圆周运动等效重力场问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动等效重力场问题(找等效最高点、最低点问题)
等效重力场:重力场、电场等叠加而成的复合场;等效重力:重力、电场力的合力 处理思路:①受力分析,计算等效重力(重力与电场力的合力)的大小和方向
②在复合场中找出等效最低点、最高点。最高、低点:T 与等效重力共线 ③根据圆周运动供需平衡结合动能定理列方程处理
例1:光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为
mg 3
3
,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v 及运动过程中的最大拉力 变式1:如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,
其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且
.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,
在轨道的内侧运动。(g=10m/s2)求:
(1)它到达C 点时的速度是多大 (2)它到达C 点时对轨道压力是多大 (3)小球所能获得的最大动能是多少
例2:在水平方向的匀强电场中,用长为3L 的轻质绝缘细线悬挂一质量为m 的带电小球,小球静止在A 处,悬线与竖直方向成300
角,现将小球拉至B 点,使悬线水平,并由静止释放,求小球运动到最低点D 时的速度大小 变式2:质量为的m 小球连在穿过光滑水平面上的小孔的绳子末端,使小球在平面内绕O 点做半径为a 圆周运动,线速度为v (1)求此时绳子上的拉力
(2)若将绳子瞬间放松后又拉直,将做半径为b 的圆周运动,求放松时间 (3)小球做半径为b 的圆周运动时绳子的拉力
练习1:如图所示,在沿水平方向的匀强电场中有一固定点 O ,用一根长度m L 40.0=的绝缘细绳把质量为kg m 10.0=、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为
37=θ。现将小球拉至位置A
⑴小球通过最低点C 时的速度的大小; ⑵小球通在摆动过程中细线对小球的最大拉力 练习
2:始下滑,进入水平向右的匀强电场中,沿轨道
ABC 运动后进入圆环内做圆周运动,已知小球受到的电场力是其重力的
4
3,圆环的半径为R ,小球得质量为kg m 1.0=,斜面的倾角为
45=θ,R S BC 2=,若使小球在圆环内能做完整的圆周运动,h 至少是多少
练习3:如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。整个装
A E
B
置处于场强为E 、方向水平向右的匀强电场中。现有一质量为m 的带正电,电量为E
mg
q 33=
小球,要使小球能安全通过圆轨道,在O 点的初速度应为多大
圆周运动等效重力场问题(找等效最高点、最低点问题)
等效重力场:重力场、电场等叠加而成的复合场;等效重力:重力、电场力的合力 处理思路:①受力分析,计算等效重力(重力与电场力的合力)的大小和方向
②在复合场中找出等效最低点、最高点。最高、低点:T 与等效重力共线 ③根据圆周运动供需平衡结合动能定理列方程处理 变式1: 解:(1)、(2)设:小球在C 点的速度大小是V c ,对轨道的压力大小为N C ,则对于小球由A →C 的过程中,应用动能定律列出:
02
1
2.2-=
-C mV mgR R qE …………………① 在C 点的圆轨道径向应用牛顿第二定律,有:R
V m qE N C C 2
=-……②
解得:s m gR m
qER
V C /224=-=
………③ N mg qE N C 325=-=…………………………④
(3)∵mg=qE=1N ∴合场的方向垂直于B 、C 点的连线BC ,从B 到D 由动能定理
)45cos 1(.)45sin 1(min ︒-+︒+===R mg qER Ep Ep E D KM J 5
2
=
…………⑥ 例2: 解:电场力F=mgtg300
=
3
3mg,F 合=2
2)(F mg +=332mg 与T 反向
从B 到C 小球在等效场力作用下做初速度为零的匀加速直线运动, S=3L 从B 到C 由动能定理:
22
1
3332mvc l mg = V CY 在绳子拉力作用下,瞬时减小为零,只剩V CX =V C sin600
=gL 3 从C 到D 运用动能定理: ︒+︒-30sin 333)30cos 1(3l mg l mg =21m V D 2--2
1m V CX 2
V D =gL )132(+ 变式2:
(1)小球做半径为a 的圆周运动,则T=a v m 2
(2)由几何关系,S=vt b a =+22,得t=
v
b a 2
2+ (3)绳子拉紧瞬间径向速度立即消失,小球只剩切向速度b va v =
',则2
2
2b v ma T =' 练习1:⑴等效重力F 合=
mg mg 4
5
37cos =︒,电场力mg Eq 43=方向:与竖直方向的夹角
37
A
Y
E
从A 到C ,由动能定理221
43C
mv mgl mgl =
-代入数值得4.12≈=C v m/s (2)当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为T ,则
由圆周运动:l
mv mg T 2
45=-,从A 到B 由动能定理:221)37sin 1(4337cos mvB mgl mgl =︒--︒
联立得25.2=T N
练习2:等效重力F 合=mg 4
5
,与竖直方向夹角4
3
tan =
θ,即︒=37θ, 设圆环上的D 点成为等效重力场中的最高点,要想小球在圆环内完成圆周运动,则小球通过D 点的速度的最小值为 R g v '=
' ①
小球由A 点运动到D 点,由动能定理得
22
1
)sin 2(43)cos (v m R R h mg R R h mg '=++-
--θθ ② 代入数值,由①②两式解得R R h 5.17)25.35.12(≈+=
练习3:
大小应为等效重力方向上直径对应的点B ,则B R
B
据动
能定理:2
22
1212mv mv R g m B -=
'- 解得:3
3100gR v =