微积分期末测试题及答案
北京理工大学微积分a期末试题及答案
北京理工大学微积分a期末试题及答案一、选择题(每题5分,共30分)1. 若函数f(x)=x^2-4x+c,且f(2)=0,则c的值为多少?A. 0B. 2C. 4D. 6答案:C2. 极限lim(x→0) (sin x/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 设函数f(x)=3x^3-2x^2+5x-7,其导数f'(x)为:A. 9x^2-4x+5B. 3x^2-4x+5C. 9x^2-4xD. 3x^2+5x-7答案:A4. 曲线y=x^3在点(1,1)处的切线方程为:A. y=3x-2B. y=3xC. y=xD. y=3x+2答案:B5. 定积分∫(0到1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1/4答案:B6. 微分方程dy/dx+y=0的通解为:A. y=e^(-x)B. y=e^xC. y=e^(-2x)D. y=e^(2x)答案:A二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x,其在x=1处的导数为______。
答案:02. 设函数f(x)=x^2+3x+2,其在x=-1处的定积分值为______。
答案:13. 函数y=ln(x)的导数为______。
答案:1/x4. 微分方程dy/dx-2y=0的通解为______。
答案:y=e^(2x)三、计算题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
通过二阶导数测试或分析f'(x)的符号变化,可得x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(1到2) (x^3-2x+1) dx。
答案:首先求出被积函数的原函数F(x)=1/4x^4-x^2+x,然后计算F(2)-F(1)=5/4-2+2-1/4+1=1。
微积分期末考试试题及答案
微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
《微积分》课程期末考试试卷(B)及参考答案
二.
单项选择题 (每题 2 分,共 12 分) 2. A 3. B 4. A 5. C 6C .
1. B 三. 1. 2.
求偏导数 (每题 6 分,共 24 分)
z 1 z 1 ; (6 分) ; x x y y z x 2z x 2y ln x y (6分) (3 分) ; 2 x x y x ( x y) 2 y x2 y2
六、求方程 y
y 1 的通解.(6 分) x
七、判别级数 2 n sin
n 1
33
的收敛性.(6 分)
《微积分》课程期末考试试卷(B)参考答案 一. 填空题. (每题 3 分,共 36 分) 1. x y 2 x y 2 2. 0 3. 2 4. 1 5. 1,1,2 6. x, y x y 2 0 7. 1 8. 2 9. e xy y 2 xy dx e xy x x 2 dy 10. 1 11. 发散 12. 10
1 1 ,则 f ( ,0) ______. cos xy 2
3. y '' ( y ' ) 3 2 xy 是______阶微分方程. 4. 方程 F ( x, y, y ' ) 0 的通解中含______个任意常数. 5. 点 (1,1,2) 关于 xoy 平面的对称点是______. 6. 函数 Z lnx y 2 的定义域是______. 7. 设 f ( x, y ) x 2 y 2 ,则 f x1 2,0 ______. 8. 设 f x, y x 2 y 2 ,则 f y1 1,1 ______. 9. 设 Z e xy yx 2 ,则 dz ______. 10. 11. 12. 设积分区域 D : 1 x 2,2 y 3 ,则 d ______.
【精选资料】微积分期末复习题及答案
数三《微积分》期末复习题一、选择题1. 对于xy x y x f +=2),(,原点(0,0)( C ).(A ) 不是驻点 (B ) 是极大值点 (C ) 是驻点却不是极值点 (D ) 是极小值点 2.下列积分值为0的是___C_A. ⎰+∞+0211dx x ; B. ⎰-1121dx x(利用几何意义去判定); C. 22sin (cos cos )1x x x dx xππ-++⎰; D. ⎰--1121dx x . 解:2arctan 11002π==+∞++∞⎰x dx x C :考察奇偶函数在对称区间上的积分D :利用几何意义:此积分可以看成函数012≥-=x y 在(-1,1)上的面积。
0,11222≥=+⇒-=y y x x y ,即是上半圆的面积2π3. 二元函数2222222,0(,)00,xy x y x y f x y x y ⎧+≠⎪+=⎨+=⎪⎩在点(0,0)处( B ). A. 连续,偏导数存在; B. 不连续,偏导数存在; C. 连续,偏导数不存在; D. 不连续,偏导数不存在. 4. 下列级数收敛的是___D____.A . 21+151n n n n ∞=++∑ B. ∑∞=+11n n n n )(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n nD. ∑∞=1!n n n n . 5 . 级数113cos ()n nn n ∞=-∑( B ). (A )条件收敛 (B ) 绝对收敛 (C ) 发散 (D ) 敛散性不能判定解:11333cos cos ()()nn n n n n -=≤,而113()nn ∞=∑收敛,所以绝对收敛。
6 设)(x f 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则'(2)_____.F =(A) )(2f ; (B) )(22f ; (C) )(2f -; (D) 0. 解:对⎰⎰=tt ydx x f dy t F 1)()(交换积分次序得⎰⎰⎰-==tt x dx x x f dy x f dx t F 111)1)(()()(所以),1)(()(-='t t f t F'(2)(2).F f = 所以选A二、填空题1、若D 为区域2218x y ≤+≤,则3Ddxdy ⎰⎰=( 21π )=⎰⎰Ddxdy 3πππ21)8(33=-=⋅D S2、函数()y zf x=,其中f 可微,则.))((2x y x y f x z -'=∂∂3. 若ln 21()x xF x t dt =⎰,则()F x '=___2411ln x x x +________.所以本题的答案为24ln x x x+4. 已知22(,)y f x y x y xy x+=+-,则222)1()1(),(y y y x y x f ++-=__________.解:令vuv y v u x x y v y x u +=+=⇒=+=11,, 所以22211)()(),(v v v u v u f ++-=,222)1()1(),(y y y x y x f ++-= 5 设arctanxz y =,则=),(|11dz 1122dz dx dy =- . 本题考查全微分,求全微分实质就是两个偏导数z x y ∂∂∂,然后再利用z zdz dx dy x y∂∂=+∂∂ 本题:2222222111(),()1()1()zy z x xx x xy x y y y x y y y∂∂=⋅==⋅-=-∂+∂+++ 在点(1,1)处,有11,22z z x y ∂∂==-∂∂,所以1122dz dx dy =-6.若级数为1111,357-+-+ 则它的一般项__121)1(1--=-n u n n _______.7. 交换积分次序()⎰⎰12xxdy y x f dx ,=1(,)ydy f x y dx ⎰.8. 定积分4121cos ()xx x x dx e -⋅+=⎰______32______. 考查定积分的奇偶性,三、计算题1.求极限(,)limx y →.解:(,)(,)(,)limlimlimx y x y x y →→→==(,)(0,0)lim 1)2x y →==2. 已知方程),(x yxy f x z 3=,f 具有二阶连续偏导数,求222,,,z z z z x y y x y∂∂∂∂∂∂∂∂∂. 分析:本题考察复合函数求导,特别要注意在求二阶偏导数时要注意11(,)yf f xy x''=,22(,)yf f xy x''=。
《微积分》期末考试试卷附答案
《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
微积分期末试卷附详细标准答案2
一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。
<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。
微积分复习试题及答案10套(大学期末复习资料)
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
微积分期末试题及答案
微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。
A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。
A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。
A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。
A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。
答案:1/x2. 函数y=e^x的原函数是______。
答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。
答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。
答案:x=25. 定积分∫(0 to 2) x dx的值是______。
答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。
答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。
将x=3代入原函数,得到极小值点为(3,-1)。
2. 求定积分∫(0 to 3) (x^2-2x+1)dx。
答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。
3. 求曲线y=x^3在点(1,1)处的切线方程。
答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。
四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。
大一微积分期末试题附答案
微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。
《微积分I》期末模拟考题(参考答案,小字)
模拟卷一:一、选择题(每小题4分,共20分)1、设()(1)(2)(3)f x x x x x =+++,则()f x '与()f x ''的零点个数分别为( B )A 、4个;3个B 、3个;2个;C 、2个;1个;D 、1个;0个 2、设1()1xf x dx C x+=+-⎰,则()f x =( B ) A 、22(1)x -- B 、22(1)x - C 、22(1)x x -- D、22(1)xx - 3、下列等式错误的是( D ) A 、()()()f x dx f x '=⎰ B 、()()f x dx f x C '=+⎰C 、()(2)(2)f x dx f x '=⎰ D 、(2)(2)f x dx f x C '=+⎰4、曲线 ln xy x=( D ) A、没有渐近线 B、只有一条水平渐近线C、只有一条垂直渐近线 D、即有水平渐近线又有垂直渐近线5*、设()f x dx C =⎰,则2()xf x dx =⎰( A )A 、1sin 2x C + B 、12C C 、21sin 2C D 、21sin 2x C +二、填空题(每小题4分,共20分)1、函数()arctan f x x =在[]0,1上满足拉格朗日中值定理的点ξ=2211(1)(0)(),()arctan1,11104f f f x f x πξξξ-''======++-解:2、设()f x 的一个原函数为xe -,则()f x dx =⎰xe -+C ,()f x dx '=⎰-xe -+C . 3、2211d()d()1d ln ||.()()x a x a x x a C x a x a x a x a x a ⎛⎫+++=+=--+ ⎪+++++⎝⎭⎰⎰⎰.5、99(23)x dx +=⎰1001(23)200x C ++. 三、求极限(每小题5分,共15分)1、20sin 1lim sin x x e x x →--=2000sin 1cos sin 1lim lim lim .222x x x x x x e x e x e x x x →→→---+===2、0000cos ln sin sin sin lim lim lim lim 1.cos ln sin sin sin x x x x a ax a aax ax ax ax b ax bb bx bx bx bx+→→→→==== (a 、b >0)3、求 10lim 2xxxx a b →⎛⎫+ ⎪⎝⎭,其中0,0,a b a b >>≠。
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
微积分期末试题及答案
微积分期末试题及答案一、选择题1.微积分的概念是由谁提出的?A.牛顿B.莱布尼茨C.高斯D.欧拉答案:B2.一个物体在 t 秒后的位移函数为 s(t) = 4t^3 - 2t^2 + 5t + 1。
求该物体在 t = 2 秒时的速度。
A.10B.23C.35D.49答案:C3.定义在[a,b]上的函数 f(x) 满足f(x) ≥ 0,对于任意 x ∈ [a,b] 都有∫[a,b] f(x) dx = 0,则 f(x) =A.常数函数B.0C.连续函数D.不满足条件,不存在这样的函数答案:B4.若函数 f 在区间 [a,b] 上连续,则在区间内至少存在一个数 c,使得A.∫[a,b] f(x) dx = 0B.∫[a,b] f(x) dx = f(c)C.∫[a,b] f'(x) dx = f(b) - f(a)D.∫[a,b] f(x) dx = F(b) - F(a),其中 F 为 f 的不定积分答案:D5.已知函数 f(x) = x^2,求在点 x = 2 处的切线方程。
A.y = 2x - 2B.y = 2x + 2C.y = -2x + 2D.y = -2x - 2答案:A二、计算题1.计算∫(2x - 1) dx。
解:∫(2x - 1) dx = x^2 - x + C。
2.计算极限lim(x→∞) (3x^2 - 4x + 2)。
解:lim(x→∞) (3x^2 - 4x + 2) = ∞。
3.计算导数 dy/dx,其中 y = 5x^3 - 2x^2 + 7x - 1。
解:dy/dx = 15x^2 - 4x + 7。
4.计算函数 f(x) = x^3 + 2x^2 - 5x + 3 的驻点。
解:驻点为 f'(x) = 0 的解。
f'(x) = 3x^2 + 4x - 5 = 0,解得 x = -1 或 x = 5/3。
5.计算定积分∫[0,π/2] sin(x) dx。
微积分期末测试题及答案
微积分期末测试题及答案 Prepared on 22 November 2020一 单项选择题(每小题3分,共15分)1.设lim ()x af x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对2.设f (x )在点x =a 处可导,那么0()(2)limh f a h f a h h→+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ).①(-1,1) ②,22ππ⎡⎤-⎢⎥⎣⎦③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在5.已知0lim ()0x x f x →=及( ),则0lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时③仅当0lim ()0x x g x →=时 ④仅当0lim ()x x g x →存在时 二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+. 31lim(1)x x x+→∞+=.3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________.三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1x x x →-- 2.t t x e y te ⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x→+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续. 答案一 单项选择题(每小题3分,共15分)1.④2.①3.④4.③5.②二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+ . 2.31lim(1)x x x+→∞+= __e_.3.()f x =那么左导数(0)f -'=__-1__,右导数(0)f +'=__1__.三 计算题(1-4题各5分,5-6题各10分,共40分)2.t t x e y te⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx. 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x →+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 单项选择题(每小题3分,共15分) 1.设lim ()x af x k →=,那么点x =a 是f (x )的( ).①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)limh f a h f a h h→+--=( ).①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ⎡⎤-⎢⎥⎣⎦ ③(0,+∞) ④(-∞,+∞) 4.设2()()lim1()x af x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0lim ()()0x x f x g x →=.①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0lim ()x x g x →存在时二 填空题(每小题5分,共15分)1.sin limsin x x xx x→∞-=+____________.2.31lim(1)x x x+→∞+=____________.3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1x x x →-- 2.t tx e y te⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d ydx.4.由方程0x yexy +-=确定隐函数y =f (x ) ,求dy dx. 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b .四 证明题(每小题10分,共30分) 1.设f (x )在(-∞,+∞)上连续,且()()limlim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x →+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续.答案一 单项选择题(每小题3分,共15分) 1.④ 2.① 3.④ 4.③ 5.②二 填空题(每小题5分,共15分)1.sin limsin x x xx x→∞-=+__1_ .2.31lim(1)x x x+→∞+= __e_.3.()f x =那么左导数(0)f -'=__-1__,右导数(0)f +'=__1__. 三 计算题(1-4题各5分,5-6题各10分,共40分)111111111,lim()ln 11111(1)ln 1:lim()lim lim lim (1)ln 1(1)ln ln 1ln 1lim ln 11x x x x x x x x x x x x x x x x x x x x x xx →→→→→→-------===----+-==∞+-解2.t tx e y te ⎧=⎨=⎩,求22d y dx 221()(1)()1t t t tdy dy dt e te t dx dt dx e d dy d y dt dx dx dx e dt=⋅=+⋅=+==解:3.ln(y x =,求dy 和22d ydx.22:ln((),122dy d x x dx d dx d y d x dx dx ==+=+====-=解4.由方程0x ye xy +-=确定隐函数y =f (x ) ,求dydx. :()0,(),x y x y x y x yx yd e xy de dxy e dx dy ydx xdy dy y e dx e x+++++-==+=+-=-解方程两边求微分得即所以5.设1111,11n n n x x x x --==++,求lim n x x →∞.21111111111111(1)1)11(1)(1)0,(1)(1)(1)(1)12,1lim n k k k k k k k k k k k k k k n k k k k n n n n x x x n k x x x xn k x x x x x x x x x x x x x x x x x x x --+-------->=>=+-=+-++++-+-==>++++=+≤+证明: 先证{}单调增加.显然,设时成立,即,当时,(所以{}单调增加;显然所以由单调增加有界数列必有极限得{}收敛.令010000lim ,lim lim(1)111lim 111,().122nnn n n n n n n nn x x x a x x x a a a a a →+→→→→==+=+++=+==+则即 得6.lim(32x x →∞=,求常数a ,b.:0,lim(3lim 293,90,2,9, 3.x x x x a x x ax b xa ab b→∞→∞→∞>-====---+-====--解显然所以得 四 证明题(每小题10分,共30分) 1.设f (x )在(-∞,+∞)上连续,且()()limlim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .():lim0,1,0,,(),(),(1)()(1)0,,()0,()0.0,()0.()(,),[,],()()[,](x f x X x X xf x x f x x xx f x x x b X x b f x x f b a f a f x a b F x f x x a b F εεεεεε→+∞=<>><-<<-+<-<-<>≥-<<<>-∞+∞=-证明因为所以对0<存在使得当时有成立即故取所以当时有特别的同理可得存在使得而在上连续所以在闭区间连续从而在上连续,而)0,()0,()(,),()()0.a Fb F f ξξξξ<>∈-∞+∞=+=所以由闭区间上连续函数性质零点存在定理得存在使得2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim0x f x x →+∞=. 121212222:()(,)(),,,(,),()().,(,),()().()()()()lim0,lim 0,lim 0.,0,()()x x x f x a f x M x x a f x f x M x x b a x a f x f b M x b f b f x f x f b x x x x b f x f b x ε→+∞→+∞→+∞'+∞≤∈+∞-≤->∈+∞-≤--===>>-证明因为在区间满足所以满足李普希兹条件即:对任意的有令则有成立我们知故要证只需证时对任意给定的要使222222()()222,max{,},()(),()()lim 0,.x f x f b M x b Mx Mb M x x x x M Mx X b f x f b x X x f x f b x εεεε→+∞--+=≤≤<<>=-><-=只需即可令则当时成立即所以得证3.证明函数1sin y x =在(c ,1)内一致连续,但在(0,1)内非一致连续.000000002000220200:0,0,111111sinsin 2cos()sin()22222cos()sin()2,222,,0,0,,111sin sin ,sin (,1)(0)c x x x x x x x x x x x x x x x x xx xx xx cx x c c c x x y c c x x xεεεδεεδεδε<<>-=+--+--=≤<<-<=>=>-<-<=>证明设<1,对任意的要使只需令所以 对任意的存在当时有成立故上是在一致连续的.22211,,,222211sin sin 1(1)20,()4420,,,11sinsin nnn n nn n n n nx x n n n x x x x n n x x x x πππππππεδδε'''==+--=--=''''''-=→→∞-'''>-<-<'''为正整数所以对小于的任意不能找到一致连续定义中的使得当时。