材料力学第二章 轴向拉伸与压缩.ppt
合集下载
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
建筑力学 材料力学 轴向拉伸与压缩ppt课件
可编辑课件PPT
1
可编辑课件PPT
2
目录
§2-1 轴向拉伸、压缩及工程实例
§2-2 轴力和轴力图
§2-3 横截面上的应力
§2-4 斜截面上的应力
§2-5 拉、压杆的变形
§2-6 材料在拉伸、压缩时的力学性质
§2-7 强度计算、许用应力和安全因数
§2-8 拉伸和压缩超静定问题
可编辑课件PPT
3
§2–1 轴向拉伸、压缩及工程实例
PB
PC
N3
C
PC N4
轴力图如右图
N
5P
2P +
+
P
–
可3编P辑课件PPT
D PD D PD D PD
x
14
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN
–
可编3辑k课N件PPT
16
[例3] 一等直杆受四个轴向外力作用,如图所示,试求杆 件横截面l-l、2-2、3-3上的轴力,并作轴力图。
可编辑课件PPT
17
问题提出:
§2–3 横截面上的应力
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:① 内力在截面的分布集度应力;
② 材料承受荷载的能力。
一、应力的概念
1. 定义:由外力引起的内力集度。
一、概念
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
1
可编辑课件PPT
2
目录
§2-1 轴向拉伸、压缩及工程实例
§2-2 轴力和轴力图
§2-3 横截面上的应力
§2-4 斜截面上的应力
§2-5 拉、压杆的变形
§2-6 材料在拉伸、压缩时的力学性质
§2-7 强度计算、许用应力和安全因数
§2-8 拉伸和压缩超静定问题
可编辑课件PPT
3
§2–1 轴向拉伸、压缩及工程实例
PB
PC
N3
C
PC N4
轴力图如右图
N
5P
2P +
+
P
–
可3编P辑课件PPT
D PD D PD D PD
x
14
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN
–
可编3辑k课N件PPT
16
[例3] 一等直杆受四个轴向外力作用,如图所示,试求杆 件横截面l-l、2-2、3-3上的轴力,并作轴力图。
可编辑课件PPT
17
问题提出:
§2–3 横截面上的应力
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:① 内力在截面的分布集度应力;
② 材料承受荷载的能力。
一、应力的概念
1. 定义:由外力引起的内力集度。
一、概念
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
材料力学第2章+轴向拉伸与压缩
第二章 轴向拉伸和压缩
§2-3应力·拉(压)杆内的应力
1. 应力的概念
若考察受力杆截面上M点处
应力:指受力杆件某一横 截面上一点处的内力集度 (内力分布的密集程度)
应力,可在M点周围取一很
小面积ΔA,设 ΔA面积上分 布内力的合力为ΔF,则 ΔA
上内力平均集度为:
F M A
26
Pm = F/A
Pm即A上的平均应力
第二章 轴向拉伸和压缩
若将力F由自内端A至杆B点处(图d),则其AB段内任一横 截面上的轴力都将等于零(图e).而BC段内任一横截面n-n上的 轴力仍等于F(图f),保持不变。
FN = 0
14
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
第二章 轴向拉伸和压缩
原因:这是因为集中力F由自由端A移至B点 后,改变了杆件AB段的变形。而并不改变BC 段的变形
第二步、绘制轴力图
第二章 轴向拉伸和压缩
FN kN
10
FN图kN
25
_
x
10
20
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图
例2.2
30kN
A
30kN
作图示杆件的轴力图,并指出| FN |max
1
2
90kN
60kN
1
B
2
解:1、计算杆件各段的轴力。
C
AB 段
1
2
x FN1
FN2
1
2
60kN
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
注意:静力学中的力(或力偶)的可移性原理,在用截面法 求内力的过程中是有限制的。如图a所示拉杆在自由端A承 受集中力F,由截面法可得,杆任一横截面m—m或n—n” 上的轴力FN、均等于F(图b,c)。
材料力学课件 第二章 轴向拉伸和压缩
第二章
应力非均布区
轴向拉伸与压缩
应力均布区 应力非均布区
圣维南原理 力作用于杆端的分 布方式,只影响杆端 局部范围的应力分布, 影响区约距杆端 1~2 倍杆的横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
第二章 2.2 杆的变形
轴向拉伸与压缩
h1
F
h
b b1
F
l 1.纵向变形 (1)纵向变形 (2) 纵向应变
第二章
轴向拉伸与压缩
3. 拉压杆横截面上的应力
问题提出:
P P P P
1)内力大小不能衡量构件强度的大小。
2)强度:①内力在截面分布集度应力;
②材料承受荷载的能力。 3)定义:由外力引起的内力集度。
第二章
轴向拉伸与压缩
轴向拉伸变形
第二章
轴向拉伸与压缩
工程构件,大多数情形下,内力并非均匀分布,集度的定义 不仅准确而且重要,因为“破坏”或“失效”往往从内力集度
1 2 1 2 2 2
第二章
轴向拉伸与压缩
FN 1 8 103 1 Pa 159MPa A1 0.0082 4
BC 段横截面上的正应力为
FN 2 15 103 2 Pa 191MPa A2 0.0102 4
第二章
4、圣维南原理 杆端应力分布
轴向拉伸与压缩
第二章
轴力的正负规定:
轴向拉伸与压缩
N N N > 0
N 与外法线同向,为正轴力(拉力) N与外法线反向,为负轴力(压力)
N N
N < 0
2. 轴力图—— N (x) 的图象表。
意 义
①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值
材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
材料力学PPT第二章
Q235钢的主要强度指标:s = 240 MPa,
b = 390 MPa
低碳钢拉伸试件图片
试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
塑性指标
1.延伸率
l1 l 100%
l
2.断面收缩率
A A1 A
100%
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
FN 2 45° B x
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
A 1
45°
C
2
FN1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
≥5%—塑性材料 <5%—脆性材料 σ
Q235钢: 20% ~ 30% ≈60%
冷作硬化
O
应力-应变(σ-ε)图
注意:
(1) 低碳钢的s,b都还是以相应的抗力除以试
《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
材力第2章:轴向拉伸与压缩
F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =
l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=
E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:
2材料力学轴向拉压.ppt课件
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
材料力学课件_轴向拉伸和压缩
用 截 面 法 求 出 各 段 轴 力
4
N4
P4
③根据轴力图的作法即可画出轴力图
N
单位:KN
x
0
选一个坐标系,用其横坐标 表示横截面的位置,纵坐标 表示相应截面上的轴力。 拉力绘在x轴的上侧, 压力绘在x轴的下侧。
思考题
在画轴力图之前,能否使用理论力学中学过 的力的平移原理将力平移后再作轴力图?
max
应力正负号规定
N max A
规定拉应力为正,压应力为负(同轴力相同) 。
2、公式(2-1)的应用范围:
①外力的合力作用必须与杆件轴线重合
②不适用于集中力作用点附近的区域
③当杆件的横截面沿轴线方向变化缓
慢,而且外力作用线与杆件轴线重 合时,也可近似地应用该公式。
如左图
N x x A x
1 2 3
4
0 R 10KN
② 用截面法求AB段轴力,保留1-1截面左部
X 0
N1 R 0
N1 10NK
同理可求出BC、CD、DE段内的轴力分别为:
N 2 R P1 50KN 拉力 N 4 20KN 拉力
N 3 P3 P4 5KN 压力
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由 杆件处于平衡状态可知,内力合力的作用线也必 然与杆件的轴线相重合。
(2)定义:上述内力的合力N就称为轴力 (其作用线因与杆件的轴线重合而得名)。
2.轴力正负号规定:
①规定引起杆件拉伸时的轴力为正,即拉力为正;
F
}F
F/2 F/2
F/2 F/2
} F
F
材料力学_轴向拉伸和压缩
§ 2-3拉(压)杆截面上的应力
例2.2 图2.7(a)所示三角托架中,AB杆为圆截面钢 杆,直径d =30mm;BC杆为正方形截面木杆,截面边 长a=100mm。已知F =50kN,试求各杆的应力。
A
σ FN
FNAB 2F 100kN
A
FNBC - 3F -86.6kN
F NAB
30o
➢应力的正、负号约定:正应力 以拉应力
为正,压应力为负;切应力 以使所作用的微段绕其内部任
意点有顺时针方向转动趋势者为正,反之为负。
➢应力的单位:帕斯卡 (pa)、兆帕(Mpa)、吉帕(Gpa) 1帕=1牛顿 / 米2 ( N/m2 ) 1MPa =1N/mm2 = 106 Pa 1GPa = 109 Pa 注意:1、在谈到应力时,必须指明应力所在的平面及点的位置; 2、没有特别说明的情况下,提到应力一般指正应力和切应力。
m
图。
m F
平衡 对分离体列平衡方程
Fx 0
m
m FN
FN = F
m
F FN
F
§2-2 轴力、轴力图
二、轴力的符号约定
FN
➢轴力方向以使所作用的杆微段拉伸为正;
压缩为负。即拉为正,压为负。 (正号 轴力的指向是背离截面的,负号轴力的
FN
指向则是指向截面的)。
三、轴力图
FN F N > 0 FN F N < 0
内力是由外力引起的,仅表示某截面上分布内力向 截面形心简化的结果。而构件的变形和强度不仅取决 于内力,还取决于构件截面的形状和大小以及内力在 截面上的分布情况。为此,需引入应力的概念。
F
FF
F
一、应力的概念 ——所谓应力是指截面上某点处单位面积内的分 布内力,即内力集度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:离端面不远处,应力分布就成为均匀的。
§2–3 直杆轴向拉压时斜截面上的应力
一、斜截面上的内力
n
α
P
P
P 二、内力分布: 均匀分布
P
FN FN=P
Pa
FN
P
FN A
FN A
cos s cos
三、正应力、剪应力 s
P
α Pa
s p cos s cos 2
3、轴向拉(压)杆横截面上的应力
1)实验观察变形 加载前
ab cd
受载后 P
a´
b´
c´
d´
P
2)变形规律
A)ac→a′c′、bd→b′d′
原为平面的横截面在变形后仍为平面-----平面假设成立!
B)均匀材料、均匀变形,各纵向纤维相同变形。
3)静力关系 P
s
FN
s FN
A
x
公式说明
此公式对受压的情况也成立;
FN
FN
FN>0
N 与外法线同向,为正轴力(拉力)-
--产生拉伸变形内力为正;
FN
FN
FN<0
N与外法线反向,为负轴力(压力)--
-产生压缩变形内力为负.
4、 轴力图—— FN (x) ~x 的图象表示
意 义 1)反映出轴力与 P
截面位置变化关系,
A
P
较直观; 2、确定出最大轴力的数值及
FN
P
其所在横截面的位置,即确定
q
正应力的正负号规定:
sx
sx sx
sx
P
对变截面杆,当截面变化缓慢时,横截面上的 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重合;
圣维南原理
若用与外力系静力等 效的合力代替原力系, 则这种代替对构件内应 力与应变的影响只限于 原力系作用区域附近很 小的范围内。 对于杆件,此范围相当 于横向尺寸的1~1.5倍。
2
3
10KN
x
-20KN
[例3] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。
O x
O x
q(x)
L x q
FN
解:x 坐标向右为正,坐标原点在 自由端。
x位置上,用截面法,取左侧x 段 为对象,内力 FN(x) 为:
q(x)
FNx x
kL
–
kL2
FN ( x)
3)突变的数值等于集中力的大小;
5kN
8kN
3kN
FN 5KN
8kN
x
-3KN
训练1 作出下图杆件的轴力图
25KN
30KN
60KN 25KN
图1
1
40KN
2
3
30KN
20KN
1
2
3
图2
25KN
30KN
x
60KN 25KN
30KN
-30KN
1
40KN
-20KN
2
3
30KN
FN
20KN
1 FN 50KN
内力与外力的大小有关,外力大,内力大,大至一定程 度,材料发生破坏。因此,内力的计算是分析构件强度、刚 度、稳定性等问题的基础。求内力的一般方法是截面法。
1、 截面法求内力的基本步骤:
1)一截: 在所求内力的截面处,假想地用截面将杆件一分为二。
2)二取: 任取一部分,抛去另一部分。
3)三代: 4)四平:
x
危险截面位置,为强度计算提
供依据。
例1 求图示杆件1-1、2-2、3-3截面上的内力,并作出内力图
解: 1、求1-1截面上内力 FN1,设置截面如图
Fx 0
P
FN1 P 0
FN 1 P
P
2、2-2截面上的内力
Fx 0
P
FN 2 0
3、3-3截面上的内力 P
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆的A、B、C、D点分别作用着大小为5P、8P、 4P、 P 的力,方向如图,试画出杆的轴力图。
OA PA
B PB
C PC
D PD
FN1 A
x kxdx 1 kx2
0
2
FN ( x)max
1 kL2 2
2
三、轴向拉压时横截面上的应力
1、问题提出: P
PPBiblioteka P1)内力大小不能衡量构件强度的大小。
2)强度: ①内力在截面上分布集度应力; ②材料承受载荷的能力。
2、应力的概念
定义: 由外力引起的内力集度。单位面积上的内力。
工程构件,大多数情形下,内力并非均匀分布,集度的 定义不仅准确而且重要,因为“破坏”或“失效”往往从内 力集度最大处开始。
BC
D
PA
PB
PC
PD
解: 求OA 段内力FN1,设置截面如图
Fx 0 FN1 PA PB PC PD 0
FN1 5P 8P 4P P 0
FN1 2P
O
同理,求得 AB、BC、 CD段内力分 别为:
FN2= –3P FN3= 5P FN4= P
轴力图如右图
p
sin
s
cos
sin
1s
2
sin 2
s的正负号: 拉应力为正,压应力为负。 的正负号: 绕所保留的截面, 顺时针为正,
F
F
轴向拉伸,对应的力称为拉力。
F
F
轴向压缩,对应的力称为压力。
§2-2 轴向拉伸或压缩时横截面上的内力和应力
一、内力
外力作用时,横截面发生变化即变形,构件内部产生附 加的相互作用力以抵抗这种变形。这种附加的力称为内力。
指由外力作用所引起的、物体内相邻部分之间分布 内力系的合成(附加内力)。
二、截面法 ·轴力·轴力图
A
PA FN2
B
PB B
PB FN3
C
PC C
PC C
PC FN4
FN 2P
5P P
-3P
D PD
D PD
D PD D
PD
x
★轴力图的特点:
1)遇到集中力,轴力图发生突变; 2)突变值 = 集中载荷的大小
★轴力(图)的突变规律:
1)遇到向左的P, 轴力FN 向正方向突变;
自左向右: 2)遇到向右的P , 轴力FN 向负方向突变;
第二章 轴向拉伸与压缩
§2-1 轴向拉伸与压缩概念 §2-2 轴向拉压时横截面上的内力与应力 §2-3 直杆轴向拉压时斜截面上的应力
§2-1 轴向拉伸与压缩的概念和实例
1、轴向拉压的受力特点: 外力的合力作用线与杆的轴线重合。
2、轴向拉压的变形特点:
轴向拉伸: 轴向伸长,横向缩短。 轴向压缩: 轴向缩短,横向变粗。 3、力学模型
用内力代替抛掉部分对保留部分的作用,此时,内力成为保留 部分的外力。
保留部分在外力及内力共同作用下平衡,可建立平衡方程求 出内力各分量。
2、轴向拉压时的内力 ——轴力,用FN 表示。
例如: 截面法求N。
一截: P
A
P
二取: P
四平: Fx 0 P FN 0
FN 三代:
FN P
3. 轴力的正负规定:
§2–3 直杆轴向拉压时斜截面上的应力
一、斜截面上的内力
n
α
P
P
P 二、内力分布: 均匀分布
P
FN FN=P
Pa
FN
P
FN A
FN A
cos s cos
三、正应力、剪应力 s
P
α Pa
s p cos s cos 2
3、轴向拉(压)杆横截面上的应力
1)实验观察变形 加载前
ab cd
受载后 P
a´
b´
c´
d´
P
2)变形规律
A)ac→a′c′、bd→b′d′
原为平面的横截面在变形后仍为平面-----平面假设成立!
B)均匀材料、均匀变形,各纵向纤维相同变形。
3)静力关系 P
s
FN
s FN
A
x
公式说明
此公式对受压的情况也成立;
FN
FN
FN>0
N 与外法线同向,为正轴力(拉力)-
--产生拉伸变形内力为正;
FN
FN
FN<0
N与外法线反向,为负轴力(压力)--
-产生压缩变形内力为负.
4、 轴力图—— FN (x) ~x 的图象表示
意 义 1)反映出轴力与 P
截面位置变化关系,
A
P
较直观; 2、确定出最大轴力的数值及
FN
P
其所在横截面的位置,即确定
q
正应力的正负号规定:
sx
sx sx
sx
P
对变截面杆,当截面变化缓慢时,横截面上的 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重合;
圣维南原理
若用与外力系静力等 效的合力代替原力系, 则这种代替对构件内应 力与应变的影响只限于 原力系作用区域附近很 小的范围内。 对于杆件,此范围相当 于横向尺寸的1~1.5倍。
2
3
10KN
x
-20KN
[例3] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。
O x
O x
q(x)
L x q
FN
解:x 坐标向右为正,坐标原点在 自由端。
x位置上,用截面法,取左侧x 段 为对象,内力 FN(x) 为:
q(x)
FNx x
kL
–
kL2
FN ( x)
3)突变的数值等于集中力的大小;
5kN
8kN
3kN
FN 5KN
8kN
x
-3KN
训练1 作出下图杆件的轴力图
25KN
30KN
60KN 25KN
图1
1
40KN
2
3
30KN
20KN
1
2
3
图2
25KN
30KN
x
60KN 25KN
30KN
-30KN
1
40KN
-20KN
2
3
30KN
FN
20KN
1 FN 50KN
内力与外力的大小有关,外力大,内力大,大至一定程 度,材料发生破坏。因此,内力的计算是分析构件强度、刚 度、稳定性等问题的基础。求内力的一般方法是截面法。
1、 截面法求内力的基本步骤:
1)一截: 在所求内力的截面处,假想地用截面将杆件一分为二。
2)二取: 任取一部分,抛去另一部分。
3)三代: 4)四平:
x
危险截面位置,为强度计算提
供依据。
例1 求图示杆件1-1、2-2、3-3截面上的内力,并作出内力图
解: 1、求1-1截面上内力 FN1,设置截面如图
Fx 0
P
FN1 P 0
FN 1 P
P
2、2-2截面上的内力
Fx 0
P
FN 2 0
3、3-3截面上的内力 P
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆的A、B、C、D点分别作用着大小为5P、8P、 4P、 P 的力,方向如图,试画出杆的轴力图。
OA PA
B PB
C PC
D PD
FN1 A
x kxdx 1 kx2
0
2
FN ( x)max
1 kL2 2
2
三、轴向拉压时横截面上的应力
1、问题提出: P
PPBiblioteka P1)内力大小不能衡量构件强度的大小。
2)强度: ①内力在截面上分布集度应力; ②材料承受载荷的能力。
2、应力的概念
定义: 由外力引起的内力集度。单位面积上的内力。
工程构件,大多数情形下,内力并非均匀分布,集度的 定义不仅准确而且重要,因为“破坏”或“失效”往往从内 力集度最大处开始。
BC
D
PA
PB
PC
PD
解: 求OA 段内力FN1,设置截面如图
Fx 0 FN1 PA PB PC PD 0
FN1 5P 8P 4P P 0
FN1 2P
O
同理,求得 AB、BC、 CD段内力分 别为:
FN2= –3P FN3= 5P FN4= P
轴力图如右图
p
sin
s
cos
sin
1s
2
sin 2
s的正负号: 拉应力为正,压应力为负。 的正负号: 绕所保留的截面, 顺时针为正,
F
F
轴向拉伸,对应的力称为拉力。
F
F
轴向压缩,对应的力称为压力。
§2-2 轴向拉伸或压缩时横截面上的内力和应力
一、内力
外力作用时,横截面发生变化即变形,构件内部产生附 加的相互作用力以抵抗这种变形。这种附加的力称为内力。
指由外力作用所引起的、物体内相邻部分之间分布 内力系的合成(附加内力)。
二、截面法 ·轴力·轴力图
A
PA FN2
B
PB B
PB FN3
C
PC C
PC C
PC FN4
FN 2P
5P P
-3P
D PD
D PD
D PD D
PD
x
★轴力图的特点:
1)遇到集中力,轴力图发生突变; 2)突变值 = 集中载荷的大小
★轴力(图)的突变规律:
1)遇到向左的P, 轴力FN 向正方向突变;
自左向右: 2)遇到向右的P , 轴力FN 向负方向突变;
第二章 轴向拉伸与压缩
§2-1 轴向拉伸与压缩概念 §2-2 轴向拉压时横截面上的内力与应力 §2-3 直杆轴向拉压时斜截面上的应力
§2-1 轴向拉伸与压缩的概念和实例
1、轴向拉压的受力特点: 外力的合力作用线与杆的轴线重合。
2、轴向拉压的变形特点:
轴向拉伸: 轴向伸长,横向缩短。 轴向压缩: 轴向缩短,横向变粗。 3、力学模型
用内力代替抛掉部分对保留部分的作用,此时,内力成为保留 部分的外力。
保留部分在外力及内力共同作用下平衡,可建立平衡方程求 出内力各分量。
2、轴向拉压时的内力 ——轴力,用FN 表示。
例如: 截面法求N。
一截: P
A
P
二取: P
四平: Fx 0 P FN 0
FN 三代:
FN P
3. 轴力的正负规定: