高频小信号放大器的MULTISIM仿真

合集下载

高频电路实验Multisim版含答案

高频电路实验Multisim版含答案

实验一高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp;2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v02、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i c的波形。

(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L。

根据各个电压值,计算此时的导通角θc。

(提示根据余弦值查表得出)。

2、线性输出(1)要求将输入信号V1的振幅调至1.414V。

注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。

高频小信号谐振放大器仿真

高频小信号谐振放大器仿真

高频小信号谐振放大器仿真
一、实训目的
1、会熟练使用电路仿真软件对高频电路进行仿真;
2、了解高频小信号谐振放大器的电路结构及工作原理;
3、了解LC谐振元件的参数对放大器增益的影响;
4、熟悉谐振放大器的幅频特性曲线。

二、实训步骤
1、在Multisim软件环境中绘制出电路图1.1,注意元件标号和各个元件参数的设置。

图1.1高频小信号谐振放大器
2、双击图2.1中的示波器XSC1,如图2.2进行参数设置。

图1.2输入、输出波形图
3、双击图1.1中的波特图仪XBP1,如图1.3进行参数设置。

图1.3 谐振放大器幅频特性曲线图
4、打开仿真开关,观察各种待测波形如图1.2和图1.3。

5、改变C2或L2的参数值,重新仿真,比较波形的异同。

当C2=1pF仿真的结果如图1.4和图1.5
图1.4a输出波形
图1.4b谐振放大器幅频特性曲
根据波形图和波特图C2减小时时输出的幅值减小放大器的增益降低。

作另一个仿真使C2的值增大到100pF时输出波形的幅值依然是减小的,放大器的增益降低
当L2=100uH时所得到的仿真波形图和波特图如图1.5a和图1.5b
图1.5a
图1.5b
根据所仿真得到的图形可判断L2改变时时也会在一定程度上使输出的幅值减小放大器的增益降低
三、实训总结
因为l2、L3、C2组成并联谐振回路,它与晶体管共同起着选频放大作用。

改变了C2或l2的参数值,并联谐振回路的谐振频率会偏离放大器的工作频率,放大器的增益会降低,输出波形的幅值会明显减小。

高频电路Multisim仿真实验一 高频小信号放大器

高频电路Multisim仿真实验一   高频小信号放大器

实验一 高频小信号放大器
一、 单调谐高频小信号放大器
图1.1 高频小信号放大器
1、 根据电路中选频网络参数值,计算该电路的谐振频率ωp ;
s rad CL w p /936.210580102001
1
612=⨯⨯⨯==--
2、 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===
357
.0544.10I O v V V A 4.325 输入波形:
输出波形:
3、 利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电
压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。

感谢下载!
欢迎您的下载,资料仅供参考。

高频电路实验及Multisim仿真-图文

高频电路实验及Multisim仿真-图文

高频电路实验及Multisim仿真-图文实验一高频小信号放大器一、单调谐高频小信号放大器图1.1高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp;wp1CL120010125801062.936rad/2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

VI356.708uV,VO1.544mV,Av0VO1.5444.325VI0.357输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

f0(KHz)U0(mv)65751652653654651065166522652865346540650.9771.0641 .3921.4831.5281.5481.4571.2821.0950.4790.8400.747AV2.7362.9743.8 994.1544.2804.3364.0813.5913.0671.3412.3522.0925、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0输入端波形:输出端波形:V1=19.512mVV0=200.912mVAv0=V0/V1=10.1972、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Tranitor中的BJT_NPN_VIRTUAL)图2.1高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察ic的波形。

高频小信号放大器地MULTISIM仿真

高频小信号放大器地MULTISIM仿真

(通信系统仿真实验学校代码: 10128 学 号:20122020题 目: 高频小信号放大器的MULTISIM 仿真 学生姓名:学 院:信息工程学院 专 业: 通信工程 班 级:实验一高频小信号放大器的MULTISIM仿真一.实验目的:1、了解MULTISIM的基本功能、窗口界面、元器件库及工具栏等;2、掌握MULTISIM的基本仿真分析方法、常用仿真测试仪表等;3、掌握高频小信号放大器MULTISIM仿真的建模过程。

二.实验电路图:三.实验内容:(一)单频正弦波小信号放大器的MULTISIM仿真。

1.单频正弦波小信号放大器的MULTISIM仿真原理图、输入输出波形图、波特图:单频正弦波小信号放大器的MULTISIM仿真原理图单频正弦波小信号放大器的MULTISIM仿真输入输出波形图单频正弦波小信号放大器的MULTISIM仿真波特图(1)根据题目要求要求输入信号的幅度,频率符合要求;(2)根据初步仿真结果改变电路元器件的型号和参数,输出信号波形无失真、幅度放大倍数符合要求;(3)改变输入频率,得到如下表数据:输入频率2 4 6 8 10 (MHz)输入电压9.769 9.832 9.834 9.799 9.800 (mv)输出电压1646 915 627 461 385 (mv)输入频率12 14 16 18 20 (MHz)输入电压9.765 9.823 9.867 9.788 9.812 (mv)输出电压294 243 216 166 155 (mv)输入输出相位变化数据分析:当增大输入信号频率还伴有输出信号相位偏移;由波特图可知此电路的谐振频率是400KHz左右,当频率由2-20MHZ变化的时候输出信号的电压由大到小变化。

(4)从5mv开始增大输入信号的频率,当输入信号的频率增大到35mv时会发生输出信号的失真现象,失真波形如下图:(6)如下表,改变R的值,在波形不失真的情况下,用直流分析法记录三极管基极的直流电压和通过VCC的直流电流,分别绘制R1和它们关系曲线。

实验一仿真实验:高频小信号谐振放大器

实验一仿真实验:高频小信号谐振放大器

实验一仿真实验:高频小信号谐振放大器MultiSim仿真实验实验一高频小信号谐振放大器仿真实验(甲类)一、实验目的1、熟悉Multisim电路仿真。

2、熟悉谐振回路的幅频特性分析—通频带与选择性的关系。

3、熟悉信号源内阻及负载对谐振回路的影响。

4、熟悉和了解放大器的动态范围及其测试方法。

5、自测数据,绘制曲线,分析实验数据。

二、实验仪器1、双踪示波器Oscilloscope2、波特仪Bode Plotter,类似于扫频仪3、高频信号发生器Function Generator4、电路自己搭建5、万用表MultiMeter图1-1 单调谐小信号谐振放大器原理图三、预习要求1、复习谐振回路的工作原理。

2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

3、实验电路中,L1、C1取值,估算回路中心频率f0。

(注:三极管输出电容暂时忽略,实际谐振频率需要考虑三极管输出电容,准确谐振频率可用扫频仪Bode Plotter观察幅频特性曲线波峰点即为谐振点。

)四、实验内容及步骤(一)单调谐回路谐振放大器。

1、实验电路见图1-1(1)按图1-1所示连接电路(注意接线前先测量+9V电源电压,无误后,关断电源再接线)。

(2)接线后仔细检查,确认无误后接通电源。

2、静态测量实验电路中选Re=1K, R开路。

测量各静态工作点,计算并填表1.1表1.1 (用万用表直流电压、直流电流档测量)*V B,V E是三极管的基极和发射极对地电压。

注:工作在放大区要求发射结正偏,集电结反偏。

3、动态测量(1)测放大器的动态范围Vi~V0 (在谐振点)选R=80K,Re=1K。

把高频信号发生器接到电路输入端,电路输出端接示波器,将高频信号发生器输出调至0.04V,粗调频率f=100MHZ,查看输出示波器的电平值,并调节高频信号发生器的f,使输出电平(示波器的Channel_B)达到最大,此时即找到谐振回路的谐振频率点。

高频小信号放大器Multisim仿真及分析报告

高频小信号放大器Multisim仿真及分析报告

高频电子线路讨论课报告高频小信号放大器小组编号:组长:小组成员:教务处2015年9月目录第一章高频小信号放大器简介 (3)1.1高频小信号放大器 (3)1.2高频小信号放大器质量指标 (3)第二章Multisim简介 (4)第三章Multisim仿真电路 (5)第四章Multisim仿真分析 (6)4.1放大器输出 (6)4.2选频特性分析 (8)4.3增益特性分析 (10)第一章高频小信号放大器简介1.1高频小信号放大器高频小信号放大器指的是将频率高、幅度小的包含我们需要信息的信号进行幅度放大,以便以后的信号处理。

高频小信号放大器应用广泛,在无线通信接受时进行前端放大,在信号处理过程中进行信号的放大等等。

图1-1 高频小信号放大器应用1.2高频小信号放大器质量指标高频小信号放大器除了具有对小信号幅度放大的作用,还具有功率放大的功能和选频特性,从而达到抑制噪声和对包含信息信号选择的效果。

所以,高频小信号放大器的质量指标就有幅度增益Av、功率增益Ap、通频带2f0.7和选择性K r0.1。

幅度增益Av=vo/vi功率增益Ap=Po/Pi矩形系数K r0.1。

=2f0.7/2f0.1图1-2 理想滤波器其中幅度增益反映了幅度放大特性,功率增益反映了功率放大特性,通频带表示了我们的放大器选择通过的频带带宽。

选择性则表示了和理想滤波器的逼近程度,即选择通过性能的好坏。

矩形系数Kr=1时为理想滤波器,所以我们希望Kr~1。

第二章Multisim简介Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。

Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、 单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CL w p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325 输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

的波形。

(2)将输入信号的振幅修改为1V,用同样的设置,观察ic (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

基于Multisim的高频功率放大与高频小信号放大研究

基于Multisim的高频功率放大与高频小信号放大研究

• 14•高频功率放大器与高频小信号放大器在无线通信中被广泛使用。

通过对两者放大器的原理进行概述,对两者电路使用Multisim进行仿真分析,并对指标进行公式推导与分析计算,比较两者放大器的异同。

背景:在无线通信领域,由于传输的开放性、接收环境的复杂性,和通信用户的随机移动性,信道将会对信号的传输造成不同的损耗,因此在发送信号时,应使用高频谐振功率放大器将信号放大到所需的发射功率。

不仅如此,在接收信号时,接收机也应有将所需要的频率选择出来并放大的能力。

本文将通过理论分析两种放大器的各项指标,结合对应的需求来对比两种放大器的共性与不同,设计高频放大电路并进行仿真测试。

1 高频功率放大器仿真测试1.1 对于高频功率放大仿真电路的搭建如图1当三极管工作在丙类放大时,三极管的集电极电流ic 为周期性尖顶余弦脉冲,其包含直流分量和许多谐波分量,通过数学模型的计算,将丙类放大时的理想信号进行傅里叶分解,得出直流、基波和各次谐波,得出的每个分量是角度的函数。

1.2 分析集电极电流ic的波形(图2)图1 高频功率放大电路仿真图2 ic电流波形• 15•式中:利用MATLAB做出函数图像如图3。

clc;clear;o=linspace(0,pi,100);i1=(sin(o)-o.*cos(o))./(pi*(1-cos(o)));i2=(o-sin(o).*cos(o))./(pi*(1-cos(o)));i3=(2*sin(2*o).*cos(o)-4*sin(o).*cos(2*o))./(2*pi*3*(1-cos(o).*cos(o)));plot(o,i1,o,i2,o,i3);图3 频率函数图像利用Multisim内的傅里叶分析观察若不选频,输出电路为纯负载时波形的频率分量。

图4 纯负载输出波形傅里叶分析对该信号进行傅里叶分析可以观察到图4中有基波分量,也有各次谐波,其中基波分量幅值最高,随着谐波次数增加,幅值减小十分明显。

高频电路实验Multisim版1-5

高频电路实验Multisim版1-5

实验一高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp;2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通的选频作用。

答:1、2.936×106 Hz2、A=3.563、BW0.7=6.372MHz-33.401kHz二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v02、利用软件中的波特图仪观察通频带,并计算矩形系数。

1、A=166.672、BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHzK=0.431实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i c的波形。

(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L。

根据各个电压值,计算此时的导通角θc。

基于 Multisim 的高频小信号谐振放大器仿真研究

基于 Multisim 的高频小信号谐振放大器仿真研究

基于 Multisim 的高频小信号谐振放大器仿真研究王海梅【摘要】The traditional teaching of high frequency small signal tuned amplifier is too theoretical and lack of practice, which resulted in the inefficiency in teaching.The introduction of Multisim and the circuit simulation software can realize the circuit structure,parameter setting and simulation,frequency characteristics,load characteristics,the pass band and other performance parameters analysis,which arrives at the conclusion that the high frequency small signal tuned amplifier circuit with the resonant frequency of 6.0 MHz,voltage gain of 25.5 dB decibel can meet the requirements,and the simulation re-sults are consistent with the theoretical analysis.In teaching practice,both the analysis of circuits and the intuitive simula-tion results may help students not only understand the theoretical knowledge further,but also improve the circuit analysis and design ability.%为解决高频小信号谐振放大器传统讲授理论性较强,缺乏直观性,教学效果不理想的问题,采用了引入电路仿真软件 Multisim 进行分析研究的方法。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、 单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CL w p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325 输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

的波形。

(2)将输入信号的振幅修改为1V,用同样的设置,观察ic (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

高频电路实验及Multisim仿真.(DOC)

高频电路实验及Multisim仿真.(DOC)

1、根据电路中选频网络参数值,计算该电路的谐振频率3 P2、通过仿真,观察示波器中的输入输出波形,计算电压增益Vc 1 544 V I =356.708uV, V 。

=1.544mV, A v o4.325V I 0.357实验一高频小信号放大器单调谐高频小信号放大器VcR410k0 C2 «IFCL .luF图1.1高频小信号放大器W p1 CL________ 1 ________、200 1042 580 10^ 二 2.936rad /sA J 0。

输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

、下图为双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益 A/0 输入端波形:1_Lvi.^12VClnhFR1 15knC2 IO11Fhill C4 它 luH 颈吓知D:-50%p 1uH -20pF; ;keyn| ■50%:-20pF \Key=CM%--:5 Q% :HF100pF2M2222AR2 LR3 G56.2kD >1liQ ^tODtiF ::::::::XSC1输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V 仁10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

Tttrie CS>3O.aoiiix 3O.OO2m 3C.OO3m 30.004111 3O.OO5ITI实验二 高频功率放大器的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析 设置。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、单调谐高频小信号放大器图 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A相应的图,v根据图粗略计算出通频带。

f0(KHz6575165265365465106516652265286534654065 )U0(mv)A V5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0输入端波形:输出端波形:V1= V0= Av0=V0/V1=2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为,终止时间设置为。

在output variables 页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

高频小信号单调谐放大器仿真分析

高频小信号单调谐放大器仿真分析

任务三、高频小信号单调谐放大器仿真分析一、目的(1)分析高频小信号单调谐放大器电路,并选择合适的元件参数,运用Multisim 仿真软件进行仿真分析与测试。

(2)测试高频小信号单调谐放大器的动态U i —U o 曲线和电压放大倍数. (3)利用波特图示仪测试高频小信号单调谐放大器回路谐振曲线。

(4)测试频率特性. 二、仪器和设备计算机:安装Multisim 电路仿真软件 三、原理图2—47 高频小信号单调谐放大器原理电路及等效电路小信号调谐放大器的指标:图2-48 单调谐放大电路等效电路高频小信号单调谐放大器等效电路进一步简化如图所示,该等效电路实质就是一单调谐回路,因此单调谐放大器指标的计算最终归结为单调谐回路的计算。

(1)谐振频率 LCf π210=(2)通频带 Qf B 07.0= 品质因数GC LG LC R C R LR Q 00001ωωωω=====(3)放大器的选择性 K 0.1 = BW 0。

1 / BW 0.7 = 9。

96 ≈ 10 (4)电压增益 GY p p Gu u Y p p u u p u u A fe 12SS fe 12SL 2SL 0V '====(5)增益带宽乘积 CY p p B A GB π2fe 127.00V ==四、内容与步骤1. 动态Ui-Uo 曲线和电压放大倍数测试图2-49 动态U i—U o曲线和电压放大倍数测试图1.连接电路如图,在发射极电阻R3上并联万用表,开启仿真开关,调整电位器R P,使万用表指示在1V 左右,并保持静态电压不变。

2.将万用表改接到输出端B,在输入端A接上信号发生器,信号发生器设置为:正弦波,频率10。

7MHz,峰值电压20mV;开启仿真开关,调节可变电容C2的百分比为35%,此时LC回路处于谐振状态,万用表交流电压读数最大为563。

955mV.3.逐渐增大信号发生器的信号幅值U i,记录每次的U o 。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校代码: 10128
学号:********
通信系统仿真实验

题目:高频小信号放大器的MULTISIM仿真
学生姓名:
学院:信息工程学院
专业:通信工程
班级:
实验一高频小信号放大器的MULTISIM仿真
一.实验目的:
1、了解MULTISIM的基本功能、窗口界面、元器件库及工具栏等;
2、掌握MULTISIM的基本仿真分析方法、常用仿真测试仪表等;
3、掌握高频小信号放大器MULTISIM仿真的建模过程。

二.实验电路图:
三.实验内容:
(一)单频正弦波小信号放大器的MULTISIM仿真。

1.单频正弦波小信号放大器的MULTISIM仿真原理图、输入输出波形图、波特图:
单频正弦波小信号放大器的MULTISIM仿真原理图
单频正弦波小信号放大器的MULTISIM仿真输入输出波形图
单频正弦波小信号放大器的MULTISIM仿真波特图
(1)根据题目要求要求输入信号的幅度,频率符合要求;
(2)根据初步仿真结果改变电路元器件的型号和参数,输出信号波形无失真、幅度放大倍数符合要求;
(3)改变输入频率,得到如下表数据:
输入频率
2 4 6 8 10 (MHz)
输入电压
9.769 9.832 9.834 9.799 9.800 (mv)
输出电压
1646 915 627 461 385 (mv)
输入频率
12 14 16 18 20 (MHz)
输入电压
9.765 9.823 9.867 9.788 9.812 (mv)
输出电压
294 243 216 166 155 (mv)
输入输出相位变化
数据分析:当增大输入信号频率还伴有输出信号相位偏移;由波特图可知此电路的谐振频率是400KHz左右,当频率由2-20MHZ变化的时候输出信号的电压由大到小变化。

(4)从5mv开始增大输入信号的频率,当输入信号的频率增大到35mv时会发生输出信号的失真现象,失真波形如下图:
(6)如下表,改变R的值,在波形不失真的情况下,用直流分析法记录三极管基极的直流电压和通过VCC的直流电流,分别绘制R1和它们关系曲线。

R(kΩ) 20 30 50 60 70
2.64 1.64 1.07 0.91 0.80
基极电压
(V)
-3.73 -2.31 -1.03 -0.70 -0.46
Vcc电流
(mA)
(7) 绘制R5和峰峰值的关系曲线。

R5(K)20 40 60 80 100
输入电压(mv) 10 10 10 10 10
输出电压(mv) 460 781 950 1071 1157
R5与峰峰值数据表
(二)多频正弦波合成小信号放大器的MULTISIM仿真1.多频正弦波合成小信号放大器的MULTISIM仿真电路图及仿真
输入波形
输出波形输入频谱图
输出频谱图
2.改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上:
3.用瞬态分析法观察电路运行之初输出信号的变化情况
去掉R5,用瞬态分析法观察输出信号的变化情况,如下图所示:。

相关文档
最新文档