2018届浦东新区高考数学二模(附答案)
上海2018届高三二模数学卷汇总(全)
宝山2018届高三二模数学卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1. 设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .2. 设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 3. 某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).4. 函数()x x x f 4cos 4sin 2=的最小正周期为 .5. 已知球的俯视图面积为π,则该球的表面积为 .6. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 7. 在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)8. 设无穷数列{}n a 的公比为q ,则2a ()n n a a a +⋅⋅⋅++=∞→54lim ,则=q .9. 若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数). 若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .11. 如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .12. 将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S . 二.选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上将代表答案的小方格涂黑,选对得 5分,否则一律得零分.13. “1sin 2x =”是“6x π=”的 ( ) )(A 充分不必要条件. )(B 必要不充分条件. )(C 充要条件. )(D 既不充分也不必要条件.14.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 ( ))(A 160- )(B 160 )(C 150- )(D 15015.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数 )(C ()3f x +为奇函数 )(D ()3f x +为偶函数16. 对于数列12,,,x x L 若使得0n m x ->对一切n N *∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”。
2018届浦东新区高考数学二模(附答案).pdf
x [1,2] , f ( ax 1) f ( x 3) 恒成立,则实数 a 的取值范围是
12. 已知函数 f ( x)
x2 5 x 7 ,若对于任意的正整数
n ,在区间 [1,n
3 | x |,求 y
f ( x) 在区间 (1,2n ] , n N * 上的最大值与最小值 .
2
21. 已知数列 { an} 中 a1 1,前 n 项和为 Sn ,若对任意的 n N * ,均有 Sn an k k( k 是常数,且 k N * )
成立,则称数列 { an} 为“ H ( k ) 数列” .
4. 已知 f 1( x) 是函数 f ( x) log 2 ( x 1) 的反函数,则
4 , a4 f 1 (2)
8 ,则 S5
5. ( x 1)9 二项展开式中的常数项为 x
x 2cos
6. 椭圆
( 为参数)的右焦点坐标为
y 3sin
7. 满足约束条件
x 2y 4
2x y 3 的目标函数 f
x0
5 ] 上存在 m
1个
n
实数 a0 、 a1 、 a2 、 、 am ,使得 f (a0 ) f (a1) f (a2 )
f ( am) 成立,则 m 的最大
值为
二 . 选择题(本大题共 4 题,每题 5 分,共 20 分)
2
13. 已知方程 x px 1 0 的两虚根为 x1 、 x2 ,若 | x1 x2 | 1 ,则实数 p 的值为(
y0
3x 2 y 的最大值为
8. 函数 f ( x) cos2 x
2018年杨浦区高三二模数学Word版(附解析)
2018年杨浦区高三二模数学W o r d版(附解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 2. 计算:2lim41n nn →∞=+3. 若(13)n x +的二项展开式中2x 项的系数是54,则n =4. 掷一颗均匀的骰子,出现奇数点的概率为5. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为6. 若复数z 满足1z =,则z i -的最大值是7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为12. 已知非零向量OP 、OQ 不共线,设111mOM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且x 已知{|A x y ==,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点.(1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 【解析】lg 1010x x -=⇒=2. 计算:2lim41n nn →∞=+【解析】123. 若(13)n x +的二项展开式中2x 项的系数是54,则n =【解析】223544nC n =⇒=4. 掷一颗均匀的骰子,出现奇数点的概率为【解析】125. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为【解析】三个交点为(1,1)、(0,0)、(2,0),所以最大值为3 6. 若复数z 满足1z =,则z i -的最大值是【解析】结合几何意义,单位圆上的点到(0,1)7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是【解析】13V π=⋅⋅=8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =【解析】2234164p p p +=⇒=9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为【解析】3sin 5y =-,3tan 4y =±,24tan 27y =±10. 若{}n a 为等比数列,0n a >,且2018a =2017201912a a +的最小值为 【解析】20192017220172019201820182124a a a a a ++=≥= 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为【解析】2a =,4c =,21cos212sin sin C C C =-=-⇒=cos C =,sin A =cos A =sin sin()B A C =+=,1242S =⨯⨯=12. 已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集 {|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为【解析】建系,不妨设(1,0)P -,(1,0)Q ,∴1(,0)1m M m -+,3m ≥,11[,1)12m m -∈+, ∴3FP MP FQ MQ =≥,设(,)F x y ,∴2222(1)9(1)x y x y ++≥-+,即2259()416x y -+≤,点F 在此圆内,∴12max 33||242F F =⨯=,33224k k ≤⇒≥二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2π C. 2π- D. 3π-【解析】T π=,2ω=,()122f ππϕ=⇒=-,选C 14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]【解析】[0,2]A =,[0,)A B =+∞,(1,2]A B =,选A 15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 【解析】11220a b a b =推出直线平行或重合,选B 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.【解析】设三条棱a b c ≤≤,∴454ab ac bc ++=,6a b c ++=,222272a b c ++=, 222224522[(6)]4a b c a bc a a a ++≥+=+--,整理得2430a a -+≤,∴12a ≤≤,∴最短棱长为1,cos 9θ==,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?【解析】(1)要使营运累计收入高于800元,令80080060212>-+-x x , ……2分 解得8040<<x . ………………………………………5分 所以营运天数的取值范围为40到80天之间 .………………………………7分(2)6080021+--=x x x y 6020≤-= …………………………………9分 当且仅当18002x x=时等号成立,解得400x = (12)分所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.【解析】以D 为坐标原点,建立如图所示的坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,C (0,1,0) ,D 1(0,1,2) ,A 1(1,0,1),设(1,,0)E m (01)m ≤≤ (1)证明:1(1,0,1)DA =,1(1,,1)ED m =--………2分 111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=………4分 所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥. ……………2分 又11AD D A ⊥,所以AE D D A 11平面⊥. ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分 设平面CED 1的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅01CD 可得⎩⎨⎧=--=+-0)1(0y x t z x ,所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45,可得||||45sin 11n DA =︒……11分 可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB =1,所以直线1DA 与平面1CED 所成的角是45时,点E 在线段AB 中点处. …14分19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.【解析】(1)14-=n n a S ,所以n n a S 41=+.两式相减得1144-+-=-n n n n a a S S . 即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分 因此数列{}n b 为以2为首项,2为公比的等比数列.n n b 2=,前n 项和为221-+n …7分(2)当n = 2时,1222a a S μλ+=,所以μλ2623+=+. 又32λμ+=,可以解得12λ=,1μ=………9分所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a na n a 即112221-++-=-n n n a a n a n . 猜想1+=n a n ,下面用数学归纳法证明: (10)分① 当n = 1或2时,1121+==a ,1232+==a ,猜想成立; ② 假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立 则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立. 由①、②可知,对任意正整数n ,1+=n a n .………13分所以11=-+n n a a 为常数,所以数列{}n a 是等差数列.………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ,又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+, 两式相减得:111122n n n n n n n a a a a a ++-+=-+-,即11(1)(2)20n n n n a n a a +-----= 所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+=所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+= 所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, 因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M . (1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3m m ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.【解析】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K 所以8)22,()22,(2221-+=---⋅--=⋅y x y x y x KF KF由于9922=+y x ,所以2299x y -=,188)99(22221+-=--+=⋅x x x KF …3分由椭圆性质可知11≤≤-x ,所以]1,7[21-∈⋅KF KF……………5分 (2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M ,所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k , 所以922210+-=+=k kb x x x ,99922200+=++-=+=k b b k b k b kx y . ……………8分 kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于9-为定值. …………10分(3)∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mk kx y +-=3. 由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分 由(2)的过程得中点)9)3(9,9)3((22+-+--k km m k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02, 得819)93(4222222+=+-k k m k mk mk ,解得74±=k 所以当l的斜率为44OAPB 为平行四边形. ……………16分21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t =+,其中常数0t ≠,证明:()g x 是ψ函数; (3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【解析】(1)1()1f x x=-是ψ函数 . ……1分理由如下:1()1f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立. 由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a x b a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立.所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分 化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=. 因为0t ≠,可得1b t=,2log ||a t =, 即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分 (3)函数)(x h 的图象关于直线x m =(m 为常数)对称, 所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2),所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+由(1) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-=由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(b x a h =+为常数. 所以函数)(x h 为常数函数, 2)()1(b x h x h ==+,)(x h 是一个周期函数. ……………17分 综上,函数)(x h 为周期函数 ……………18分(其他解法参考评分标准,酌情给分)。
【高三数学试题精选】2018高三理科二模数学试卷(杨浦等区附答案)
2018高三理科二模数学试卷(杨浦等区附答案)
5 c 高三年级静安、杨浦、青浦、宝区高考模拟考试
数学试卷(理科) 201804
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.已知全集,集合,则
2.若复数满足(是虚数单位),则
3.已知直线的倾斜角大小是,则
4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是
5.已知函数和函数的图像关于直线对称,
则函数的解析式为
6.已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为7.函数的最小正周期
8.若展开式中含项的系数等于含项系数的8倍,则正整数9.执行如图所示的程序框图,若输入的值是,则输出的值是10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,
那么这个圆锥的母线长为.
11.某中学在高一年级开设了门选修,每名学生必须参加这门选修中的一门,对于该年级的
甲、乙、丙名学生,这名学生选择的选修互不相同的概率是 (结果用最简分数表示).
12.各项为正数的无穷等比数列的前项和为,若,则其比的取值范围是
13.已知两个不相等的平面向量, ( )满足| |=2,且与-的夹角为120°,。
2018届上海市高三(二模模拟)检测理科数学试题及答案
2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。
2018年浦东新区高考数学二模含答案
2018年浦东新区⾼考数学⼆模含答案2018年浦东新区⾼考数学⼆模含答案 2018.4注意:1.答卷前,考⽣务必在试卷上指定位置将学校、班级、姓名、考号填写清楚.2.本试卷共有21道试题,满分150分,考试时间120分钟.⼀、填空题(本⼤题共有12⼩题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则⼀律得零分.21lim 1n n n →+∞+=- .2 2.不等式01xx <-的解集为________.(0,1)3.已知{}n a 是等⽐数列,它的前n 项和为n S ,且34,a =48a =-,则5S = ________.114.已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=________.35.91)x⼆项展开式中的常数项为________.846.椭圆2cos ,x y θθ=(θ为参数)的右焦点为________.(1,0)7.满⾜约束条件2423x y x y x y +≤??+≤?≥≥的⽬标函数32f x y =+的最⼤值为________.1638.函数2()cos 2,R f x x x x =+∈的单调递增区间为____________.,,36Z k k k ππππ?-+∈9.已知抛物线型拱桥的顶点距⽔⾯2⽶时,量得⽔⾯宽为8⽶。
当⽔⾯下降1⽶后,⽔⾯的宽为_____⽶。
10.—个四⾯体的顶点在空间直⾓坐标系xyz O -中的坐标分别是(0,0,0),(1,0,1),(0,1,1),(1,1,0),则该四⾯体的体积为________.111.已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成⽴,则实数a 的取值范围是________.[1,0]-12.已知函数2()57f x x x =-+.若对于任意的正整数n ,在区间51,n n ??+上存在1m +个实数012,,,,m a a a a 使得012()()()()m f a f a f a f a >+++成⽴,则m 的最⼤值为________.6⼆、选择题(本⼤题共有4⼩题,满分20分) 每⼩题都给出四个选项,其中有且只有⼀个选项是正确的,选对得 5分,否则⼀律得零分.13.已知⽅程210x px -+=的两虚根为12,x x ,若121x x -=,则实数p 的值为()A A . 3± B .5± C. 3,5 D . 3,5±± 14.在复数运算中下列三个式⼦是正确的:(1)1212z z z z +≤+,(2)1212z z z z ?=?,(3)123123()()z z z z z z ??=??;相应的在向量运算中,下列式⼦:(1)a b a b +≤+,(2)a b a b ?=?,(3)()()a b c a b c ??=??;正确的个数是()BA . 0B .1 C. 2 D .315.唐代诗⼈杜牧的七绝唐诗中两句诗为“今来海上升⾼望,不到蓬莱不成仙。
上海市浦东新区2018届高三下学期质量调研(二模)数学试(含详细解答)
上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91()x x+二项展开式中的常数项为6. 椭圆2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8. 函数23()cos sin 22f x x x =+,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5±14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018年上海市浦东新区高考数学二模试卷(解析版)
2018年上海市浦东新区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=2.(4分)不等式<0的解集为.3.(4分)已知{a n}是等比数列,它的前n项和为S n,且a3=4,a4=﹣8,则S5=4.(4分)已知f﹣1(x)是函数f(x)=log2(x+1)的反函数,则f﹣1(2)=5.(4分)()9二项展开式中的常数项为6.(4分)椭圆(θ为参数)的右焦点坐标为7.(5分)满足约束条件的目标函数f=3x+2y的最大值为8.(5分)函数f(x)=cos2x+,x∈R的单调递增区间为9.(5分)已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为米10.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为.11.(5分)已知f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是增函数,如果对于任意x∈[1,2],f(ax+1)≤f(x﹣3)恒成立,则实数a的取值范围是.12.(5分)已知函数f(x)=x2﹣5x+7,若对于任意的正整数n,在区间[1,n]上存在m+1个实数a0、a1、a2、…a m,使得f(a0)>f(a1)+f(a2)+…+f(a m)成立,则m 的最大值为二.选择题(本大题共4题,每题5分,共20分)13.(5分)已知方程x2﹣px+1=0的两虚根为x1、x2,若|x1﹣x2|=1,则实数p的值为()A.B.C.,D.,14.(5分)在复数运算中下列三个式子是正确的:(1)|z1+z2|≤|z1|+|z2|;(2)|z1•z2|=|z1|•|z2|;(3)(z1•z2)•z3=z1•(z2•z3),相应的在向量运算中,下列式子:(1)||≤||+||;(2)||=||•||;(3)()=),正确的个数是()A.0B.1C.2D.315.(5分)唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙.”其中后一句中“成仙”是“到蓬莱”的()A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件16.(5分)设P、Q是R上的两个非空子集,如果存在一个从P到Q的函数y=f(x)满足:(1)Q={f(x)|x∈P};(2)对任意x1,x2∈P,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合构成“P→Q恒等态射”,以下集合可以构成“P→Q恒等态射”的是()A.R→Z B.Z→Q C.[1,2]→(0,1)D.(1,2)→R三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知圆锥AO的底面半径为2,母线长为2,点C为圆锥底面圆周上的一点,O为圆心,D是AB的中点,且.(1)求圆锥的全面积;(2)求直线CD与平面AOB所成角的大小.(结果用反三角函数值表示)18.(14分)在△ABC中,边a、b、c分别为角A、B、C所对应的边.(1)若=0,求角C的大小;(2)若sin A=,C=,c=,求△ABC的面积.19.(14分)已知双曲线C:x2﹣y2=1.(1)求以右焦点为圆心,与双曲线C的渐近线相切的圆的方程;(2)若经过点P(0,﹣1)的直线与双曲线C的右支交于不同两点M、N,求线段MN的中垂线l在y轴上截距t的取值范围.20.(16分)已知函数y=f(x)定义域为R,对于任意x∈R恒有f(2x)=﹣2f(x).(1)若f(1)=﹣3,求f(16)的值;(2)若x∈(1,2]时,f(x)=x2﹣2x+2,求函数y=f(x),x∈(1,8]的解析式及值域;(3)若x∈(1,2]时,f(x)=﹣|x﹣|,求y=f(x)在区间(1,2n],n∈N*上的最大值与最小值.21.(18分)已知数列{a n}中a1=1,前n项和为S n,若对任意的n∈N*,均有S n=a n+k﹣k (k是常数,且k∈N*)成立,则称数列{a n}为“H(k)数列”.(1)若数列{a n}为“H(1)数列”,求数列{a n}的前n项和S n;(2)若数列{a n}为“H(2)数列”,且a2为整数,试问:是否存在数列{a n},使得﹣a n﹣1a n+1|≤40对一切n≥2,n∈N*恒成立?如果存在,求出这样数列{a n}的a2的所有可能值,如果不存在,请说明理由;(3)若数列{a n}为“H(k)数列”,且a1=a2=…=a k=1,证明:a n+2k≥(1)n﹣k.2018年上海市浦东新区高考数学二模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=2【解答】解:.故答案为:2.2.(4分)不等式<0的解集为(0,1).【解答】解:由不等式<0可得x(x﹣1)<0,解得0<x<1,故答案为:(0,1).3.(4分)已知{a n}是等比数列,它的前n项和为S n,且a3=4,a4=﹣8,则S5=11【解答】解:∵a3=4,a4=﹣8,∴公比q===﹣2,则a2=﹣2,a1=1,a5=16,则S5=1﹣2+4﹣8+16=11,故答案为:11.4.(4分)已知f﹣1(x)是函数f(x)=log2(x+1)的反函数,则f﹣1(2)=3【解答】解:∵f﹣1(x)是函数f(x)=log2(x+1)的反函数,令f(x)=log2(x+1)=2,解得:x=3,故f﹣1(2)=3,故答案为:35.(4分)()9二项展开式中的常数项为84【解答】解:()9的展开式的通项为=.取,得r=3.∴()9二项展开式中的常数项为.故答案为:84.6.(4分)椭圆(θ为参数)的右焦点坐标为(1,0)【解答】解:根据题意,椭圆(θ为参数)的普通方程为+=1,其中a=2,b=,则c=1;故椭圆的右焦点坐标为(1,0);故答案为:(1,0)7.(5分)满足约束条件的目标函数f=3x+2y的最大值为【解答】解:由约束条件作出可行域如图,联立,解得A(,).化目标函数f=3x+2y为y=﹣x+,由图可知,当直线y=﹣x+过A时,直线在y轴上的截距最大,f有最大值为.故答案为:.8.(5分)函数f(x)=cos2x+,x∈R的单调递增区间为[,],k∈Z.【解答】解:函数f(x)=cos2x+=cos2x+sin2x+=sin(2x+),令2x+,k∈Z.可得:≤x≤,∴单调递增区间为[,],k∈Z.故答案为:[,],k∈Z.9.(5分)已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为4米【解答】解:由题意,设y=ax2,代入(4,﹣2),∴a=﹣,∴﹣3=﹣x2,解得x=2∴水面的宽为4,故答案为:410.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为.【解答】解:如图所示,满足条件的四面体为正方体的内接正四面体O﹣ABC.∴该四面体的体积V==.故答案为:.11.(5分)已知f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是增函数,如果对于任意x∈[1,2],f(ax+1)≤f(x﹣3)恒成立,则实数a的取值范围是[﹣1,0].【解答】解:f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是增函数,如果对于任意x∈[1,2],f(ax+1)≤f(x﹣3)恒成立,可得|ax+1|≤|x﹣3|在x∈[1,2]恒成立,即有|ax+1|≤3﹣x,即x﹣3≤ax+1≤3﹣x,可得x﹣4≤ax≤2﹣x,即1﹣≤a≤﹣1在x∈[1,2]恒成立,由y=1﹣在x∈[1,2]递增,可得y的最大值为1﹣2=﹣1;y=﹣1在x∈[1,2]递减,可得y的最小值为1﹣1=0,则﹣1≤a≤0,故答案为:[﹣1,0].12.(5分)已知函数f(x)=x2﹣5x+7,若对于任意的正整数n,在区间[1,n]上存在m+1个实数a0、a1、a2、…a m,使得f(a0)>f(a1)+f(a2)+…+f(a m)成立,则m的最大值为6【解答】解:∵n为正整数,∴n+≥,∴f(x)在区间[1,]上最大值为f()=,最小值为f()=,∵=×6+,∴m的最大值为6.故最大值为6.二.选择题(本大题共4题,每题5分,共20分)13.(5分)已知方程x2﹣px+1=0的两虚根为x1、x2,若|x1﹣x2|=1,则实数p的值为()A.B.C.,D.,【解答】解:方程x2﹣px+1=0的两虚根为x1、x2,∴△=p2﹣4<0,解得﹣2<p<2,∴方程x2﹣px+1=0的两虚根为x1、x2,即x1=,x2=,∴|x1﹣x2|==1,解得p=±.故选:A.14.(5分)在复数运算中下列三个式子是正确的:(1)|z1+z2|≤|z1|+|z2|;(2)|z1•z2|=|z1|•|z2|;(3)(z1•z2)•z3=z1•(z2•z3),相应的在向量运算中,下列式子:(1)||≤||+||;(2)||=||•||;(3)()=),正确的个数是()A.0B.1C.2D.3【解答】解:根据在复数运算中下列三个式子是正确的:(1)|z1+z2|≤|z1|+|z2|;(2)|z1•z2|=|z1|•|z2|;(3)(z1•z2)•z3=z1•(z2•z3),相应的在向量运算中,下列式子:(1)||≤||+||,正确;(2)而||=||•||cos<>,因此不正确;(3)由于与不一定共线,因此()=)不正确.因此正确的个数是1.故选:B.15.(5分)唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙.”其中后一句中“成仙”是“到蓬莱”的()A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件【解答】解:∵不到蓬莱→不成仙,∴成仙→到蓬莱,故选:A.16.(5分)设P、Q是R上的两个非空子集,如果存在一个从P到Q的函数y=f(x)满足:(1)Q={f(x)|x∈P};(2)对任意x1,x2∈P,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合构成“P→Q恒等态射”,以下集合可以构成“P→Q恒等态射”的是()A.R→Z B.Z→Q C.[1,2]→(0,1)D.(1,2)→R【解答】解:根据题意,函数f(x)的定义域为P,单调递增,值域为Q,由此判断,对于A,定义域为R,值域为整数集,且为递增函数,找不出这样的函数;对于B,定义域为Z,值域为Q,且为递增函数,找不出这样的函数;对于C,定义域为[1,2],值域为(0,1),且为递增函数,找不出这样的函数;对于D,可取f(x)=tan(πx﹣),且f(x)在(1,2)递增,可得值域为R,满足题意.故选:D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知圆锥AO的底面半径为2,母线长为2,点C为圆锥底面圆周上的一点,O为圆心,D是AB的中点,且.(1)求圆锥的全面积;(2)求直线CD与平面AOB所成角的大小.(结果用反三角函数值表示)【解答】解:(1)∵圆锥AO的底面半径为r=2,母线长为l=2,∴圆锥的全面积S=πrl+πr2=+π×22=(4+4)π.(2)∵圆锥AO的底面半径为2,母线长为2,点C为圆锥底面圆周上的一点,O为圆心,D是AB的中点,且.∴以O为圆心,OC为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,OA==6,C(2,0,0),A(0,0,6),B(0,2,0),D(0,1,3),=(2,﹣1,﹣3),平面ABO的法向量=(1,0,0),设直线CD与平面AOB所成角为θ,则sinθ===.∴θ=arcsin.∴直线CD与平面AOB所成角为arcsin.18.(14分)在△ABC中,边a、b、c分别为角A、B、C所对应的边.(1)若=0,求角C的大小;(2)若sin A=,C=,c=,求△ABC的面积.【解答】解:(1)由题意,2c sin C=(2a﹣b)sin A•(1+),即2c sin C=(2a﹣b)sin A+(2b﹣a)sin B由正弦定理得2c2=(2a﹣b)a+(2b﹣a)b.∴c2=a2+b2﹣ab.∴cos C=.∵0<C<π.∴C=(2)由sin A=,C=,c=,根据正弦定理:,可得:a=由a<c即A<C,∴cos A=那么:sin B=sin(A+C)=sin A cos C+sin C cos A=故得△ABC的面积S=ac sin B=.19.(14分)已知双曲线C:x2﹣y2=1.(1)求以右焦点为圆心,与双曲线C的渐近线相切的圆的方程;(2)若经过点P(0,﹣1)的直线与双曲线C的右支交于不同两点M、N,求线段MN的中垂线l在y轴上截距t的取值范围.【解答】解:(1)双曲线的右焦点为F2(,0),渐近线方程为:x±y=0.∴F2到渐近线的距离为=1,∴圆的方程为(x﹣)2+y2=1.(2)设经过点P的直线方程为y=kx﹣1,M(x1,y1),N(x2,y2),联立方程组,消去y得:(1﹣k2)x2+2kx﹣2=0,∴,解得1<k<.∴MN的中点为(,),∴线段MN的中垂线方程为:y+=﹣(x+),令x=0得截距t==>2.即线段MN的中垂线l在y轴上截距t的取值范围是(2,+∞).20.(16分)已知函数y=f(x)定义域为R,对于任意x∈R恒有f(2x)=﹣2f(x).(1)若f(1)=﹣3,求f(16)的值;(2)若x∈(1,2]时,f(x)=x2﹣2x+2,求函数y=f(x),x∈(1,8]的解析式及值域;(3)若x∈(1,2]时,f(x)=﹣|x﹣|,求y=f(x)在区间(1,2n],n∈N*上的最大值与最小值.【解答】解:1)f(1)=﹣3,f(2x)=﹣2f(x).那么f(2)=﹣2f(1)=﹣3×(﹣2)∴f(4)=f(22)=﹣2f(2)=﹣3×(﹣2)2∴f(23)=﹣3×(﹣2)3∴f(16)=f(24)=﹣3×(﹣2)4=﹣48(2)由f(2x)=﹣2f(x).可得f(x)=﹣2f()当x∈(1,2]时,f(x)=x2﹣2x+2,那么:x∈(2,4]时,f(x)=﹣2f()=﹣2[)]=那么:x∈(4,8]时,f(x)=﹣2f()=﹣2[]=故得x∈(1,8]的解析式为f(x)=根据二次函数的性质,可得值域为[﹣4,﹣2)∪(1,2]∪(4,8].(3)(2)由f(2x)=﹣2f(x).可得f(x)=﹣2f()当x∈(1,2]时,f(x)=﹣||,得当x∈(2,22]时,f(x)=﹣2f()=|x﹣3|;当x∈(2n﹣1,2n]时,∈(1,2],f(x)=﹣2f()=(﹣2)n﹣1f()=(﹣1)n|x﹣3•2n﹣2|;当x∈(2n﹣1,2n]时,n为奇数时,f(x)=|x﹣3•2n﹣2|∈[,0]当x∈(2n﹣1,2n]时,n为偶数时,f(x)=﹣|x﹣3•2n﹣2|∈[0,]综上:n=1时,f(x)在(1,2]上最大值为0,最小值为n≥2,n为偶数时,f(x)在(1,2n]上最大值为,最小值为n≥3,n为奇数时,f(x)在(1,2n]上最小值为﹣,最大值为.21.(18分)已知数列{a n}中a1=1,前n项和为S n,若对任意的n∈N*,均有S n=a n+k﹣k (k是常数,且k∈N*)成立,则称数列{a n}为“H(k)数列”.(1)若数列{a n}为“H(1)数列”,求数列{a n}的前n项和S n;(2)若数列{a n}为“H(2)数列”,且a2为整数,试问:是否存在数列{a n},使得﹣a n﹣1a n+1|≤40对一切n≥2,n∈N*恒成立?如果存在,求出这样数列{a n}的a2的所有可能值,如果不存在,请说明理由;(3)若数列{a n}为“H(k)数列”,且a1=a2=…=a k=1,证明:a n+2k≥(1)n﹣k.【解答】(1)解:数列{a n}为“H(1)数列”,则S n=a n+1﹣1,可得:S n+1=a n+2﹣1,两式相减得:a n+2=2a n+1,又n=1时,a1=a2﹣1,∴a2=2=2a1.故a n+1=2a n,对任意的n∈N*恒成立,故数列{a n}为等比数列,其通项公式为a n=2n﹣1,n∈N*.∴S n=2n﹣1.(2)解:S n=a n+2﹣2,S n+1=a n+3﹣2,相减可得:a n+1=a n+3﹣a n+2,a n+1+a n+2=a n+3,n≥2时,a n+2=a n+1+a n(n≥2),∴n≥3时,﹣a n a n+2=﹣a n(a n+1+a n)=a n+1(a n+1﹣a n)﹣=a n+1a n﹣1﹣.则|﹣a n a n+2|=﹣a n﹣1a n+1|,则﹣a n﹣1a n+1|=(n≥3),∵a4=a3+a2.∴﹣a n﹣1a n+1|=|﹣a2a3﹣|,∵S1=a3﹣2,a1=1,可得:a3=3,∴≤40,且≤40.解得:a2=0,±1,±2,±3,±4,5,﹣6.(3)证明:a n+k=S n+k,a n﹣1+k=S n﹣1+k(n≥2),可得:a n+k=a n+k﹣1+a n,a k+1=S1+k>0,由归纳知,a k+2>0,……,a n>0,a1=a2=……=a k=1,a k+1=k+1,由归纳知,a n≤a n+1.则a n+k=a n+k﹣1+a n≤a n+k﹣1+a n+k﹣1=2a n+k﹣1,n≥2,a n+k≤2a n+k﹣1,n≥2,∴a n+k a n+k+1≥a n+k+2≥……≥a n+2k﹣1(n∈N*),于是:a n+2k=a n+2k﹣1+a n+k≥(1+)a n+2k﹣1(n∈N*),于是:a n+2k≥a2k.a2k=S k+k=2k,∴a n+2k≥•2k>(2k>).∴a n+2k≥(1)n﹣k.。
2018年上海浦东高中数学二模试卷(学生版)
2018年浦东高三数学 二模测试卷(满分:150分,完卷时间:120分钟)一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 21lim1n n n →+∞+=- 2. 不等式01x x <-的解集为 3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S = 4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91)x二项展开式中的常数项为 6.椭圆2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为 7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为 8.函数2()cos 22f x x x =+,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A.14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+ ;(2)||||||a b a b ⋅=⋅ ;(3)()()a b c a b c ⋅⋅=⋅⋅ ,正确的个数是( )A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
浦东区高考数学二模试卷含答案
2017年浦东新区高考数学二模试卷含答案一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{|04}B y y =≤<,则A B =I ____________.2. 若直线l 的参数方程为44,23x tt y t =-⎧∈⎨=-+⎩R ,则直线l 在y 轴上的截距是____________.3. 已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为____________.4. 抛物线214y x =的焦点到准线的距离为____________. 5. 已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6. 若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7. 已知射手甲击中A 目标的概率为,射手乙击中A 目标的概率为,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________. 8. 函数3sin ,0,62y x x ππ⎛⎫⎡⎤=-∈⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________. 9. 已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=____________.10. 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③在[1,1]-上的表达式为[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为____________.11. 已知各项均为正数的数列{}n a 满足:*11(2)(1)0()n n n n a a a a n ++--=∈N ,且110a a =,则首项1a 所有可能取值中的最大值为____________.12. 已知平面上三个不同的单位向量a ⃗,b ⃗⃗,c ⃗满足a ⃗·b ⃗⃗=b ⃗⃗·c ⃗=12,若e ⃗为平面内的任意单位向量,则|a ⃗·e ⃗|+2|b ⃗⃗·e ⃗|+3|c ⃗·e ⃗|的最大值为____________.二、选择题(本大题共有 4 小题,满分 20 分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5 分,否则一律得零分.13、若复数z 满足2=-++i z i z ,则复数z 在平面上对应的图形是( )A.椭圆B.双曲线C.直线D.线段14、已知长方体切去一个角的几何体直观图如图所示,给出下列4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15、已知x x cos 1sin 2+=,则=2cotx( )或21或0D.21或0 16、已知等比数列1a ,2a ,3a ,4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( )A.)83(,B.)162(,C.)84(,D.(226),1三、解答题(本大题共有5小题,满分76分)17. (本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,2D ⎛⎫- ⎪ ⎪⎝⎭. (1)求,D C 两点在球O 上的球面距离;(2)求直线CD 与平面ABC 所成角的大小.18. (本小题满分14分,第1小题满分6分,第2小题满分8分) 某地计划在一处海滩建造一个养殖场. (1)如图,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积. (2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场. 方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧DE ̂所在圆的圆心且23DCE π∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到平方千米),并指出哪一种设计方案更好.19. (本小题满分14分,第1小题满分6分,第2小题满分8分)已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为n ⃗⃗=(1,1)-,若在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,求d 的值.20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若数列{}n A 对任意的*N n ∈,都有kn n A A =+1()0≠k ,且0≠n A ,则称数列{}n A 为“k 级创新数列”.(1)已知数列{}n a 满足n n n a a a 2221+=+且211=a ,试判断数列{}12+n a 是否为“2级创新数列”,并说明理由;(2)已知正数数列{}n b 为“k 级创新数列”且1≠k ,若101=b ,求数列{}n b 的前n 项积n T ; (3)设βα,是方程012=--x x 的两个实根)(βα>,令αβ=k ,在(2)的条件下,记数列{}n c 的通项n b n n T c nlog 1⋅=-β,求证:n n n c c c +=++12,*N n ∈.21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数)(x g ,若函数[])(sin x g 是奇函数,则称)(x g 为正弦奇函数. 已知)(x f 是单调递增的正弦奇函数,其值域为R ,0)0(=f .(1)已知)(x g 是正弦奇函数,证明:“0u 为方程[]1)(sin =x g 的解”的充要条件是“0u -为方程[]1)(sin -=x g 的解”;(2)若2)(π=a f ,2)(π-=b f ,求b a +的值;(3)证明:)(x f 是奇函数.参考答案1. [2,4)2. 13. 8π4. 25. 56. 97.8. 20,3π⎡⎤⎢⎥⎣⎦9.1410. 6 11. 16 12.13. D14. C15. C16. D17. (1)3DC π=(2)arcsinθ=18. (1)选取3OP OQ ==时养殖场△POQ 的面积最大,max 12S =(平方千米) (2)1max 18S =(平方千米),20.144S ≈(平方千米) 12S S <,方案二所围成的养殖场面积较大,方案二更好19. (1)2212(2)7x y -+=(2)2d =220. (1)是 (2)1*110()n k kn T n --=∈N(3)证明略21. (1)证明略 (2)0a b += (3)证明略。
2018学年浦东二模试卷参考答案
浦东新区2018学年度第二学期初三教学质量检测数学试卷参考答案及评分说明 (2019.5.8)一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.B ; 4.A ; 5.C ;6.B . 二、填空题:(本大题共12题,每题4分,满分48分)7.25-; 8.(m -n+2)(m -n -2);9.2; 10.m ≤1; 11.y =12x ; 12.31; 13.平行; 14.160; 15.130; 16.7; 17.22; 18.32. 三、解答题:(本大题共7题,满分78分)19.解:原式=321331-+-+- …………………………………………………(各2分)=-1. ……………………………………………………………………(2分)20.解:由①得 22-≥x . ………………………………………………………………(1分) ∴1-≥x . ………………………………………………………………(2分) 由②得 123<x . ………………………………………………………………(1分) ∴4<x . ………………………………………………………………(2分) ∴原不等式组的解集是41<≤-x . ………………………………………………(2分) ∴原不等式组的自然数解为0、1、2、3. ……………………………………(2分) (注:漏“0”扣1分)21.解:(1)作AD ⊥x 轴,垂足为点D .∵BH ⊥x 轴,AD ⊥x 轴,∴∠BHO =∠ADO =90°.∴AD ∥BH .…………(1分) 又∵BA=2OA ,∴21==AB OA DH OD . …………………………………………(1分) ∵点B 的横坐标为6,∴OH=6.∴OD=2. ………………………………(1分) ∵双曲线xy 6=经过点A ,可得点A 的纵坐标为3. …………………………(1分) ∴点A 的坐标为(2,3). …………………………………………………………(1分) (2)∵双曲线xy 6=上点C 的横坐标为6,∴点C 的坐标为(6,1). ……(1分) 由题意,得 直线AB 的表达式为x y 23=. ……………………………………(1分) ∴设平移后直线的表达式为b x y +=23. ∵平移后的直线b x y +=23经过点C (6,1),∴b +⨯=6231. ………………(1分) 解得8-=b . ……………………………………………………………………(1分) ∴平移后直线的表达式为823-=x y . …………………………………………(1分)22.解:(1)根据题意,得AB=20,∠ABC=70°,CH =BD =2.………………(1分) 在△ACB 中,∵∠ACB =90°,∴sin AC ABC AB∠=. ∵∠ABC=70°,AB=20,∴20sin70200.9418.8AC =⋅≈⨯=o . …………(2分) ∴AH =20.8.答:这辆吊车工作时点A 离地面的最大距离AH 为20.8米. …………(1分)(2)设这次王师傅所开的吊车的速度为每小时x 千米. ……………………(1分) 由题意,得 31402040=--x x . ………………………………………………(1分) 整理,得02400202=--x x .………………………………………………(1分) 解得 x 1=60,x 2=-40. …………………………………………………………(1分) 经检验:x 1=60,x 2=-40都是原方程的解,但x 2=-40不符合题意,舍去.…(1分) 答:这次王师傅所开的吊车的速度为每小时60千米. ……………………(1分)23.证明:(1)∵AB=AD ,∴∠ABD =∠ADB . ……………………………………(1分) ∵AD ∥BC ,∴∠ADB=∠MBC . …………………………………………(1分) ∵AB=AD ,AM ⊥BD ,∴BM =DM . …………………………………………(1分)∵DC ⊥BC ,∴∠BCD =90°.∴BM =DM =CM . ………………………………………………………………(1分) ∴∠MBC =∠BCM . …………………………………………………………(1分) ∴∠ABD=∠BCM . …………………………………………………………(1分)(2)∵∠BNM=∠CNB ,∠NBM=∠NCB ,∴△NBM ∽△NCB . …………(2分) ∴BCBM CN BN =. ………………………………………………………………(2分) ∵BM =DM ,∴BCDM CN BN =. ……………………………………………………(1分) ∴DM CN BN BC ⋅=⋅. ……………………………………………………(1分)24.解:(1)∵抛物线c bx x y ++=231经过点M (3,-4),A (-3,0), ∴⎩⎨⎧+-=++=-.330,33c b c b 4 ………………………………………………………………(1分) 解得⎪⎩⎪⎨⎧-=-=.5,32c b………………………………………………………………(2分)∴这条抛物线的表达式为532312--=x x y . ………………………………(1分) (2)由题意,得 这条抛物线的对称轴为直线1=x . …………………………(1分) 点B 的坐标为(5,0),点C 的坐标为(0,-5). …………………………(1分) 设点P 的坐标为(1,y ).∵PC=BC ,∴PC 2=BC 2. ∴22255)5(1+=++ y . ……………………………………………………(1分)解得y =2或y =-12.∴点P 的坐标为(1,2)或(1,-12).…………………………………………(1分)(3)作PH ⊥BC ,垂足为点H .∵点B (5,0),点C (0,-5),点P (1,2),∴PC =BC =52.…………(1分)∵直线BC 与对称轴相交于点D (1,-4), ∴462116212521⨯⨯+⨯⨯=⨯PH . …………………………………………(1分)解得PH =23. ………………………………………………………………(1分) ∴sin ∠PCB=532523=. ……………………………………………………(1分) 25.解:(1)联结PO 并延长交弦AB 于点H .∵P 是优弧AB ︵ 的中点,PH 经过圆心O ,∴PH ⊥AB ,AH =BH . …………(2分) 在△AOH 中,∵∠AHO =90°,AH=21AB =4,AO=5,∴OH=3. ……(1分) 在△APH 中,∵∠AHP =90°,PH=5+3=8,AH=4,∴AP=54. ……(1分)(2)作OG ⊥AB ,垂足为点G .∵∠OBG =∠ABM ,∠OGB =∠AMB ,∴△OBG ∽△ABM . ………………(1分)∴OB BG AB BM =,即548=BM . ∴532=BM . ……………………………………………………………………(1分) ∴57=OM . ……………………………………………………………………(1分) ∵57<23,∴以点O 为圆心,23为半径的圆与直线AP 相交. …………(1分) (3)作OG ⊥AB ,垂足为点G .∵∠BNO=∠BON ,∴BN=BO . ………………………………………………(1分) ∵BO =AO=5,∴BN=5. ……………………………………………………(1分) (i )当点N 在线段AB 延长线上时,∵BG =21AB =4,∴GN =9. 在△GON 中,∵∠NGO =90°,GN=9,OG=3,∴ON=103.∵圆N 与圆O 相切,∴5103+=r 或5103-=r .∴圆N 的半径为5103-或5103+. …………………………………(各1分) (ii )当点N 在线段AB 上时,同理可得圆N 的半径为105+或105-.……………………………………………………………………………(各1分)。
最新-上海市浦东六校联考2018届高三数学第二次联考试
2018-12月浦东高三第二次六校联考数学试卷(文史类)考生注意:1.答卷前,考生务必在答题纸上将姓名、座位号、准考证号等填写清楚.2.本试卷共有23道试题,满分150分,考试时间120分钟.一. 填空题 (本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.若复数z 满足()1z i i +=(i 为虚数单位),则z z ⋅=____________. 2.已知数列{}n a 是等比数列,则行列式1425a a a a =________.3.已知集合{}3A x x =<,集合401x B xx ⎧+⎫=>⎨⎬-⎩⎭,则A B =______________.4.已知矩阵2134A -⎛⎫=⎪⎝⎭,2143B -⎛⎫= ⎪⎝⎭,则A B ⨯=______________. 5.若函数()log m f x x =的反函数图象过点()2,n ,则n m -的最小值是______.6.822x x ⎛⎫- ⎪⎝⎭的展开式中含21x 项的系数为 ____________.7.已知()1,3a =-,()6,2b =,向量a b λ+与3a b -垂直,则实数λ=_______. 8.对任意非零实数a 、b ,若a b ⊗的运算 原理如右图程序框图所示,则32⊗= .9.将甲、乙、丙、丁四名志愿者分到三个 不同的社区进行社会服务,每个社区至少 分到一名志愿者,则不同分法的种数为_____. 10.已知数列{}n a 的前n 项和2n S n n =+*()n N ∈, 则lim nn nna S →∞=_______.11.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且第()2n n ≥行两端的数均为1n,每个数都是它下一行左右相邻两数的和,如111122=+,111236=+,1113412=+,…,则第7行第3个数(从左往右数)为___________.12.设ABC ∆的三个内角分别为A 、B 、C ,则下列条件中能够确定ABC ∆为钝角三角形的条件共有________个. ①::7:20:25A B C =;②sin :sin :sin 7:20:25A B C =; ③cos :cos :cos 7:20:25A B C =; ④tan :tan :tan 7:20:25A B C =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东新区2017学年第二学期质量监控高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91)x+二项展开式中的常数项为6.椭圆2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8.函数2()cos 2f x x x =,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A.B.C.D.14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
”其中后一句中“成仙”是“到蓬莱”的( ) A. 充分条件 B. 必要条件 C. 充要条件 D. 既非充分又非必要条件 16. 设P 、Q 是R 上的两个非空子集,如果存在一个从P 到Q 的函数()y f x =满足:(1){()|}Q f x x P =∈;(2)对任意12,x x P ∈,当12x x <时,恒有12()()f x f x <,那么称这两个集合构成“P Q →恒等态射”,以下集合可以构成“P Q →恒等态射”的是( ) A. R →Z B. Z →Q C. [1,2](0,1)→ D. (1,2)→R三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为 圆心,D 是AB 的中点,且2BOC π∠=.(1)求圆锥的全面积;(2)求直线CD 与平面AOB 所成角的大小. (结果用反三角函数值表示)18. 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积.19. 已知双曲线22:1C x y -=.(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点M 、N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.20. 已知函数()y f x =定义域为R ,对于任意x ∈R 恒有(2)2()f x f x =-. (1)若(1)3f =-,求(16)f 的值;(2)若(1,2]x ∈时,2()22f x x x =-+,求函数()y f x =,(1,8]x ∈的解析式及值域; (3)若(1,2]x ∈时,3()||2f x x =--,求()y f x =在区间(1,2]n ,*n N ∈上的最大值与最小值.21. 已知数列{}n a 中11a =,前n 项和为n S ,若对任意的*n N ∈,均有n n k S a k +=-(k 是常数,且*k N ∈)成立,则称数列{}n a 为“()H k 数列”.(1)若数列{}n a 为“(1)H 数列”,求数列{}n a 的前n 项和n S ;(2)若数列{}n a 为“(2)H 数列”,且2a 为整数,试问:是否存在数列{}n a ,使得211||40nn n a a a -+-≤对一切2n ≥,*n N ∈恒成立?如果存在,求出这样数列{}n a 的2a 的所 有可能值,如果不存在,请说明理由;(3)若数列{}n a 为“()H k 数列”,且121k a a a ==⋅⋅⋅==,证明:211(1)2n kn k k a -+-≥+.参考答案2018.04一. 填空题1. 22. ()0,13.114.35.846.()1,07.163 8. ,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z 9. 10.13 11.[]1,0- 12.6二. 选择题 13-16. ABAD 三. 解答题 17.(1)圆锥的底面积214S r ππ== ……………3分圆锥的侧面积2S rl π==……………3分圆锥的全面积124(1S S S π=+=……………1分 (2)2BOC π∠=Q O C O B ∴⊥ 且OC OA ⊥,OC ⊥平面AOB ……………2分 CDO ∴∠是直线CD 与平面AOB 所成角 ……………1分在Rt CDO V 中,2OC =,OD =, ……………1分tan CDO ∠,CDO ∴∠= ……………2分所以,直线CD 与平面AOB 所成角的为1分 18.(1)由题意,()()2sin 2sin 2sin c C a b A b a B =-+-;……………2分由正弦定理得()()2222c a b a b a b =-+-,∴222c a b ab =+-,……………2分∴2221cos 22a b c C ab +-==,∴3C π=;……………2分(2)由4sin 5A =,c =sin sin a c A C =,∴85a =;…………2分由23a c A C π<⇒<=,∴3cos 5A =,…………2分∴()sin sin sin cos cos sin B A C A C A C =+=+=;…………2分∴1sin 2ABC S ca B ∆==…………2分 19.(1)2F …………1分 渐近线 0x y ±=………1分1R =…………2分 22(1x y +=………………2分(2)设经过点B 的直线方程为1y kx =-,交点为1122(,),(,)M x y N x y ………………1分22221(1)2201x y k x kx y kx ⎧-=⇒-+-=⎨=-⎩…1分则212121,0010k x x k x x ⎧≠∆>⎪+>⇒<<⎨⎪>⎩…2分 MN 的中点为221(,)11k k k ----,…1分 得中垂线2211:()11kl y x k k k+=-+--…1分 令0x =得截距2222211t k k -==>--………………2分即线段MN 的中垂线l 在y 轴上截距t 的取值范围是(2,)+∞.20.(1)(1)3f =-Q 且(2)2()f x f x =-(2)3(2)f ∴=-⋅-……………1分 22(2)3(2)f ∴=-⋅-……………1分33(2)3(2)f ∴=-⋅-………1分 44(16)(2)3(2)48f f ∴==-⋅-=-……1分(2)(2)2()()2()2xf x f x f x f =-⇒=-,(1,2]x ∈时,22()22(1)1f x x x x =-+=-+,()(1,2]f x ∈……………1分 (2,4]x ∈时,221()2()2[(1)1](2)2222x x f x f x =-=--+=---,……………1分()[4,2)f x ∈--……………1分(4,8]x ∈时,2211()2()2[(2)2](4)42224x x f x f x =-=----=-+,……………1分()(4,8]f x ∈……………1分得:222(1)1,(1,2]1()(2)2,(2,4]21(4)4,(4,8]4x x f x x x x x ⎧⎪-+∈⎪⎪=---∈⎨⎪⎪-+∈⎪⎩,值域为[4,2)12](4,8]--(,……………1分(3)(2)2()()2()2xf x f x f x f =-⇒=-当(1,2]x ∈时,3()2f x x =--得:当2(2,2]x ∈时,()2()32x f x f x =-=-……1分当1(2,2]n n x -∈时,1(1,2]2n x -∈,21122113()2()(2)()(2)()(2)(1)3222222n n n n n n x x x x f x f f f x -----=-=-=-=---=--⋅L (2)分 当1(2,2]n nx -∈,n 为奇数时,22()32[,0]4nn f x x -=--⋅∈-当1(2,2]n nx -∈,n 为偶数时,22()32[0,]4nn f x x -=-⋅∈综上:1n =时,()f x 在(1,2]上最大值为0,最小值为12-……………1分 2n ≥,n 为偶数时,()f x 在(1,2]n上最大值为24n,最小值为28n-……………1分3n ≥,n 为奇数时,()f x 在(1,2]n上最大值为28n,最小值为24n-……………1分21.(1)数列{}n a 为“()1H 数列”,则11n n S a +=-,故121n n S a ++=-, 两式相减得:212n n a a ++=, …………………1分又1n =时,121a a =-,所以2122a a ==,………………1分 故12n n a a +=对任意的N*n ∈恒成立,即12n na a +=(常数), 故数列{}n a 为等比数列,其通项公式为12,*n n a n N -=∈;………………1分21,*n n S n N =-∈………………1分(2)2132321132()2N*n n n n n n n n n n S a a a a a a a n S a +++++++++=-⎧⇒=-⇒=+∈⎨=-⎩21(2,)N*n n n a a a n n ++⇒=+≥∈………………1分当*2,n n N ≥∈时,()222121111()n n n n n n n n n n na a a a a a a a a a a ++++++-=-+=--因为*11,(3,)n n n a a a n n N +--=≥∈,则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈;则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈………………2分则22*11324(3,)n n n a a a a a a n n N -+-=-≥∈,因为432a a a =+则222*113232(3,)n n n a a a a a a a n n N -+-=--≥∈………………1分 因为13132,13S a a a =-=⇒=,则2229340a a --≤,且2n =时,22340a -≤,解得:20,1,2,3,4,5,6a =±±±±±-………………2分(3)*1*11(2,)(2,)n k n n k n k n n k n a S k a a a n n N a S k n n N +++--+-=+⎧⎪⇒=+≥∈⎨=+≥∈⎪⎩…………1分 110k a S k +=+>,由归纳知,20,,0k n a a +>⇒>L ,…………1分1211,1k k a a a a k +=====+L ,由归纳知,*1,()n n a a n N +≤∀∈,…………2分则*11112(2,)n k n k n n k n k n k a a a a a a n n N ++-+-+-+-=+≤+=≥∈*12(2,)n k n k a a n n N ++-≤≥∈…………1分*122121111,()222n k n k n k n k k a a a a n N ++++++--⇒≥≥≥≥∈L …………1分 于是*2212111(1),()2n k n k n k n k k a a a a n N ++-++--=+≥+∈ 于是1*2211(1),()2n n kk k a a n N -+-≥+∈…………1分22k k a S k k =+=,∴112111111(1)2(1),(2(1))222n n k kn k k k k a k k ----+---≥+⋅>+>+…1分 结论显然成立.。