基于MATLAB同步发电机励磁控制系统仿真

合集下载

基于MATLAB的同步发电机励磁系统仿真研究

基于MATLAB的同步发电机励磁系统仿真研究
参考 文献:
案例 :设置同步发 电机在 1 5 秒时刻 出线首端发生三相短路故 障, 研究励磁 系统在 发电机 三相短路故障过渡过程中的调节作用 。 由图 3 - 1 可 以看出 ,当同步发 电机 1 5 s 时刻出线 首端突然 发生三 相短路时 的励磁 电压 Vf l快速 上升 到最大 电压 值 5 ,这 说 明 了 励 磁 系 统 在 三 相 短 路 瞬 态 进 行 了 强 励 调 节 来 阻 止 机 端 电 压迅速跌落 。另外 , 还可以看出励磁 电流 l f d的波 形 出现 了 振
D OI: 1 0 . 1 6 6 4 0 / } . c n k i . 3 7 — 1 2 2 2 / t . 2 0 1 7 . 0 2 . 1 5 0
1 引 言
同步发 电机作 为 电网能 最的注 入者而 注定 成为 电网 中的重要 元 件 ,其运行性 能好坏将直接关 系到整 个电力系统是否能够保持 安全稳 定运行 ” ,同步发 电机的合理 控制为此显得 颇为重要 。虽然调 节机械 功率和励磁 电压 是发 电机控制 的最主 要的两个方法 ,但是 由 于 调节机 械功率需要 调整过程缓慢 的调速器 ,因此在研究励磁系统 的控 制时可 一 Nhomakorabea,
2 仿真模型

本文为 了重点研究励磁 系统对发 电机暂态稳定 的影 响而简化 了电 力系 统模 型 ,在 MA TL AB / S i mt d i n k环 境下 构建如 图 1所示 的单 机一 无穷大系统仿真模型 。
一 ~
荡现象 ,这是 由于励 磁 电压 的剧 烈 变 化 导致 ,说明励磁系统 调 节 过 程 有 可 能 引 : F = = = = =■—— 二 =: = = = = = == = = ] 发系统振荡 。 l n ^ n ^ j 1 ~ , 一 — _ v …… — — 一 一 — 一 _ _ 由图3 — 2和 图 t 3 — 3 还 可 以看 出,发 电机 出 口 发 生 三 相 短 路 瞬 间 时 功 角 同 样 发生 了振 荡现 象 , 图3 — 2 三相短路时转速、功角与有功输出 机 端 电 压 大 减 ,输 出的有功 P e o 猛减后 开 始 波 动 ,1 5 . 1 s 时 刻 故 障 消 失 ,在 励 磁 系 统 强 励 调 节 作 用 下输 出的有功 P e o 在 机 端 电 压 恢 复 后 也 很 快 恢 复 了 正 常 值 ; 机 端 线 电压 Vt 在 1 5 s 时刻 因为短路 故 障而 由额定值 1 陡 图3 — 3 三 相 短 路 时 机 端 电 压 降至 O . 4 ,之 后 由 于 强励 的启动 ,机端线 电压 V t 不再急剧下降 ,而是开始在 0 . 3附近减 幅 波动 ,1 5 . 1 s 时刻故 障消 失后机端线 电压 Vt 在 强励作用下 迅速恢复 到 额定值 1 。 转子转速 w 在短路时 由于发电机负载 大减 , 因此开 始加速 , 在 强励的作用下 才被控制住 ,由于惯 性较大经 1 5 s 时间减幅波动才 稳 定在额定值 1 。

基于matlab的同步发电机组建模与仿真

基于matlab的同步发电机组建模与仿真

基于matlab的同步发电机组建模与仿真基于matlab的同步发电机组建模与仿真I 基于MATLAB 的同步发电机组建模与仿真摘要随着电网的规模越来越大,电力系统的运行也随之越来越复杂。

同步发电机及其控制系统作为电源是电力系统中的重要组成部分,其性能对电力系统有着极大的影响,直接关系到系统的稳定运行。

为了使电力系统安全而经济地运行,我们必须对同步发电机组特性进行深入的研究。

而同步发电机组运行是一个相当复杂的过程,其动态特性随着机组的运行状态而不断变化,所以建立机组的模型并进行仿真研究是掌握发电机动态特性,评价其各个控制系统性能的有效手段,并且对工作人员的培训和研究将起到很大的作用。

同步发电机组模型的建立将涉及到机组的机理分析,有利于从理论建模中引出新的设计方法,为优化设计提供理论依据。

本文将对同步发电机及其励磁系统、调速系统的数学模型进行研究,利用MATLAB/Simulink 搭建同步发电机组的仿真模型,建立单机无穷大系统,最后对模型进行仿真,并分析仿真结果。

关键词:电力系统;单机无穷大系统;MATLAB/Simulink;仿真;同步发电机组华北电力大学本科毕业设计(论文)摘要II SYNCHRONOUS GENERATOR UNIT MODELING AND SIMULATION BASED ON MATLAB Abstract With the enlargement of the power grid scale, the operation of the power system is becoming more and more complex. As supply unit of the system, synchronous generator and its control system plays an important part in the power system. Their performance also imposes great influence to the power system and has a direct connection with the power system stability. In order to ensure the safe and economic operation of the power system, we shall do a profound research on the synchronous generator unit characteristics. However, the operation of the synchronous generator unit is a extremely complex process. Its dynamic characteristics are subject to the changing states of the unit operation. Therefore, it is efficient to build a unit model and do simulations research to acquire the dynamic characteristics of the unit, and evaluate the performance of each control system. This will also play a great role in the staff training and researches. The building of the synchronous generator unit model will involve the mechanic analysis of the unit, do favor to deduce new designing methods from theoretical model buildingand provide theoretical basis to the optimization design. In this paper the mathematical model of the synchronous generator and its excitation system, speed regulating system will be researched; the simulation model of synchronous generator unit will be built based on MATLAB/Simulink; a single-unit infinite system will be established; finally simulate the model and verify the accuracy of the model. Key Words: Power System; Single-unit Infinite System; MATLAB/Simulink; Simulation; Synchronous Generator Unit 华北电力大学本科毕业设计(论文)目录i 目录摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙IAbstract∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙II 1 绪论∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.1 课题背景和意义∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.2 电力系统仿真发展现状∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.3 本课题所完成的主要工作∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 2 同步发电机组数学模型∙∙∙∙∙∙4 2.1 同步发电机数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.1 同步发电机数学建模概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.2 同步发电机基本方程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.3 同步发电机三阶模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 2.1.4 单机无穷大系统∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 2.2 励磁系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.2.1 同步发电机励磁自动控制系统概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.2.2 同步发电机励磁自动控制系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.3 调速系统数学模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 2.3.1 同步发电机组调速控制系统概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 2.3.2 同步发电机调速系统数学模型于MATLAB 同步发电机组仿真∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1 MATLAB 介绍∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1.1 MATLAB/Simulink∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 3.1.2 常用Simulink 库模块∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 3.2 同步发电机组仿真的初值计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 3.3 同步发电机组仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.3.1 同步发电机模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16 3.3.2 同步发电机励磁自动控制系统仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙17 3.3.3 同步发电机调速系统仿真模型∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 3.4 系统仿真及结果分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 3.4.1 稳定运行∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19 3.4.2 系统电压突增或突降∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20 3.4.3 增加励磁系统给定电压∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 1 3.4.4 增加调速系统给定功率∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 3 华北电力大学本科毕业设计(论文)目录ii 3.4.5 三相突然短路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24 4 结论与展望∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26 参考文献∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27 致谢∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28 华北电力大学本科毕业设计(论文)1 1 绪论1.1 课题背景和意义随着现代电力系统网络规模的不断扩大和电网电压等级的不断升高,电力系统规划、运行和控制的复杂性亦日益增加。

基于MATLAB的同步发电机励磁系统的建模与仿真研究剖析

基于MATLAB的同步发电机励磁系统的建模与仿真研究剖析

硕士研究生学位论文X X大学论文题目(中文):基于MATLAB的同步发电机励磁系统的建模仿真论文题目(外文):Modeling and Simulation of excitation system of synchronous generator based on MATLAB/simulink 研究生姓名:XXXX学科、专业:电气工程研究方向:导师姓名职称:论文答辩日期年月日学位授予日期年月日摘要近些年来,电力系统发展迅速,基本形成了高电压、大机组、超远距离输送的模式。

因此,保证电力系统的安全、稳定、高效运行成为了研究的热点与难点。

同步发电机励磁控制系统是同步发电机控制系统的核心。

经过长年的研究证明, 实现对同步发电机励磁的合理有效控制,是实现电力系统稳定运行要求的最快捷、最有效、最廉价的方法。

传统PID控制需要线性的精确模型,无法实现对非线性对象的有效控制,不能及时应对系统运行中被控对象发生的改变,对于目前以至未来电力系统的发展特点,难以实现有效控制。

模糊控制是一种智能控制方法,它不需要精确的数学模型,鲁棒性强,同时设计简单方便,易于实现。

本文从同步发电机励磁控制系统原理入手,在深入学习PID控制与模糊控制理论之后,将两者结合起来,提出了基于模糊PID同步发电机励磁控制策略。

详细阐述了该模糊PID励磁控制器的设计过程,实现了针对同步发电机励磁控制这一非线性系统的实时在线控制。

选取了多组参数对所设计的励磁控制器进行仿真,与常规PID控制效果进行比较分析。

实验结果表明本文提出的基于模糊PID的同步发电机励磁控制效果良好,系统的动态特性和静态特性相对于传统PID励磁控制都得到改善,能够对系统运行状态的改变做出及时合理的调整,响应速度快,超调量小,调整时间短,使系统具有较强的适应和抗干扰能力,控制效果明显提高;对于传统PID控制无法解决的非线性问题,模糊PID控制依然有良好的控制效果,体现出解决非线性控制问题的优势。

基于matlab的永磁同步电机调速系统的仿真

基于matlab的永磁同步电机调速系统的仿真

摘要本文首先介绍了永磁同步电机的国内外发展状况,然后介绍了永磁同步电机的结构及原理,接着建立了永磁同步电机的数学模型,并在此基础上用MATLAB 进行了仿真,最后进行了仿真及仿真结果的分析。

永磁同步电机是具有非线性、强耦合性、时变性的系统,在运行过程中会受到负载扰动等多因素影响。

以往研究永磁同步电机的做法是在硬件上搭建一个平台进行模拟,但是这样在做实验中难免会造成一些损失,而且硬件上的反馈会比较长研究周期长。

目前在国内外关于永磁同步电机调速系统的研究现状上来讲,基于MATLAB环境下仿真模型的构建下进行研究,这可极大的缩短研究周期和研究成本。

在利用MATLAB仿真模型研究永磁同步电机时,我们可以把那些扰动因数做成模拟信号给予模型,这样可以准确的定性分析实验得出结论。

关键字:永磁同步电机,空间矢量调制,MATLAB仿真,数学模型。

ABSTRACTIn the first, this paper introduces the domestic and international development status of Permanent Magnet Synchronous Motor(PMSM), gives a explanation about its basictheory, structure. Then it builds a mathematical model, and uses MATLAB to simulate that model.The PMSM is a nonlinear, strong-coupling and time-varying system, so in the operation process, it will be influenced by many factors such asload disturbance. Therere, it is necessary to take action when researching the control method of PMSM. The former research method is setting up a platform on hardware to perform experimensbut it is undesirable, because it often cause some loss, and the feedback cycle is longer than research cycle. As fordomestic and international current situation on the research of PMSM, it is obvious that researching under the simulation model created by MATLAB could greatly reduce the cost and cycle of researchment. When using MATLAB to build simulation model on the research of PMSM, we can transform these disturbance factors into analog signal, making a qualitative analysis to draw conclusions from them.Keywords:PMSM, SVPWM, MATLAB simulation, mathmatical model目录摘要 (I)ABSTRACT .............................................. I I 目录............................................... I II 第一章绪论 (1)1.1 研究背景及意义 (1)1.1.1 研究背景 (1)1.1.2 研究的目的及意义 (1)1.2 国内外研究现状 (2)1.2.1 国内研究历史及现状 (2)1.2.2 国外研究现状及趋势 (2)1.3 本文的主要内容 (3)第二章永磁同步电机调速系统的结构和数学模型 (5)2.1 引言 (5)2.2 永磁同步电机调速系统的结构 (5)2.3 永磁同步电机调速系统的数学模型 (6)2.3.1 PMSM在ABC坐标系下的磁链和电压方程 (6)坐标系下的磁链和电压方程 (8)2.3.2 PMSM在02.3.3 PMSM在dq0坐标系下的磁链和电压方程 (9)2.4 永磁同步电机的控制策略 (11)2.5 本章小节 (12)第三章永磁同步电机矢量控制及空间矢量脉宽调制 (14)3.1 引言 (14)3.2 永磁同步电动机的矢量控制 (14)3.3 空间矢量脉宽调制概念 (15)3.4 SVPWM模块的建立 (17)3.5 本章小结 (23)第四章基于Matlab的永磁同步调速系统仿真模型的建立 (24)4.1 引言 (24)4.2 MATLAB软件的介绍 (24)4.3永磁同步电机调速系统整体模型的建立 (25)4.4仿真参数调试及结果分析 (28)4.5本章小结 (29)第五章总结与展望 (30)5.1全文总结 (30)参考文献 (31)致谢 (33)第一章绪论1.1 研究背景及意义1.1.1 研究背景随着电力电子技术、微电子技术和现代电机控制理论的发展,交流调速系统逐步具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,交流调速系统应用越来越广泛。

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子

matlab中关于永磁同步电机的仿真例子摘要:一、Matlab中永磁同步电机仿真概述二、永磁同步电机仿真模型建立1.参数设置2.控制器设计3.仿真结果分析三、SVPWM算法在永磁同步电机仿真中的应用四、案例演示:基于DSP28035的永磁同步电机伺服系统MATLAB仿真五、总结与展望正文:一、Matlab中永磁同步电机仿真概述Matlab是一款强大的数学软件,其在电机领域仿真中的应用广泛。

永磁同步电机(PMSM)作为一种高效、高性能的电机,其控制策略和性能分析在Matlab中得到了充分的体现。

利用Matlab进行永磁同步电机仿真,可以有效验证控制策略的正确性,优化电机参数,提高系统性能。

二、永磁同步电机仿真模型建立1.参数设置:在建立永磁同步电机仿真模型时,首先需要设定电机的各项参数,如电阻、电感、永磁体磁链等。

这些参数可以根据实际电机的设计值进行设置,以保证模型与实际电机的特性一致。

2.控制器设计:控制器的设计是电机仿真模型的核心部分。

常见的控制器设计包括矢量控制(也称为场导向控制,Field-Oriented Control, FOC)、直接转矩控制(Direct Torque Control, DTC)等。

在Matlab中,可以利用现有的工具箱(如PMSM T oolbox)方便地进行控制器的设计和仿真。

3.仿真结果分析:在完成控制器设计后,进行仿真实验。

通过观察电机的转速、电流、转矩等参数的变化,可以评估控制器的性能。

同时,可以利用Matlab的图像绘制功能,将仿真结果以图表的形式展示,便于进一步分析。

三、SVPWM算法在永磁同步电机仿真中的应用SVPWM(Space Vector Pulse Width Modulation)是一种用于控制永磁同步电机的有效方法。

通过在Matlab中实现SVPWM算法,可以方便地对比不同控制策略的性能。

在仿真过程中,可以观察到SVPWM算法能够有效提高电机的转矩波动抑制能力,减小电流谐波含量,从而提高电机的运行效率。

基于MATLAB的励磁控制系统仿真分析

基于MATLAB的励磁控制系统仿真分析

基于MATLAB的励磁控制系统仿真分析摘要:近些年来,电力系统发展迅速,基本形成了高电压、大机组、超远距离输送的模式。

因此,保证电力系统的安全、稳定、高效运行成为了研究的热点与难点。

同步发电机励磁控制系统是同步发电机控制系统的核心。

经过长年的研究证明,实现对同步发电机励磁的合理有效控制,是实现电力系统稳定运行要求的最快捷、最有效、最廉价的方法。

同步发电机的励磁系统一般由励磁功率单元和励磁调节器两个部分组成。

本文从同步发电机励磁控制系统原理入手,在深入学习PID控制与模糊控制理论之后,将两者结合起来,提出了基于模糊PID同步发电机励磁控制策略,并对其进行了基于MATLAB的励磁控制系统仿真分析。

关键字:同步发电机;励磁控制系统;MATLAB建模;PID控制;模糊控制1发电机励磁系统的作用维持发电机或其他控制点(例如发电厂高压侧母线)的电压在给定水平维持电压水平是励磁控制系统的主要的任务,有以下 3 个主要原因:第一,保证电力系统运行设备的安全。

电力系统中的运行设备都有其额定运行电压和高运行电压。

保持发电机端电压在容许水平上,是保证发电机及电力系统设备安全运行的基本条件之一,这就要求发电机励磁系统不但能够在静态下,而且能在大扰动后的稳态下保证发电机电压在给定的容许水平上。

发电机运行规程规定,大型同步发电机运行电压不得高于额定值的 110%。

第二,保证发电机运行的经济性。

发电机在额定值附近运行是经济的。

如果发电机电压下降,则输出相同的功率所需的定子电流将增加,从而使损耗增加。

规程规定大型发电机运行电压不得低于额定值的 90%;当发电机电压低于 95%时,发电机应限负荷运行。

其他电力设备也有此问题。

第三,提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。

励磁控制系统对静态稳定、动态稳定和暂态稳定的改善,都有显著的作用,而且是为简单、经济而有效的措施。

2同步发电机励磁系统建模2.1 发电机模型和励磁系统同步发电机是电力系统中物理过程最复杂的的元件,既有机械运动过程又有电磁暂态过程,并且包含变量众多。

基于Matlab永磁同步电机控制系统建模仿真

基于Matlab永磁同步电机控制系统建模仿真

《电机技术》2005年第2期. 11 .摘要:永磁同步电机(PMSM)控制系统仿真建模在Matlab/Simulink环境下,通过对独立的PMSM本体、dq坐标系向abc坐标系转换、三相电流源逆变器、速度控制器等功能模块的建立与组合,构建PMSM控制系统的速度和电流双闭环仿真模型。

仿真结果证明该模型的有效性,验证其控制算法,为PMSM控制系统的设计和调试提供基础。

关键词:永磁同步电机仿真建模Matlab闭环Abstract: A novel method for modeling and simulink-ing the PMSM system based on Matlab is proposed. InMatlab/Simulink, the isolated blocks, such as PMSMblock, which coordinates transformation from dq to abcblock, three-phase current source inverter controller block,speed controller block and ect,have been modeled.By thecombination of these blocks,two control loops are used.which are the inner current-loop and the outer speed-loop.The reasonability and validity has been proved by the simu-late result and this novel method offers a new thought fordesigning and debugging actual motor.Keywords: PMSMModelingSimulation MatlabClosed-loop1引言永磁同步电机(Permanent Magnet Synchro-nous Motor,简称PMSM)广泛应用于伺服驱动系统。

基于MATLAB的永磁同步电机矢量控制系统仿真

基于MATLAB的永磁同步电机矢量控制系统仿真

3 矢量控制与坐标变换模块
矢量控制 模 块 实 现 的 就 是 PMSM 的 矢 量 控 制 算 法 , 其 中 ,
空间矢量变换 ABC- DQ 和 DQ- ABC 的变换矩阵分别为:
! CABC- DQ=
2 3
"
##sinθ
#
#
#
#
##cosθ
#
#
#
1 #
#
#
# $
!

sin(
θ-
2 3
π)
cos( θ- 2 π) 3
运行方式由电机电磁转矩符号决定 (为正则是电动机状态, 为
负则是发电机状态)。为了简化模型, 可以假定转子永磁磁极在
定子上产生的感应磁通是正弦分布的, 并且由于通常永磁同
步电机的气隙较大, 可以近似地忽略定电机铁心的磁饱和。
因此永磁同步电机在 d- q 轴的电压方程为:
d dt
id

1 Ld
ud

R1 Ld
π)
cos(θ+ 2 3π) Nhomakorabea$
1 !2
& & & & ’
根 据 上 面 两 式 在 MATLAB 环 境 下 可 分 别 得 到 dq/abc 和
abc/dq 坐标变换的子模块, 用以实现 PMSM 的矢量控制算法,
将电流转换为电压。
4 电流滞环型 PWM模块
电 流 滞 环 PWM 模 块 实 现 的 是 PMSM 的 滞 环 电 流 控 制 方
The S imula tion Ba s e d on Ma tla b for Ve ctor Control of P e rma ne nt Ma gne t S ynchronous Motor

基于matlab的同步发电机励磁系统仿真分析与...

基于matlab的同步发电机励磁系统仿真分析与...
3.1励磁控制系统数学模型[3]............................................................................................15
3.2励磁控制系统的传递函数[3来自........................................................................................16
2.3励磁系统的分类...........................................................................................................8
2.3.1直流励磁机励磁系统............................................................................................8
2.4励磁系统在电力系统中的作用...............................................................................12
3同步发电机励磁系统MATLAB的建模...............................................................................15
基于MATLAB的同步发电机励磁系统仿真分析与调试
摘要
同步发电机为电力系统提供能量,其控制性能的好坏将直接决定电力系统的安全与稳定运行状况。通过掌握利用MATLAB对励磁控制进行分析和研究的技能,能灵活应用MATLAB的SIMULINK仿真软件,分析系统的性能。通过使用这一软件工具从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。

发电机励磁控制系统MATLAB仿真

发电机励磁控制系统MATLAB仿真

上海电力学院《自动控制原理》MATLAB仿真实验报告课程:自动控制原理题目:发电机励磁控制系统院系:电气工程学院班级:2010021姓名:学号:20102168发电机励磁控制系统(PID 、超前、滞后控制)仿真一、仿真模型图1发电机励磁控制系统模型如图所示为发电机励磁控制系统模型。

功率励磁装置的传递函数为11f T S+,发电机的等效传递函数为11d T S'+,10.05T s =,0.5f T s =,5d T s '=,20K =,分别用不同的控制器(PID ,超前,滞后)使系统相位域量50γ≥,误差系数大于40。

,在实验过程中比较不同控制器的特点。

二、系统控制器 (1) PID 控制器PID 控制器有三个可以调整的参数,即p K 、i T 和d T ,11c p d i G K T s T s⎛⎫=++ ⎪⎝⎭这种控制器既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。

只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

PID 控制器特别适用于过程的动态特性是线性的而且控制性能要求不太高的场合。

(2) 超前校正控制器超前校正装置的主要作用是通过其相位超前效应来改变频率响应曲线的形状,产生足够大的相位超前角,以补偿原来系统中元件造成的过大的相位滞后。

利用其相位超前特性,可以增大系统的稳定裕度,提高动态响应的平稳性和快速性;对提高系统稳态精度作用不大,系统抗干扰能力有所下降(一般用于稳态精度已基本满足要求,但动态性能差的系统);利用校正函数()11c p TSG s K TSα+=+,()1α>求得参数进行校正。

现代永磁同步电机控制原理及matlab仿真模型

现代永磁同步电机控制原理及matlab仿真模型

现代永磁同步电机控制原理及matlab仿真模型文章标题:现代永磁同步电机控制原理及matlab仿真模型摘要:现代永磁同步电机在工业应用中具有重要的地位,其控制原理和matlab仿真模型是研究永磁同步电机的重要内容。

本文结合控制原理和matlab仿真模型,对现代永磁同步电机进行全面评估和深度探讨,并对其进行个人观点和理解的分享。

正文:1. 现代永磁同步电机的基本结构和工作原理永磁同步电机是一种采用永磁材料作为励磁的同步电动机,其基本结构包括定子和转子两部分。

在工作时,永磁同步电机通过控制电流,实现对转子的精准控制,从而实现高效的能量转换。

2. 现代永磁同步电机的控制原理现代永磁同步电机的控制原理包括磁链定向控制、矢量控制和无传感器控制等技术。

在磁链定向控制中,通过对转子电流和定子电流进行精确控制,使得永磁同步电机能够实现高效的转矩输出和速度控制。

矢量控制技术可以更加准确地控制永磁同步电机的转子位置和速度,从而提高了电机的动态响应性能。

3. 现代永磁同步电机的matlab仿真模型在matlab中,可以通过建立电机的数学模型和控制算法,对永磁同步电机进行仿真分析。

采用Simulink工具箱,可以构建永磁同步电机的电路模型和控制系统模型,并进行多种工况下的仿真,从而验证电机的控制性能和稳定性。

4. 对现代永磁同步电机控制原理及matlab仿真模型的个人观点和理解现代永磁同步电机通过先进的控制原理和matlab仿真模型,能够实现高效的能量转换和精准的控制。

在工程领域中,永磁同步电机具有广阔的应用前景,其控制原理和仿真模型研究对于提高电机的性能和稳定性具有重要意义。

总结与回顾:通过编写本文,我对现代永磁同步电机的控制原理和matlab仿真模型有了更深入的理解。

永磁同步电机作为一种高效、精准的电机,在工业应用中具有广泛的应用前景。

掌握其控制原理和仿真模型,对于提高电机性能和应用推广具有重要意义。

结语:现代永磁同步电机的控制原理及matlab仿真模型是一个充满挑战和机遇的领域,希望通过本文的了解和研究,能够对读者有所启发和帮助。

基于MATLAB的同步发电机PSS与励磁系统仿真

基于MATLAB的同步发电机PSS与励磁系统仿真
s tm . ys e
K y W o d M ATL e rs AB,s n h o o sg n r t r ,e ct t n c n r ls s e ,PS y c r n u e e a o s x i i o t o y t m ao S
Ab t a t Th a e t d h o rs s e s a i z r P S)f rt e a x l r o to ft e s n h o o sg n r t re s r c e p p r s u y t e p we y t m t b l e ( S i o h u i a y c n r l h y c r n u e e a o x i o ct to o to n t e b s f h n l sso y c r n u e e a o x i t n c n r l y tm d 1 i i n c n r l h a eo e a ay i fs n h o o s g n r t re c t i o to s e mo e .An h x i t n c n a o t a o s d t e e ct i o — a o
总第 2 2期 6 2 1 年第 8 01 期
计算机 与数 字工 程
Co u e mp tr&. gtlEn ie rn Dii gn e ig a
Vo . 9 N L T AB 的 同步 电机 P S与 励 磁 系 统 仿 真 发 S
张 伟” 余 莉” 刘玉 娟 ” 周 浩南 ”
Sy hr no ne a o c t to y t m nc o us Ge r t r Ex ia i n S s e
w ih PSS Si ul i n Ba e n M ATLAB t m ato s d o

基于MATLAB的PSS仿真分析

基于MATLAB的PSS仿真分析

基于MATLAB的PSS仿真分析摘要:电力系统暂态稳定性的研究,对保证电网的安全与稳定具有重要的意义。

电力系统稳定是电网安全运行的关键,一旦遭到破坏,必将造成巨大的经济损失和灾难性的后果,世界各国不乏惨痛教训之例。

在诸多改善发电机稳定性的措施中,提高励磁系统的控制性能,被公认为最有效和经济的措施之一。

本文以PSS 控制器设计为内容。

在研究了电力系统稳定性问题的由来及发电机励磁调节对电力系统稳定性的影响的基础上,针对电力系统这一特定对象,设计出了稳定控制的仿真模型。

关键词:发电机;PSS;电力系统仿真;Matlab1引言电力系统是典型的多自由度的,亦即多变量的多输入、多输出的动力学系统。

电力系统控制的实践也表明无论从提高电力系统的稳定性还是从改善电力系统的动态品质的需要出发都需要有多变量参与控制。

同步发电机励磁控制是保证发电机和电力系统安全稳定运行和改善电力系统动态品质的一项基本措施。

随着电力系统的发展,对发电机励磁提出了更高的要求。

除了维持发电机电压水平,合理分配并联机组的无功功率外,还要求励磁控制系统能对电力系统的静态和动态稳定及暂态稳定起作用。

国内外的研究和实践证明,励磁控制系统不仅能提高电力系统稳定运行极限,而且通过附加控制,能抑制低频振荡和次同步振荡,对电力系统稳定运行有显著效果。

因此,研究和开发性能优良的同步发电机励磁控制系统,一直是各国学者和工程技术人员的一项重要工作。

2 电力系统稳定问题的基本理论2.1 电力系统稳定问题近年来世界范围的电力工业改革日益加快,逐步建立了竞争机制下的电力市场。

电网的开发和商业化运营使得电力系统运行越来越接近系统极限,经济性和安全稳定性相互制约,使得系统的安全稳定性问题越来越突出和越来越复杂。

这些都对稳定分析与控制提出了新的挑战。

更深入地理解稳定机制、建立快速准确的稳定分析方法和提出有效经济的控制措施便成为当务之急。

电力系统的稳定性主要研究电力系统在诸如负荷或发电机突然变化、传输线路发生短路等条件下,电力系统的行为。

基于Matlab的永磁同步电机矢量控制系统仿真研究

基于Matlab的永磁同步电机矢量控制系统仿真研究

基于Matlab的永磁同步电机矢量控制系统仿真研究一、本文概述随着电机控制技术的快速发展,永磁同步电机(PMSM)因其高效率、高功率密度和优良的调速性能,在众多工业领域得到了广泛应用。

为了充分发挥永磁同步电机的性能优势,需要对其进行精确的控制。

矢量控制作为一种先进的电机控制策略,能够实现对电机转矩和磁链的独立控制,从而提高电机的动态和稳态性能。

对基于Matlab的永磁同步电机矢量控制系统进行仿真研究,对于深入理解电机控制原理、优化控制系统设计以及推动电机控制技术的发展具有重要意义。

本文旨在通过Matlab仿真平台,构建永磁同步电机的矢量控制系统模型,并对其进行仿真分析。

文章将介绍永磁同步电机的基本结构和工作原理,为后续的控制系统设计奠定基础。

接着,将详细阐述矢量控制的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。

在此基础上,文章将构建基于Matlab的永磁同步电机矢量控制系统仿真模型,并对其进行仿真实验。

通过对仿真结果的分析,文章将评估矢量控制策略在永磁同步电机控制中的应用效果,并探讨可能的优化措施。

二、永磁同步电机的基本原理和特性永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种利用永久磁铁作为转子励磁源的同步电机。

其工作原理主要基于电磁感应定律和电磁力定律,结合现代电力电子技术和先进的控制理论,实现了对电机的高性能控制。

永磁同步电机的核心构造包括定子绕组和永磁体转子两大部分。

定子绕组与交流电源相连,通入三相对称电流后会产生旋转磁场,类似于异步电机中的定子磁场。

不同于异步电机的是,PMSM的转子上镶嵌有高性能稀土永磁材料,这些永磁体在电机运行时不需外部电源励磁,即可产生恒定的磁场。

当定子旋转磁场与转子永磁磁场相互作用时,便会在电机内部形成一个合成磁场,从而驱动转子跟随定子磁场同步旋转。

高效节能:由于取消了传统同步电机所需的励磁绕组和励磁电源,永磁电机减少了励磁损耗,效率通常能达到90以上,尤其在宽负载范围内保持较高的效率水平。

基于matlab永磁同步电机控制系统建模仿真方法

基于matlab永磁同步电机控制系统建模仿真方法

基于matlab永磁同步电机控制系统建模仿真方法1. 建立永磁同步电机模型
我们可以通过matlab中的Simulink工具箱建立永磁同步电机的模型,模型中包括电机本身和电机驱动系统。

该模型可以包括各种控制系统,比如位置控制、速度控制、电流控制等。

2. 设计控制系统
根据永磁同步电机的特性和实际控制需求,选定相应的控制策略。

常见的控制策略有FOC(磁场定向控制)、DTC(直接扭矩控制)等。

设计控制系统包括建立系统数学模型、设计控制算法、仿真验证等步骤。

3. 仿真实现
在matlab中进行仿真实现,根据设计的控制系统和模型参数,运行仿真程序,验证设计的控制系统的性能和功能是否符合实际控制要求,以此优化和完善控制系统。

4. 实验验证
在实验室或者实际应用场景中,进行实验验证,对控制系统进行调试和优化。


验验证可以通过实际硬件搭建或者仿真器件模拟等方式实现。

根据验证结果,并结合实际应用需求,对控制系统进行进一步优化和改进。

基于MATLAB的同步发电机PSS与励磁系统仿真

基于MATLAB的同步发电机PSS与励磁系统仿真

总第262期2011年第8期计算机与数字工程Co mputer&Dig ital Eng ineeringV ol.39N o.862基于MATLAB的同步发电机PSS与励磁系统仿真*张伟1),2)余莉1)刘玉娟1),2)周浩南1)(南京信息工程大学信控学院1)南京210044)(河海大学能源与电气学院2)南京210098)摘要在分析同步发电机励磁控制系统模型的基础上,研究了以电力系统稳定器(Po wer System Stabilizer-P SS)为辅助控制的同步发电机励磁控制方式,并基于M A T L A B/SIM U LI NK构建了包含P SS的励磁控制系统的仿真模型。

根据仿真结果分析在电力系统出现不同故障(三线短路以及断线故障)情况下带有PSS的励磁控制系统的控制性能,并与不加载P SS的励磁系统进行了比较,得到了在同步机励磁系统中加载PSS的必要性,为励磁系统的设计提供了依据。

关键词M A T L A B;同步发电机;励磁控制系统;P SS中图分类号T P391Synchronous Generator Excitation Systemwith PSS Simulation Based on MA TLABZ h ang W ei1),2)Y u L i1)L iu Y ujuan1),2)Z hou Hao nan1)(Co llege of I nfo rmatio n and Co nt rol,N anjing U niver sity o f Info rmation Sciences&T echnolo gy1),Nanjing210044) (Co llege of Energ y and Electrical Eng ineering,H ohai U niv ersity2),Nanjing210098)Abstract T he paper study t he pow er system stabilizer(PSS)fo r the aux iliary co nt rol of the sy nchro no us g ener ator ex-citatio n co nt rol on the base of the analy sis of synchronous g ener ator ex citation contr ol system model.A nd the ex citatio n con-tro l sy stem simulation model including P SS is established based on M A T L A B/SIM U L IN K.By setting pow er sy stem fault such as the three phase shor t circuit and disconnection fault to analysis the ex citatio n contro l system p contr ol perfo rmance w ith P SS accor ding to the simulatio n results,and compar e the r esult w ith t he excitat ion sy st em w ithout PSS.At last obtained the necessity o f loading PSS in the sy nchro no us machine excitation system,and pr ov ided t he basis for t he desig n o f ex citatio n system.Key Words M A T L AB,sy nchro no us g ener at ors,excitat ion contro l system,PSSClass Numb er T P3911引言随着电力工业改革的不断完善,以大机组、超高压为特点的大规模电力系统迅速发展,形成大系统、大电网、超高压、重负荷、大区联网和交直流联合输电等特点,加上分布式能源的日新月异,改善电力系统运行的安全稳定性成为日趋重要和紧迫的课题[1~2],所以提高电力系统运行的稳定性一直是人们关注的热点。

基于Matlab的永磁同步电机控制系统仿真研究.kdh

基于Matlab的永磁同步电机控制系统仿真研究.kdh

0 引 言 永磁同步电机由于转子采用永磁材料励磁,无励磁损耗,具有体积小、重量轻、结构简单、维护方便、运行可靠、力矩电流比高、高效节能易于控制等优点,从而在各个领域得到了广泛应用。

与此同时,对永磁同步电机控制系统的性能也提出了更高的要求,故需要建立永磁同步电机控制系统的仿真模型来验算各种控制算法,优化整个控制系统,可以在短时间内设计出预期效果的控制系统。

本文在分析永磁同步电机转子磁场定向控制的基础上,用Matlab6.5.1建立了永磁同步电机控制系统的仿真模型,并通过对实例电机的仿真,给出了各种仿真波形。

1 磁场定向控制原理 1972年,德国Siemens公司的F.Blaschke提出了交流电动机的矢量控制原理。

该理论通过矢量旋转变换和转子磁场定向,将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,得到类似直流电机的解耦数学模型。

使交流电动机的控制性能得以接近或达到他励直流电动机的性能。

三相永磁同步伺服电机的模型是一个多变量、非线性、强耦合系统。

为了实现转矩线性化控制,就必须要对转矩的控制参数实现解耦。

转子磁场定向控制是一种常用的解耦控制方法。

转子磁场定向控制实际上是将Odq同步旋转坐标系放在转子上,随转子同步旋转,如图1所示。

两直角坐标系:αβ坐标系为定子静止坐标系,α轴与定子绕组A相轴重合;d-q为转子旋转坐标系,d轴与转子磁链方向重合,并以同步速ω逆时针旋转。

可以把定子电流综合矢量is在旋转坐标系d-q轴上分解,is=id+iq。

当三相合成的电流矢量is与d轴的夹角θ等于90°时可以获得最大转矩,id=iscosθ=0,iq=issinθ=is。

对于凸极式转子,Ld=Lq,转矩方程为 T=PΨf issinθ (1)式中:P为转子的磁极对数;Ψf为转子磁钢在定子上的耦合磁链,它只在d轴上存在。

当三相合成的电流矢量is与d轴的夹角θ等于90°时可以获得最大转矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB同步发电机励磁控制系统仿真
维持发电机输出端电压或系统某点电压在给定的数值,保证并联运行的各发电机的无功功率能够合理地进行分配,提高系统的静态稳定性及动态稳定性,改善电力系统的运行条件。

有发电机功率励磁装置及自动励磁调节器构成闭环反馈系统
发电机为被控对象,功率励磁装置供给发电机转子磁场所需的直流功率,自动励磁调节器A VR,一般由调差环节,电压检测,综合放大等环节构成。

说明:由发电机电压互感器TV测量出的发电机电压Ug在综合点与电压设定器的设定电压Uref进行比较,其偏差值Uerr进入A VR放大部分进行运算,再经励磁机EX功率放大环节对发电机励磁回路进行调节
励磁系统的数学模型
同步发电机传递函数,电压测量单元传递函数,功率放大单元传递函数
同步发电机励磁控制系统框图,励磁系统的传递函数,励磁系统的动态方程
同步发电机传递函数
假设该系统中的发电机双输出绕组是严格同步变化的,在不考虑发电机磁路的饱和特性时,同步发电机的传递函数可简化为下一阶滞后环节:
Kg,发电机放大系数,取1
Td0’,时间常数,取1
电压测量单元
电压测量单元完成励磁同步发电机输出电压到数字控制器输入信号的转化,其中整流滤波电路略有延时,可用一阶惯性环节近似描述,故传递函数为:
Kc,电压传感器的输入输出比例,取3
Tr ,滤波回路时间常数,取1
功率放大单元
功率放大主要是指由励磁控制器输出小的控制信号Upwm,到励磁功率器件的输出Uf之间的功率转换作用,该单元可认为是一阶惯性环节,传递函数为:
Ka,放大环节的电压比例,取2
Ta,放大环节时间常数,取1
励磁系统框图
根据同步发电机励磁控制系统的结构,得出该系统的传递函数框图:
励磁系统的传递函数
有上述单元传递函数及其系统框图可得励磁系统的传递函数:
取:Kg=1,Td0’=1,Kc=3,Tr=1,Ka=2,Ta=1 励磁系统的动态方程
即: =Ax+bu ,y= x 励磁系统的稳定性
传递函数分母最高阶数=状态方程维数,所以系统能够完全表征,所以该系统是稳定的。

励磁系统的能控性
()3371100001000,2,2x x u y x
---⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=
337100010A ---⎛⎫ ⎪= ⎪
⎪⎝⎭
该系统的能控矩阵:
Rank (S )=3,所以能控矩阵是满秩,所以该系统是状态完全能控的。

励磁系统的能观性 该系统的能观矩阵:
Rank (V )=3,所以能观矩阵是满秩,所以该系统是状态完全能观的。

励磁系统的单位阶跃曲线
()2136,,013001S b Ab A b -⎛⎫ ⎪
==- ⎪
⎪⎝⎭
20222204614T T T c V c A c A ⎛⎫⎛⎫
⎪ ⎪== ⎪ ⎪

⎪---⎝
⎭⎝⎭
励磁控制系统的根轨迹图
励磁控制系统的校正
采用PID 调节器对系统进行矫正,PID 调节器的函数为:
取Kp=1,Ki=1,Kd=0.5 校正后系统的传递函数为:
s
s s s s s s s G s G c 7332
43)()(23423++++++=
绘制未校正系统的bode图:
校正以后的bode图:。

相关文档
最新文档