。

结构动力学大作业

结构动力学大作业

结构动力学作业姓名:学号:目录1.力插值法 (1)1.1分段常数插值法 (1)1.2分段线性插值法 (4)2.加速度插值法 (7)2.1常加速度法 (7)2.2线加速度法 (9)附录 (12)分段常数插值法源程序 (12)分段线性插值法源程序 (12)常加速度法源程序 (13)线加速度法源程序 (13)1.力插值法力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。

1.1分段常数插值法图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。

图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。

图1-1 单自由度无阻尼系统示意图图1-2 矩形脉冲荷载示意图对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到:0()sin ()2 (1cos )(1cos ) (0)tst st d P y t t d m ty t y t t Tωττωπω=-=-=-≤≤⎰(1-1)如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为:002()cos sin (1cos) (0)st d yty t y t t y t t Tπωωω=++-≤≤ (1-2)图1-3分段常数插值法微段示意图对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为:1cos t sin t (1cos t)i ii i yP y y kωωωω+=∆+∆+-∆ (1-3)i+1/sin t cos t sin t i ii yP yy kωωωωω=-∆+∆+∆ (1-4)程序流程图如下图1-4分段常数插值法流程图根据流程图可以编写相应的算法,利用MATLAB 进行编程,程序源代码见附录。

结构动力学参考答案

结构动力学参考答案
.. .
m u + c u + ku = Pu (t ) 2.13 一根均匀杆,图 P2.13 其单位体积质量密度 ρ ,并具有顶部质量 M,应 用假定法ψ ( x) = x L 来推导该系统轴向自由振动的运动方程。假定 AE = 常数。 解:
.. 1 EA ( ρAL + M ) u + u = P(t ) 3 L
结构动力学习题 参考答案
1
2.3 一根刚梁 AB,用力在弹簧 BC 上去激励它,其 C 点的运动规定为 Z(t),如 图 P2.3. 按 B 点的垂直运动 u 来确定系统的运动方程,假定运动是微小的。 解: 4M u + 3c u + (3k1 + 12k 2 )u = 12k 2 Z (t )
.. .
4
4.17 在振动的结构上一个点,已知其运动为 Ζ = Ζ1 cos(Ω1t ) + Ζ 2 cos(Ω 2 t ) =
0.05 cos ( 60π t ) + 0.02 cos(120π t ) 。
(a)用一加速度计其阻尼因数 ξ = 0.70 和 20 KHz 共振频率来确定振动记录 w p (t ) 。 (b) 加速度计是否会引起有效幅值或相位畸变? 解: (a) w p (t ) = w p1 (t ) + w p 2 (t ) = 6.339 × 10 −11 A1 cos 60π (t − 1.1145 × 10 −5 ) + 6.339 × 10 −11 A2 • cos 120π (t − 1.1146 × 10 −5 ) (b) w p (t ) = C[ A1 cos Ω1 (t − τ ) + A2 cos Ω 2 (t − τ )] A1 , A2 分别表示 Z1 , Z 2 的加速度幅值,所以输出 w p (t ) 与加速度输 入成正比,所以不会发生幅值畸变或相位畸变。 5.2 运送一件仪器设备重 40 1b,是用泡沫包装在一容器内。该容器的有效刚度 k=100 1b/in,有效阻尼因数 ξ = 0.05 ,若整个容器和它的包装以垂直速度 V=150 in/s 碰撞在地面上,求泡沫包装在仪器设备的最大总应力。 (如图 P5.2 所示) 解: f max = 451.739 (1b) 6.5 例 题 4.3 中的 车辆 , 已知 k = 400 × 10 3 , m = 1200kg , ξ = 0.4。 当满 载时以

高等结构动力学大作业

高等结构动力学大作业

高等结构动力学大作业【原创版】目录1.高等结构动力学的概念和意义2.高等结构动力学的研究方法和应用3.高等结构动力学的大作业要求和内容4.高等结构动力学大作业的完成方法和技巧5.高等结构动力学大作业的实际应用案例正文一、高等结构动力学的概念和意义高等结构动力学,作为力学的一个分支,主要研究结构在动力载荷作用下的响应和稳定性。

其研究的核心目标是为了提高结构的安全性、可靠性和经济性,从而在工程设计中发挥重要作用。

高等结构动力学具有很强的理论性和实践性,对于工程技术人员来说,掌握高等结构动力学的基本理论和方法具有重要意义。

二、高等结构动力学的研究方法和应用高等结构动力学主要采用数学建模、数值分析和实验研究等方法进行研究。

数学建模是将实际问题抽象为数学模型,以便于进行理论分析;数值分析是通过计算机模拟和计算,求解数学模型,得到结构在动力载荷作用下的响应;实验研究是通过实验设备和仪器,对结构进行实际测试,以验证理论分析和数值计算的结果。

高等结构动力学的应用领域非常广泛,包括建筑结构、机械结构、航空航天结构、桥梁结构等。

在实际工程中,通过应用高等结构动力学的理论和方法,可以有效地指导工程设计和施工,提高工程质量和安全性。

三、高等结构动力学的大作业要求和内容高等结构动力学的大作业通常要求学生具备一定的理论基础和实践能力,能够独立完成结构动力学的分析和计算。

大作业的内容主要包括以下几个方面:1.对给定的结构进行数学建模和动力学分析;2.采用数值分析方法,求解结构的动力响应;3.对结构进行稳定性分析和疲劳寿命预测;4.根据计算结果,对结构进行优化设计,以提高其性能。

四、高等结构动力学大作业的完成方法和技巧1.熟悉课程教材,掌握高等结构动力学的基本理论和方法;2.根据题目要求,选择合适的数学建模方法和数值分析方法;3.认真分析题目,确定计算模型的边界条件和初始条件;4.采用适当的计算机软件或编程语言进行数值计算;5.分析计算结果,编写完整的计算报告。

13结构动力学习题

13结构动力学习题

13结构动⼒学习题1.1 不计轴向变形,图⽰体系的振动⾃由度为2。

1.2 不计轴向变形,图⽰体系的振动⾃由度为1。

1.3 不计轴向变形,图⽰体系的振动⾃由度为2。

1.4 结构的⾃振频率不仅与质量和刚度有关,还与⼲扰⼒有关。

1.5 单⾃由度体系,考虑阻尼时,频率变⼩。

1.6 弹性⼒与位移反向,惯性⼒与加速度反向,阻尼⼒与速度反向。

1.7 如简谐荷载作⽤在单⾃由度体系的质点上且沿着振动⽅向,体系各截⾯的内⼒和位移动⼒系数相同。

1.8 在建⽴质点振动微分⽅程时,考虑不考虑质点的重⼒,对动位移⽆影响。

1.9 图⽰体系在简谐荷载作⽤下,不论频率⽐如何,动位移y(t) 总是与荷载P(t) 同向。

1.10 多⾃由度体系⾃由振动过程中,某⼀主振型的惯性⼒不会在其它主振型上做功。

⼆、单项选择题2.1 在单⾃由度体系受迫振动的动位移幅值计算公式中,yst是A 质量的重⼒所引起的静位移B 动荷载的幅值所引起的静位移C 动荷载引起的动位移D 质量的重⼒和动荷载复制所引起的静位移2.2 ⽆阻尼单⾃由度体系的⾃由振动⽅程:。

则质点的振幅y max=2.3 多⾃由度振动体系的刚度矩阵和柔度矩阵的关系是2.4 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。

它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.5 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。

它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.6 已知两个⾃由度体系的质量矩阵为,Y22等于A -0.5B 0. 5C 1D -0.252.7 不计阻尼,不计⾃重,不考虑杆件的轴向变形,图⽰体系的⾃振频率为2.8 图⽰四个相同的桁架,只是集中质量m的位置不同,,它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作⽤,各杆EA为常数),那么它们的关系是2.9 设ω为结构的⾃振频率,θ为荷载频率,β为动⼒系数下列论述正确的是A ω越⼤β也越⼤B θ越⼤β也越⼤C θ/ω越接近1,β绝对值越⼤Dθ/ω越⼤β也越⼤2.10 当简谐荷载作⽤于有阻尼的单⾃由度体系时,若荷载频率远远⼤于体系的⾃振频率时,则此时与动荷载相平衡的主要是A 弹性恢复⼒B 阻尼⼒C 惯性⼒D 重⼒2.11 图⽰(a )、(b )两体系中,EI 、EI1及h 均为常数,则两者⾃振频率ωa 与ωb 的关系是2.12 图⽰三个单跨梁的⾃振频率分别为ωa ,ωb ,ωc ,它们之间的关系是2.13 ⼀单⾃由度振动体系,其阻尼⽐为ξ,共振时的动⼒系数为β则ABCD2.14 当荷载频率θ接近结构的⾃振频率ω时A 可作为静荷载处理B 荷载影响⾮常⼩C 引起共振D 可以不考虑阻尼的影响求图⽰体系的⾃振频率ω。

(精品)重庆大学结构动力学大作业

(精品)重庆大学结构动力学大作业

研究生课程考核试卷
(适用于课程论文、提交报告)
科目:结构动力学大作业教师:刘纲
姓名:刘亚南学号:20131613144 专业:建筑与土木工程类别:专业
上课时间:2013 年11 月至2014 年1 月
考生成绩:
卷面成绩平时成绩课程综合成绩阅卷评语:
阅卷教师(签名)
重庆大学研究生院制
土木工程学院2013级硕士研究生考试试题
科目名称:结构动力学考试日期:2014年1月总分:20分
1、按规定设计一个2跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。

根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵;
2、至少采用两种方法求该框架结构的频率和振型;
3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。

要求给出:
(1)框架结构图,并给出一致质量矩阵和一致刚度矩阵;
(2)出两种方法名称及对应的频率和振型;
(3)输入地震波的波形图,计算所得各楼层位移反应时程图。

结构动力学-刘亚南(20131613144)
目录
题目一
1、框架设计 (2)
2、结构的一致质量矩阵 (3)
3、结构的一致刚度矩阵 (6)
题目二
1、建立框架结构的运动微分方程 (10)
2、用Rayleigh法求近似基频 (10)
3、用Stodola法求频率 (12)
题目三
1、框架资料 (15)
2、分析方法 (15)
3、具体操作步骤 (16)
4、地震波的波形图 (21)
5、时程反应图 (21)
第1页/共26页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏尚武 廉少森 徐宁波 冯留洋 欧阳禄 曾鹏 余岷燚 吴铭 陶峰 徐扬 司翔 宁泰 卢卫明
1200kN,1000kN 1200kN,1000kN 1200kN,1000kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN
0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g
土木工程与力学学院结构力学教研室
结构动力学大作业
51 52 53 54 55 56 57 58 59 60 61 62 63
U201015173 U201015174 U201015175 U201015176 U201015177 U201015178 U201015179 U201015180 U201015181 U201015182 U201015183 U201015184 U201015185
由特征周期 Tg 查图 5.1.5 地震影响系数曲线即可得出水平地震
土木工程与力学学院结构力学教研室
《结构动力学》 影响系数α。 (其中η1=0.02、η2=1.0、 γ =0.9)
(5) 求内力,画内力图 作用在第 i 振型上的水平地震作用:
Fi j = α jγ jYi j Gi
3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2
400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400
土木工程与力学学院结构力学教研室
结构动力学大作业
12 13 14 15 16 17 18 19 20 21 22 23 24
U201015145 U201015146 U201015147 U201015148 U201015149 U201015150 U201015151 U201015152 U201015153 U201015154 U201015155 U201015156 U201015158
ω1 =
自振频率:
1 λ1 1 λ2
土木工程与力学学院结构力学教研室
ω2 =
《结构动力学》 大作业
采用振型叠加法求地震作用下框架结构内力
振型:
Y1(1) m2δ12 = − 1 Y2(1) m1δ11 − 2 ω1
n
Y1(2) m2δ12 = − 1 Y2(2) m1δ11 − 2 ω2
(2) 求振型参与系数
采用振型叠加法求地震作用下框架结构内力
振型叠加法求 地震作用下 框架结构内力 采用 采用振型叠加法求 振型叠加法求地震作用下 地震作用下框架结构内力
一、 课程大作业任务及目的
1. 学习振型叠加法,并利用 SRSS 法求解多层框架结构的弯矩和 剪力,并绘制内力图; 2. 通过本课程大作业的实践及其前后的准备与总结,复习、巩固 和领会课堂上学习的知识, 并结合新颁布 《建筑抗震设计规范》 (GB50011-2010) 和 《混凝土结构设计规范》 (GB50010-2010) 。 此大作业成果记入平时成绩,考核平时学习情况。
C30 C30 C30 C30 C35 C35 C35 C35 C35 C40 C40 C40 C40
7 7 7 7 7 7 7 7 7 7 7 7 7
I0 第三组 I0 第三组 I0 第三组 I0 第三组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第二组 Ⅱ 第二组 Ⅱ 第二组 Ⅱ 第二组
4.2 3.0 3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2 3.0 3.3
350x350 350x350 350x350 350x350 350x350 350x350 400x400 400x400 400x400 400x400 400x400 400x400 400x400
姓名
肖正 杨宜龙 向航 杨阳 谢文刚 刘超 宋朋 郑旭东 李明蔚 刘勇 黄堃
重力荷载代表值 (G1, G2) 层高 H (m) 1100kN,1100kN 1100kN,1100kN 1100kN,1100kN 1100kN,1100kN 1100kN,1100kN 1150kN,1150kN 1150kN,1150kN 1150kN,1150kN 1150kN,1150kN 1150kN,1150kN 1200kN,1200kN 3.0 3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2 3.0
周世钦 车明明 蔡兴学 何翊 齐泊良 孙嘉伟 尤慧丰 戎企业 罗序江 方泽 陈学龙 田元 王沿朝
1350kN,1150kN 1350kN,1150kN 1350kN,1150kN 1350kN,1150kN 1350kN,1150kN 1400kN,1200kN 1400kN,1200kN 1400kN,1200kN 1400kN,1200kN 1400kN,1200kN 1400kN,1100kN 1400kN,1100kN 1400kN,1100kN
二、 课程大作业要求
1. 学习课程大作业指导书和分组(一人一题,见附表 1) ; 2. 学习与搜集材料,借阅书籍、规范; 3. 计算书要求:电子版,步骤清晰,成果用 A4 纸打印。
三、 课程大作业计算步骤
(1) 求出频率和振型(混凝土弹性模量参见附表 2)
(δ11m1 + δ 22 m2 ) ± (δ11m1 + δ 22 m2 ) 2 − 4(δ11δ 22 − δ12δ 21 )m1m2 λ1 = 2 2
{Y }( j )T [ M ]{1} γj = = ( j )T ( j) {Y } [ M ]{Y }
(3) 求自振周期 T1,T2 自振周期为:
∑mY
i =1 n
j
i i j 2
∑ m (Y
i i =1
i
)
特征周期 Tg:根据场地类别和地震分组见下表 5.1.4-2
(4) 求水平地震影响系数α 根据地震影响和烈度查表得出水平地震影响系数最大值αmax 见表 5.1.4-1
0.10g 0.10g 0.10g 0.10g 0.10g 0.10g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g
土木工程与力学学院结构力学教研室
结构动力学大作业
38 39 40 41 42 43 44 45 46 47 48 49 50
U201010161 U201010814 U201010838 U201014956 U201014968 U201015015 U201015034 U201015166 U201015167 U201015168 U201015169 U201015170 U201015172
3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9
350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350
王晓伟 汪豪 周航 周雨微 乔大洲 钟旭晗 常怀宽 王清华 伍思文 汤森霖 谭聪华 徐飞 李勇骏
1300kN,1300kN 1350kN,1350kN 1350kN,1350kN 1350kN,1350kN 1350kN,1350kN 1350kN,1350kN 1400kN,1400kN 1400kN,1400kN 1400kN,1400kN 1400kN,1400kN 1400kN,1400kN 1200kN,1000kN 1200kN,1000kN
柱截面尺寸 bxh(mm) 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350 350x350
砼强度 C20 C20 C20 C20 C20 C25 C25 C25 C25 C25 C30
烈度 7 7 7 7 7 7 7 7 7 7 7
《结构动力学》 大作业
采用振型叠加法求地震作用下框架结构内力
《结构动力学》大作业指导书
振型叠加法求 地震作用下 框架结构内力 采用 采用振型叠加法求 振型叠加法求地震作用下 地震作用下框架结构内力
华中科技大学 土木工程与力学学院 3年4月3日 201 2013
土木工程与力学学院结构力学教研室
《结构动力学》 大作业
C25 C25 C25 C30 C30 C30 C30 C30 C35 C35 C35 C35 C35
7 7 7 7 7 7 7 7 7 7 7 7 7
I1 第二组 I1 第二组 I1 第二组 I1 第三组 I1 第三组 I1 第三组 I1 第三组 I1 第三组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ 第一组 Ⅱ第一组
G2 H G1 H
图 1 两层框架结构
图 2 集中质量模型
土木工程与力学学院结构力学教研室
结构动力学大作业
附表 1:结构计算参数
序 号 1 2 3 4 5 6 7 8 9 10 11 学号
U200814886 U200915790 U201015135 U201015137 U201015138 U201015139 U201015140 U201015141 U201015142 U201015143 U201015144
吕剑 王鹏飞 热合木提 拉·艾力 刘春生 李林 罗吕航 操岳林 熊德科 王隆勋 王熙萌 许贵传 杨宽 程业传
相关文档
最新文档