北大2014高等代数部分试题解答思路
高等代数北大版第6章习题参考答案
高等代数(北大版)第6章习题参考答案第六章 线性空间1.设,N M ⊂证明:,MN M M N N==。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM∈。
又因,M N M ⊂ 故MN M=。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N ⊂所以MN N=。
2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。
证),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。
反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。
若x MNL M NL∈∈∈(),则x ,x 。
在前一情形X x MN∈,X ML ∈且,x MN ∈因而()(M L )。
,,N L x M N X ML M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
高等代数北大版习题参考答案
高等代数北大版习题参考答案The pony was revised in January 2021第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等代数北大版第章习题参考答案精修订
高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
2014北京高考数学圆锥曲线及解题技巧
2014北京高考数学圆锥曲线及解题技巧椭圆与双曲线的性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。
高等代数北大编-第1章习题参考答案
第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数北大版(第三版)答案
令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4
设
f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),
及
d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3
北京大学2014年高等代数与解析几何试题及解答
都乘以 −1 得到. 又 2014 = 2 × 19 × 53, 因此将 2014 表示为两个正整数的乘积只有 8 种不同的表示方法.
由抽屉原理知,
在
g(k)
的
8
个可能取值中至少有一个出现的次数大于等于
2013 8
ቤተ መጻሕፍቲ ባይዱ
>
251,
设这个数为
l,
则
有 (x − a1)(x − a2) . . . (x − a252) | g(x) − l, 其中 a1, a2, . . . , a252 为 {1, 2, . . . , 2013} 中互不相同的数. 因为
(1) 若线性变换 A 是正的,则 A 可逆;
(2) 若线性变换 B 是正的, A − B 是正的,则 B−1 − A−1 是正的;
(3) 对于正的线性变换 A, 总存在正的线性变换 B , 使得 A = B2.
7.
求单叶双曲面
x2 a2
+
y2 b2
−
z2 c2
=
1
的相互垂直的直母线的交点的轨迹.
4. (1) 线性变换的最小多项式整除它的零化多项式, 故 xn−1 不是 A 的零化多项式, 从而 An−1 ̸= O =⇒ ∃α ∈ V, 使得 An−1α ̸= 0. 此时将有 α, Aα, . . ., An−1α 线性无关, 结合 V 的维数为 n, 故得到 V 的一 组基.
(2) 设 AB = BA, Bα = k0α + k1Aα + · · · + kn−1An−1α. 令 f (x) = k0 + k1x + · · · + kn−1xn−1, 则
高等代数[北大版]第1章习题参考答案解析
WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。
1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。
解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。
1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。
1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。
)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。
北京大学高等代数高代II_2014期末2(1)
北京大学高等代数高代II_2014期末2(1)北京大学数学学院期末试题2013-2014学年第二学期考试科目高等代数II 考试时间 2014年6月12日姓名学号一.(20分)设α 1 , α 2 , α 3是矩阵A =100210101的列向量, 设P 是沿< α 1 > 向< α 2 , α 3 > 所作的投影变换, Q 是欧氏空间R 3向< α 2 , α 3 > 所作的正交投影变换. 求 P , Q 在R 3标准基下的矩阵. 二(18分)已知R 3上的双线性函数f ( α , β ) 在基底α 1 , α 2 , α 3 下的度量矩阵为310121011.1) 证明: f ( α , β ) 是R 3上的一个内积;2) 求内积 f 下的一组标准正交基β1 , β2 , β3 , 使得β1 = α 1 ;3) 求内积 f 下的正交变换A , 使得W = < α 1 > 是A 不变子空间,且A 在商空间 R 3 / W 上的诱导变换α + W A α + W 将α 2 + W 变到k α 3 + W , k > 0 . (写出A 在β1 , β2 , β3下的矩阵).三(12分)设A 是酉空间V 上的线性变换, 满足条件( A α , β ) = ( α , A β ), ? α , β ∈ V (A 称为Hermite 变换).1) 证明: A 在复数域上的特征值都是实数;2) 证明: 若W 是A-子空间, 则W ⊥也是A-子空间.四(20分)设 A 是Q-线性空间V 上的线性变换, 且A 在基底α 1 , α 2 , α 3 , α 4 下的矩阵为 A = .1) 求A 的特征多项式与最小多项式 ;2) 求V 的根子空间分解, 写出各个根子空间W i 的基底以及限制变换 A | W i 在此基底下的矩阵;3) 证明: 若线性变换B 与A 可交换, 则每个W i 也都是B -子空间.五(20分)设 A 是实线性空间V 上的线性变换, 且A 在基底α 1 , α 2 , α 3 , α 4 , α 5 下的矩阵为 A = .1) 求A 的最小多项式;2) 求A 的特征子空间(写出基底);3) 求V 的一组基, 使得A 在此基下的矩阵为Jordan 标准型.六 ( 10分) 判断对错. 正确的命题请给出证明, 错误的请举出反例.1) 设 A 是n 阶正交矩阵, α , β ∈ R n . 若α + i β是A 的复特征向量, 且α + i β的特征值不等于± 1, 则一定有( α , β ) = 0 ;2) 如果A , B 是正定矩阵, 则A B + BA 一定也是正定矩阵. -100031122020103110000010001010001010101 01。
高等代数北大编第1章习题参考答案
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
高等代数教案(北大版)高等代数试题以及解答
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。
2. 线性方程组的求解方法:高斯消元法、克莱姆法则。
3. 线性方程组的解的性质:唯一性、存在性。
4. 线性方程组在实际应用中的例子。
二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。
2. 矩阵的运算:加法、减法、数乘、矩阵乘法。
3. 矩阵的转置、共轭、伴随矩阵。
4. 矩阵的行列式、行列式的性质和计算方法。
三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。
2. 线性变换的定义,线性变换的矩阵表示。
3. 线性变换的性质:线性、单调性、可逆性。
4. 线性变换的应用:线性映射、线性变换在几何上的意义。
四、特征值与特征向量1. 特征值、特征向量的定义。
2. 矩阵的特征多项式、特征值和特征向量的计算方法。
3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。
4. 对称矩阵的特征值和特征向量。
五、二次型1. 二次型的定义,二次型的标准形。
2. 二次型的矩阵表示,矩阵的合同。
3. 二次型的性质:正定、负定、不定。
4. 二次型的判定方法,二次型的最小值和最大值。
六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。
2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。
3. 线性映射的表示方法,包括矩阵表示和坐标表示。
4. 线性映射的应用,如线性变换、线性映射在几何上的意义。
七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。
2. 特征值和特征向量的性质,如重数和线性无关性。
3. 对称矩阵的特征值和特征向量的性质和计算。
4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。
八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。
2. 二次型的矩阵表示,包括矩阵的合同和相似。
3. 二次型的性质,如正定、负定和不定。
(完整版)高等代数(北大版)第7章习题参考答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
北大2014高等代数部分试题解答思路
考察V 的标准基底{Eij } ,其中矩阵 Eij 在第 i 行、第 j 列处为 1,其它地方 为 0. 下面利用矩阵 Eij 来构造子空间W 的基底:
的形式。这需要一些技巧,主要是利用矩阵元素的乘法关系
本文由 SCIbird 编辑整理
5. 设V 是所有n 阶复矩阵所组成的向量空间,求所有形如 MN −NM 矩阵所组 成向量空间的维数。
记所有形如 MN −NM 型矩阵所组成向量空间为W ,则 dimW = n 2 −1 . 证明 的关键是利用迹公式tr (MN ) = tr (NM ) ,于是tr (MN −NM ) = 0 ,进而将问 题转化为对“迹零矩阵”的研究。
2. 如果 MNMN 为零矩阵,那么 NMNM 是否为零矩阵?说明理由。
结论是否定的, NMNM 不一定是零矩阵。质数同学给出了反例:
M = ⎛⎜⎜⎜⎜⎜⎜⎜⎝000
0 1 0
100⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟ , N = ⎛⎝⎜⎜⎜⎜⎜⎜⎜000
1 0 0
100⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟
直接验证可知 MNMN 为零矩阵,但 NMNM 不是零矩阵。
本文由 SCIbird 编辑整理
4. 设V 是n 维向量空间,线性变换 A 的最小多项式次数是n . (1) 证明:存在非零向量 α ,使得 α, Aα,L, An−1α 是V 的一组基; (2) 任何与 A 可交换的线性变换,均可表示成 A 的多项式。
证明的关键是“考虑非零向量 α 的最小多项式”。即考虑使得 pα (A)α = 0 的最小 多项式 pα (x) ,其中向量 α 是给定的。设线性变换 A 的最小多项式为m(x) ,类 似的证明可知 pα (x) 是m(x ) 的因式。于是当 α 遍历V 中所有非零向量时,只能 得到有限个 pα (x) ,不妨记作 p1(x ) ,L , pk (x ) . 定义
高等代数(北大版)第5章习题参考答案
第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。
1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++。
解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T , 且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。
2)已知()=321,,x x x f 23322221214422x x x x x x x ++++,由配方法可得()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=,且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。
高等代数教案(北大版)高等代数试题以及解答
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。
2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。
3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。
4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。
二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。
2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。
3. 了解逆矩阵的概念,并掌握逆矩阵的求法。
4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。
三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。
2. 掌握线性变换的概念,并了解线性变换的基本性质。
3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。
4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。
四、二次型1. 定义二次型,并了解二次型的基本性质。
2. 掌握二次型的标准形以及惯性定理。
3. 了解二次型的正定性以及其判定方法。
4. 通过例题讲解,让学生熟练掌握二次型的相关知识。
五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。
2. 掌握线性映射的概念,并了解线性映射的基本性质。
3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。
4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。
六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。
2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。
3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。
4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。
七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。
2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。
高等代数北大版第章习题参考答案
第七章 线性变换1.? 判别下面所定义的变换那些是线性的,那些不是:1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3)? 在P 3中,A),,(),,(233221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5)? 在P[x ]中,A )1()(+=x f x f ;6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。
8)? 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αkk A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数(北大第三版)习题答案完整
解出(ⅰ)当 u = 0时t + 3t − 3t + 4 = 0(t + 4)(t − t + 1)
3 2 2
1 ± 3¡ ± 3 ¡ t = −4或t = =e 2 ∴
(ⅱ)
π
当u ≠ 0时, 只有t 2 + t + 3 = 0,
t 1 =− t +1 3
t 3 + 3t 2 − (u + 3)t + (4 − u ) ⇒ u =
f ( x ) = x 5 , x0 = 1 :即 ∴ f ( x) = ( x − 1)5 + 5( x − 1) 4 + 10( x − 1)3 + 10( x − 1) 2 + 5( x − 1) + 1
当然也可以 f ( x) = x = [( x − 1) + 1]
5 5
= ( x − 1)5 + 5( x − 1) 4 + ⋅⋅⋅ + 1
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
t= − 1 ± − 11 2
P45、8 d ( x ) | f ( x ), d ( x ) | g ( x ) 表明 d ( x ) 是公因式 又已知: d ( x)是f ( x)与g ( x)的组合 所以 表明任何公因式整除 d ( x )
高等代数(北大版)第4章习题参考答案
第四章 矩阵1.设1)311212123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111210101B -⎛⎫ ⎪=- ⎪ ⎪⎝⎭2)111a b c A c b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111a c B b b c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭计算AB ,AB BA -。
解 1)622610812AB -⎛⎫ ⎪= ⎪⎪-⎝⎭ ,400410434BA ⎛⎫ ⎪= ⎪ ⎪⎝⎭222200442AB BA -⎛⎫ ⎪-= ⎪ ⎪--⎝⎭ 2)22222222223a b c a b c ac b AB a b cac b a b c a b c a b c ⎛⎫+++++⎪=+++++ ⎪ ⎪++++⎝⎭222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ⎛⎫+++++ ⎪=+++++ ⎪ ⎪+++++⎝⎭33()ij AB BA a ⨯-=, 其中11a b ac =-, 22212a a b c b ab c =++---, 221322a b ac a c =+-- 21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++--- 23132a c a =--, 32a c bc =-, 33a b ab =-2.计算22111)310012⎛⎫ ⎪⎪ ⎪⎝⎭5322)42⎛⎫ ⎪--⎝⎭113)01n⎛⎫ ⎪⎝⎭ cos sin 4)sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭()15)2,3,111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭,()112,3,11⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ ()1112132122313132336),,11a a a x x y a a a y a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2111111117)11111111---⎛⎫ ⎪---⎪ ⎪--- ⎪ ⎪---⎝⎭,1111111111111111n---⎛⎫⎪--- ⎪ ⎪--- ⎪ ⎪---⎝⎭108)0100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解 22117441)310943012334⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
高等代数(北大版)第3章习题参考答案
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-+=-⎪⎪-+--=⎨⎪-++-=⎪⎪++-+=-⎩ 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 1234234124234234433)31733x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+++=⎪⎪-++=-⎩ 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=⎪⎪-++=-⎩ 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=-⎪⎪-+-=⎩ 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩ 解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥→------⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦10210110010100321200021200200000200000000000000001110010000--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()()45rank A rank B ==<,所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪-+=⎩, 解得123451022x k x k x x k x k=+⎧⎪=⎪⎪=⎨⎪=⎪⎪=--⎩ 其中k 为任意常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 如果 MNMN 为零矩阵,那么 NMNM 是否为零矩阵?说明理由。
结论是否定的, NMNM 不一定是零矩阵。质数同学给出了反例:
M = ⎛⎜⎜⎜⎜⎜⎜⎜⎝000
0 1 0
100⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟ , N = ⎛⎝⎜⎜⎜⎜⎜⎜⎜000
1 0 0
100⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟
直接验证可知 MNMN 为零矩阵,但 NMNM 不是零矩阵。
的形式。这需要一些技巧,主要是利用矩阵元素的乘法关系
∑n
cij = aikbkj
k =1
由此观察到 Eij = EikEkj ,接下来的构造就自然了。需要说明的是W 的基底构造 方法不唯一。
6. 欧氏空间V 中,对称线性变换 A 称为是“正的”,若 ∀α ∈V 恒有 (α , Aα) ≥ 0
本文由 SCIbird 编辑整理
任取非零向量v ∈V ,存在多项式 f (x) ,使得v = f (A)α .所以 Bv = Bf (A)α = f (A)Bα = f (A)g(A)α = g(A)f (A)α = g(A)v
由v 的任意性可知 B = g(A) . 即任何与 A 可交换的线性变换,均可表示成 A 的 多项式。 评注:xida 在《高等代数葵花宝典》(考研攻略)中对 α, Aα,L, An−1α 这类“循 环类”问题进行了更详细的论述,推荐大家去看一看。
Vi = {α ∈V : pi (A)α = 0} 显然V ⊆V1 ∪L∪Vk .
但一个熟知的结论是,若V1,L,Vk 都是V 的真子空间,则V ⊆V1 ∪L∪Vk 不 成立。换句话说,有限个真子空间的并集不能覆盖住整个V . 于是必有某个下标 j 使得Vj =V ,此时 pj (x ) = m(x ) 且 max deg pα (x) = degm(x) .
Hale Waihona Puke PT(A−B
)P
=
diag{1−
λ 1
,L,1−
λ n
}
由A−B 的正定性可知1−λi > 0 ,即对角线上的元素都是正数。
不难证明 B−1 , A−1 都是对称矩阵,所以 B−1 −A−1 也是对称矩阵。又
PTAP = E , PTBP = Λ
所以
P A −1 −1(P−1)T
=E
, P B −1 −1(P−1)T
=
diag{1
/
λ 1
,L ,1
/
λ n
}
由此可知
P−1(B−1 −A−1)(P−1)T
= diag{λ1
−1,L ,
1 λ
−1}
1
n
对角线上元素都是正数,故 B−1 −A−1 是正定矩阵。
第(3)问的证明实质是对角线开平方。证明方法与上面大同小异。实对称矩阵A 可
相似对角化,即存在正交矩阵P ,使得
客观评价,2014 年的北大高代试题难度高于去年,但陈题居多。第 5 题和 第 6 题是典型的陈题,第 4 题算是陈题翻新,换个说法。个人感觉除了第 6 题 外,其余 5 题还是很有看头的
(1) 用反证法。假设任取非零向量 α ,向量组 α, Aα,L, An−1α 都是线性相关的。 则所有非零向量 α 对应最小多项式 pα (x) 次数都不超过 n −1,这与线性变换 A 的最小多项式次数是n 的条件矛盾。
(2)前面证明了存在非零向量 α ,使得 α, Aα,L, An−1α 是V 的一组基。所以任取 非零向量v ∈V ,存在多项式 f (x) ,使得v = f (A)α . 任取线性变换 B ,满足 AB = BA . 则存在多项式g(x) ,使得 Bα = g(A)α . 我们只需证明 B = g(A) .
无关的。这就证明了 dimW = n 2 −1.
评注:本题有一定的难度。首先,不难将问题转化为对“迹零矩阵”的研究 U = {A ∈V :tr (A) = 0}
容易证明 dimU = n 2 −1 ,比如构造基底 Eij ( i ≠ j )和 E11 −Emm (m = 2 , 3,L, n )
这n 2 −1个迹零矩阵都是线性无关的。关键是证明上述矩阵都能表示成 MN −NM
3. 除了单位矩阵为,是否存在其它n 阶埃尔米特矩阵 M ,满足: 4M 5 + 2M 3 + M = 7En
结论是不存在。证明的关键利用了如下结论:埃尔米特矩阵 M 的最小多项式 m(x) 的根都是实根。令 f (x ) = 4x 5 + 2x 3 +x − 7 ,则 f (1) = 0 . 容易证明
本文由 SCIbird 编辑整理
4. 设V 是n 维向量空间,线性变换 A 的最小多项式次数是n . (1) 证明:存在非零向量 α ,使得 α, Aα,L, An−1α 是V 的一组基; (2) 任何与 A 可交换的线性变换,均可表示成 A 的多项式。
证明的关键是“考虑非零向量 α 的最小多项式”。即考虑使得 pα (A)α = 0 的最小 多项式 pα (x) ,其中向量 α 是给定的。设线性变换 A 的最小多项式为m(x) ,类 似的证明可知 pα (x) 是m(x ) 的因式。于是当 α 遍历V 中所有非零向量时,只能 得到有限个 pα (x) ,不妨记作 p1(x ) ,L , pk (x ) . 定义
本文由 SCIbird 编辑整理
北大 2014 高等代数部分试题解答思路
SCIbird
1. 令
∏2013
f (x ) = (x −i)2 + 2014
i =1
问多项式 f (x) 是否在有理域内可约?说明理由。
猜想 f (x) 不可约,但不会证明。最初发现 2014 = 2×19×53 ,进而试图证明 f (x) 除最高项外,所有系数都是偶数,然后取 p = 2 应用爱森斯坦判别法。但发现这 个猜想不成立,因为这意味着 f (1) 是奇数,但 f (1) = 2014 是偶数。多次尝试没有 成功,放弃。感觉就难度而言,这道题不应该放到第一位。
本文由 SCIbird 编辑整理
5. 设V 是所有n 阶复矩阵所组成的向量空间,求所有形如 MN −NM 矩阵所组 成向量空间的维数。
记所有形如 MN −NM 型矩阵所组成向量空间为W ,则 dimW = n 2 −1 . 证明 的关键是利用迹公式tr (MN ) = tr (NM ) ,于是tr (MN −NM ) = 0 ,进而将问 题转化为对“迹零矩阵”的研究。
令U = {A ∈V :tr (A) = 0},则U 是V 的子空间(真子集),故 dimU ≤ n 2 −1. 利用迹公式tr (MN −NM ) = 0 可知W ⊂U ,所以 dimW ≤ n 2 −1.
考察V 的标准基底{Eij } ,其中矩阵 Eij 在第 i 行、第 j 列处为 1,其它地方 为 0. 下面利用矩阵 Eij 来构造子空间W 的基底:
成立,且等号当且仅当 α = 0 时成立。 (1) 证明线性变换 A 是正的,则 A 可逆; (2) 证明若线性变换 B 是正的, A − B 也是正的,则 B−1 −A−1 也是正的; (3) 证明若线性变换 A 是正的,则存在正的线性变换 B ,满足 A = B2 .
为叙述方便,直接将线性变换 A 视作方阵A . 题中说明A 是对称矩阵,所以A 的 特征值都是实数。没明白命题时为什么故弄玄虚,“正的”不就是正定性吗?几 个小问都是常见结论。
直接计算表明,当i ≠ j 时,恒有 Eij = EikEkj −EkjEik
于是满足i ≠ j 的 Eij 有n 2 −n 个。 另一方面,当m = 2 , 3,L, n 时,有 E11 −Emm = E1mEm1 −Em1E1m
这样的 E11 −Emm 有 n −1个。 上述的 Eij ( i ≠ j )和 E11 −Emm ( m = 2 , 3,L, n )共 n 2 −1个,且它们是线性
为证明第(1)问,只需证明A 的特征值都是正数即可。
为证明第(2)问需要用到这样一个结论:
设A 与 B 为n 阶实对称矩阵且A 是正定矩阵,则存在可逆矩阵 P 使得
PTAP
=
E
,
PT
BP
=
diag{λ1
,L,
λ n
}
(对角矩阵)。
北大在 2012 年考过这道题,证明见龙凤呈祥同学的解答。
前面已经证明了A 与 B 的特征值都是正数,所以由上面的结论可知
f ′(x) = 20x 4 + 6x 2 +1> 0 这说明 f (x) 是严格单调递增的,故 f (x) 有惟一的单实根x =1,因此
m(x) = x −1. 故 M = En .
评注:本题有些分析味道,利用了函数单调性。证明 f ′(x) = 20x 4 + 6x 2 +1> 0 可
利用判别式法。
P−1AP = ⎛⎜⎜⎜⎜⎜⎜⎜⎝λ1
O
λ n
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟
构造矩阵
本文由 SCIbird 编辑整理
B = P ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ 1
O
可以验证矩阵 B 满足题意。
λ n
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟P
−1
评注:本题是陈年老题,没有什么新意。需要注意的是,验证是正定矩阵性时, 首先要验证对称性,这一步不要忘记。