工程数学形成性考核册作业2、4

合集下载

国家开放大学工程数学(本)形成性考核作业一、二、三

国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。

国家开放大学工程数学(本)形成性考核作业一、二、三

国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。

工程数学形成性考核册答案_带题目[1]

工程数学形成性考核册答案_带题目[1]

【工程数学】形成性考核册答案工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ). A. 4 B. -4 C. 6 D. -6⒉若000100002001001a a =,则a=(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A B A B +=+---111B. ()A B B A--=11C. ()A B A B +=+---111D. ()A B A B---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. k A k A = D. -=-k Ak An() ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则A B 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ). A.A ≠0 B.A ≠0 C. A *≠0 D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()A C B '=-1(D ). A. ()'---BA C 111B. '--B C A 11C. A C B ---'111() D. ()BC A---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A A B B +=++2222 B. ()A B B B A B +=+2C. ()221111A B C C B A ----= D. ()22A B C C B A '=''' (二)填空题(每小题2分,共20分)⒈21140001---= 7 . ⒉---11111111x 是关于x的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积A C B ''有意义,则C 为 5×4 矩阵. ⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且AB ==-3,则-=2A B 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 . ⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷AB +5;⑸A B ;⑹()A BC '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求A C B C +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B-= ∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出4阶行列式1020143602533110-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证AA +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ AA +'是对称矩阵 ⒏若A 是n 阶方阵,且A AI '=,试证A =1或-1. 证明: A 是n 阶方阵,且A AI '= 12==='='I A A A A AA =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1)()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ). A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1 ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A=秩()A -1 ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,, s线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s的秩与矩阵[]ααα12,,, s的秩 相同 . ⒎设线性方程组A X =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组A X b =有解,X 0是它的一个特解,且A X =0的基础解系为X X 12,,则A X b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x xx x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解 当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中 βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解 β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,, 解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x xx x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=Aξξλλξξξξ=====----1111)()()(A A A A A A Iξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈AB ,为两个事件,则( B )成立. A. ()A B B A +-= B. ()A B B A +-⊂ C. ()A B B A -+= D. ()A B B A -+⊂⒉如果( C )成立,则事件A 与B 互为对立事件.A. A B =∅B. A B U= C. A B =∅且A B U = D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件AB ,,命题(C )是正确的.A. 如果A B ,互不相容,则AB ,互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则AB ,对立D. 如果A B ,相容,则AB ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2 7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b ab ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. x f x x ab()d ⎰ C.f xx a b()d ⎰ D. f x x()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()s i n ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪020π其它 C. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()s i n,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. Fxx a b()d ⎰ C. fa fb ()()- D. f xx ab()d ⎰ 10.设X 为随机变量,E XD X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμB. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2. 2.已知P AP B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P A B (= 0.3 . 3.A B ,为两个事件,且BA ⊂,则P A B ()+=()A P . 4. 已知P A B P A B P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P AP B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()=0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)XY 的 协方差 . (三)解答题 1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生. 解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-== P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为012345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X(),(). 解:32322)()(1031==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X XX n 12,,, 是独立同分布的随机变量,已知E XD X (),()112==μσ,设X n X i i n==∑11,求E X D X (),(). 解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D n X X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1 B. x 1+μ C. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. m a x {,,}xxx 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量n x U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为fx x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-nsx n sx λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。

【第4次】2022年国家开放大学工程数学第4次作业及答案

【第4次】2022年国家开放大学工程数学第4次作业及答案

工程数学(本)形成性考核作业4综合练习书面作业(线性代数部分)一、解答题(每小题10分,共80分)1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 解:[]121012101032 130101110111A I -⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 13211A --⎡⎤=⎢⎥-⎣⎦11232311110X BA --⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦548532-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '= 解:[]012100114010114010,114 010012100012100211001211001037021A I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦114010012100001321⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦1101274010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦100532010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 1532742321A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦1532237421532136X A B ---⎡⎤⎡⎤⎢⎥⎢⎥'==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦131********-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦. 解:AX IX B -=()A I X B -=[]3510,5801A I I ⎡⎤-=⎢⎥⎣⎦35101221⎡⎤→⎢⎥---⎣⎦12213510---⎡⎤→⎢⎥⎣⎦12210153---⎡⎤→⎢⎥--⎣⎦12210153-⎡⎤→⎢⎥-⎣⎦10850153-⎡⎤→⎢⎥-⎣⎦()18553A I --⎡⎤-=⎢⎥-⎣⎦()1X A I B -=-8553-⎡⎤=⎢⎥-⎣⎦1234⎡⎤⎢⎥⎣⎦7442⎡⎤=⎢⎥--⎣⎦4. 求齐次线性方程组12341234134 30240 450x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪-+=⎩的通解.解:113111312114017610450176A ----⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦104501760000-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦134234450760x x x x x x -+=⎧⎨-+=⎩方程组的一般解为1342344576x x x x x x =-⎧⎨=-⎩(其中34,x x 是自由未知量)令341,0x x ==,得14710X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令330,1x x ==,得25601X -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1122k X k X +(其中12,k k 为任意常数) 5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪的通解.解:13125123111253504A --⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦13120143701437014310--⎡⎤⎢⎥--⎢⎥→⎢⎥--⎢⎥-⎣⎦13120143700000003--⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦1312310114200010000--⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦131030101400010000-⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5101430101400010000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13234501430140x x x x x ⎧+=⎪⎪⎪-=⎨⎪=⎪⎪⎩,一般解为132345143140x x x x x ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(其中3x 为自由未知量) 令314x =,得1245,3,0x x x =-==基础解系为153140X -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通解为1X kX =(k 为任意常数) 6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 解:将齐次线性方程组的系数矩阵化为阶梯形12112145034372011A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦103011034λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 103011007λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦故当7λ=时,方程组有非零解方程组的一般解为13233x x x x =-⎧⎨=⎩(其中3x 是自由未知量)令31x =,得方程组的一个基础解系1312X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1kX (其中k 为任意常数) 7. 当λ取何值时,非齐次线性方程组123123123124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩ 有解?在有解的情况下求方程组的通解.解:11111242251A λ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦111103330332λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦111103330005λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦当5λ=时,方程组有解111103330000A ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111101110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦102001110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦一般解为132321x x x x =-⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0010X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.解:将方程组的增广矩阵化为阶梯形矩阵12452314382134196A --⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥--⎣⎦124507714014142807714--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥-⎣⎦1245011200000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦1021011200000000-⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 方程组的一般解为1323212x x x x =--⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0120X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)二、证明题(每题10分,共20分) 1. 对任意方阵A ,试证A A +'是对称矩阵. 证明:()()A A A A A A ''''''+=+=+ 故A A '+是对称矩阵2. 设n 阶方阵A 满足2A A I O +-=,试证矩阵A 可逆. 证明:2A A I += A A A I I ⋅+⋅= ()A A I I += 所以矩阵A 可逆。

工程数学形成性考核册作业2、4

工程数学形成性考核册作业2、4

工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ).A. 3B. 2C. 4D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则( )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 解,且系数列向量ααα123,,是线性 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 . ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

国开电大 工程数学(本) 形考作业二答案

国开电大 工程数学(本) 形考作业二答案
⒈B⒉B⒊A⒋B⒌B⒍A⒎D⒏A
(二)填空题(每小题2分,共16分)
⒈1⒉相关⒊3⒋无穷多,相关⒌ ⒍相等⒎2⒏ 为任意数)
(三)解答题(第1小题9分,其余每小题11分)
1. .当 且 时,方程组有唯一解;当 时,方程组有无穷多解;当 时,方程组无解.
2.因为 ,所以向量组 线性无关,因此 不能由 线性表出.
3. ,(1)该向量组线性相关;(2)极大无关组为 .
4.基础解系为 .
5.无解.
6.唯一解为: .
(四)证明题(本题4分)
⒏当线性方程组有解时, 有唯一解 只有零解.
工程数学作业答案第二次满分100分第3章线性方程组一单项选择题每小题2分共16分bbabbada二填空题每小题2分共16分1相关3无穷多相关?1?2相等2x?x0?k1x1?k2x2k1k2为任意常数三解答题第1小题9分其余每小题11分1
工程数学作业答案(第二次)(满分100分)
第3章线性方程组
(一)单项选择题(每小题2分,共16分)

中央电大土木工程本科工程数学形成性考核册答案

中央电大土木工程本科工程数学形成性考核册答案

工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a=,则a =(A ).A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈21014001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂ C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰B.xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ). A. F a F b ()()- B. F x x a b()d ⎰ C. f a f b ()()- D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321 6.设随机变量X 的概率分布为012345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),(). 解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E 181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n n i i X E X E X E n X X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1 )]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑= 22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第214页例3 矩估计:,121)1()(110∑⎰===++=+=n i i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i n i n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==n i i n i i x n d L d x n L θθθθ,1ln ˆ1--=∑=n i ixn θ 3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x nx σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ 4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ, 由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
c. 方程个数大于未知量个数的线性方程组一定有无穷多解
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.

电大工程数学形成性考核册答案 带题目

电大工程数学形成性考核册答案 带题目

【工程数学】形成性考核册答案工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232,则a a a a b a b a b c c c 123112233123232323(D ).A. 4B. -4C. 6D. -6⒉若001000020011a a,则a(A ).A.12B. -1C.12D. 1⒊乘积矩阵1124103521中元素c 23(C).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是(B ).A. A B AB 111B. ()AB BA11C.()A B AB111D.()AB A B111⒌设A B ,均为n 阶方阵,k 0且k1,则下列等式正确的是(D ).A. A BA BB. AB n A BC.kAk AD.kAk An()⒍下列结论正确的是(A ).A. 若A 是正交矩阵,则A 1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB 0⒎矩阵1325的伴随矩阵为(C ).A.1325 B.1325C. 5321 D.5321⒏方阵A 可逆的充分必要条件是(B ).A.A0 B.A 0C. A*0D.A*⒐设A B C ,,均为n 阶可逆矩阵,则()ACB 1(D).A.()B A C111B. B CA11C.A CB 111() D.()B C A 111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()AB A ABB2222 B.()AB BBA B2C.()221111ABC C B A D. ()22ABC C B A(二)填空题(每小题2分,共20分)⒈210140017.⒉11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2.⒊若A 为34矩阵,B 为25矩阵,切乘积AC B 有意义,则C 为5×4矩阵.⒋二阶矩阵A11015151.⒌设AB124034120314,,则()A B 815360⒍设A B ,均为3阶矩阵,且A B3,则2AB72.⒎设A B ,均为3阶矩阵,且AB13,,则312()A B -3.⒏若Aa 101为正交矩阵,则a 0.⒐矩阵212402033的秩为 2 .⒑设A A 12,是两个可逆矩阵,则A O OA 1211211A OO A .(三)解答题(每小题8分,共48分)⒈设ABC123511435431,,,求⑴A B ;⑵A C ;⑶23A C ;⑷A B 5;⑸AB ;⑹()AB C .答案:8130B A4066CA 73161732C A 01222265BA122377AB801512156)(CAB ⒉设ABC1211210321111432102,,,求ACBC .解:10221046212341112420)(CB A BC AC⒊已知A B 310121342102111211,,求满足方程32A XB 中的X .解:32A XB252112712511234511725223821)3(21B A X⒋写出4阶行列式102014360253311中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441a 45350631021)1(2442a ⒌用初等行变换求下列矩阵的逆矩阵:⑴122212221;⑵123423121111126;⑶1000110011101111.解:(1)919292929192929291100100019192920313203231121020112201203231963020110201200136630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r IA 9192929291929292911A(2)35141201132051717266221A(过程略)(3) 110110001100011A⒍求矩阵1011011110110010121012113201的秩.解:0000111000111011011011010111000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r 3)(A R (四)证明题(每小题4分,共12分)⒎对任意方阵A ,试证AA 是对称矩阵.证明:'')''(')''(A AAA A A A AAA 是对称矩阵⒏若A 是n 阶方阵,且AAI ,试证A1或1.证明:A 是n 阶方阵,且AA I12IA AA AA A1或1A⒐若A 是正交矩阵,试证A 也是正交矩阵.证明:A 是正交矩阵AA 1)()()(111A A A A 即A 是正交矩阵工程数学作业(第二次)(满分100分)第3章线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102的解x x x 123为(C).A. [,,]102B. [,,]722C. [,,]1122 D. [,,]1122⒉线性方程组x x x x x x x 12313232326334(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304,,,,的秩为(A ).A. 3B. 2C. 4D. 5⒋设向量组为123411000111101111,,,,则(B )是极大无关组.A. 12,B.123,,C.124,,D.1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ).A. 秩()A 秩()AB. 秩()A 秩()A C. 秩()A 秩()A D. 秩()A 秩()A 1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是(D).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组12,,,s线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,既是A又是B的特征值,x 既是A又是B的属于的特征向量,则结论()成立.A.是AB 的特征值B.是A+B 的特征值C.是A -B 的特征值D.x 是A+B 的属于的特征向量10.设A,B,P为n 阶矩阵,若等式(C)成立,则称A和B相似.A.BAABB.AB AB)(C.B PAP 1D.BPPA (二)填空题(每小题2分,共16分) ⒈当1时,齐次线性方程组x x x x 121200有非零解.⒉向量组12000111,,,,,线性相关.⒊向量组123120100000,,,,,,,,,,,的秩是3.⒋设齐次线性方程组1122330x x x 的系数行列式1230,则这个方程组有无穷多解,且系数列向量123,,是线性相关的.⒌向量组123100100,,,,,的极大线性无关组是21,.⒍向量组12,,,s的秩与矩阵12,,,s的秩相同.⒎设线性方程组AX0中有5个未知量,且秩()A 3,则其基础解系中线性无关的解向量有2个.⒏设线性方程组AXb 有解,X 0是它的一个特解,且AX 0的基础解系为X X 12,,则AXb 的通解为22110X k X k X .9.若是A的特征值,则是方程A I 的根.10.若矩阵A满足A A1,则称A为正交矩阵.(三)解答题(第1小题9分,其余每小题11分)1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432解:2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A3311411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r 310010100100102000131000411004615010********34241441542111r r r r r r r 方程组解为31124321x x x x 2.设有线性方程组11111112x y z为何值时,方程组有唯一解?或有无穷多解?解:22322222)1)(1()1)(2(0)1(11011111011111111111111111132312131r r r r r r r r A]当1且2时,3)()(A R A R ,方程组有唯一解当1时,1)()(A R A R ,方程组有无穷多解3.判断向量能否由向量组123,,线性表出,若能,写出一种表出方式.其中83710271335025631123,,,解:向量能否由向量组321,,线性表出,当且仅当方程组332211x x x 有解这里571117100041310730110123730136578532,,,321A)()(A R A R 方程组无解不能由向量321,,线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关1234112343789131303319636,,,解:00001800021101131631343393608293711131,,,4321该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540的一个基础解系.解:300007314021145011031473140731402131453521113215213142321241312114335r r r r r r r r r r r r A10000143100145010100021143102114501030002114310211450123133432212131141r r r r r r r r 方程组的一般解为14314543231x x x x x 令13x ,得基础解系101431456.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361解:00000287214012179015614428287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A00000000221711012179012141r 方程组一般解为2217112197432431x x x x x x 令13k x ,24k x ,这里1k ,2k 为任意常数,得方程组通解00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量4321,,,a a a a 都可由向量组00011,0112,1113,11114线性表示,且表示方式唯一,写出这种表示方式.证明:00110101210023100034任一4维向量可唯一表示为)()()(10000100001000013442331221143214321a a a a a a a a a a a a 44343232121)()()(a a a a a a a ⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设B AX为含n 个未知量的线性方程组该方程组有解,即n A R A R )()(从而B AX有唯一解当且仅当nA R )(而相应齐次线性方程组0AX只有零解的充分必要条件是nA R )(B AX有唯一解的充分必要条件是:相应的齐次线性方程组0AX只有零解9.设是可逆矩阵A的特征值,且0,试证:1是矩阵1A的特征值.证明:是可逆矩阵A的特征值存在向量,使A1111)()()(AA A A A A I 11A即1是矩阵1A的特征值10.用配方法将二次型43324221242322212222x x x x x x x x xxxxf 化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f 222423221)()(xx x x x x 令211x x y ,4232x x x y ,23x y ,44y x 即44432332311y x y y y x y x y y x 则将二次型化为标准型232221yyyf工程数学作业(第三次)(满分100分)第4章随机事件与概率(一)单项选择题⒈A B ,为两个事件,则(B )成立.A. ()A B B AB. ()A B B AC. ()A B B AD. ()AB B A⒉如果(C )成立,则事件A 与B 互为对立事件.A. ABB. AB UC. AB 且AB UD. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D).A.C10320703..B.03.C. 07032.. D. 307032..4. 对于事件A B ,,命题(C)是正确的.A. 如果A B ,互不相容,则A B ,互不相容B. 如果A B ,则A BC. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(p p ,则在3次重复试验中至少失败1次的概率为(D).A.3)1(p B. 31pC. )1(3pD. )1()1()1(223p p p p p 6.设随机变量X B n p ~(,),且E X D X ().,().48096,则参数n 与p 分别是(A).A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2 7.设f x ()为连续型随机变量X的密度函数,则对任意的a b ab ,(),E X ()(A).A.xf x x()d B. xf x x ab()d C.f x xab()d D.f x x()d 8.在下列函数中可以作为分布密度函数的是(B ).A.f x x x()sin ,,2320其它B.f x x x()sin ,,020其它C.f x x x()sin ,,0320其它D. f x x x()sin ,,00其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则)(b X aP (D ).A. F a F b ()()B. F x x a b()d C. f a f b ()()D.f x xab ()d 10.设X 为随机变量,E X D X (),()2,当(C)时,有E Y D Y (),()01.A. Y XB. Y XC. YXD. YX2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52.2.已知P A P B ().,().0305,则当事件A B ,互不相容时,P A B ()0.8,P AB ()0.3.3.A B ,为两个事件,且B A ,则P AB ()A P .4. 已知P AB P AB P A p ()(),(),则P B ()P 1.5. 若事件A B ,相互独立,且P A p P B q (),(),则P AB ()pq qp .6. 已知P A P B ().,().0305,则当事件A B ,相互独立时,P AB ()0.65,P A B ()0.3.7.设随机变量X U ~(,)01,则X 的分布函数F x ()111000x x xx .8.若X B ~(,.)2003,则E X ()6.9.若X N ~(,)2,则P X()3)3(2.10.E X E X Y E Y [(())(())]称为二维随机变量(,)X Y 的协方差.(三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件:⑴A B C ,,中至少有一个发生;⑵A B C ,,中只有一个发生;⑶A B C ,,中至多有一个发生;⑷A B C ,,中至少有两个发生;⑸A B C ,,中不多于两个发生;⑹A B C ,,中只有C 发生.解:(1)CBA(2)C B A C B A CB A (3) CB AC B A C B A C B A (4)BC AC AB (5)C B A (6)C B A 2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率:⑴2球恰好同色;⑵2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223CCCA P 1091036)(25231213CCCC B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率.解:设i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121A A P A P A A P 4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产A ""2产品由乙厂生产A ""3产品由丙厂生产A ""产品合格B )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P 865.080.02.085.03.09.05.05. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布.解:PX P )1(P P X P )1()2(P P XP 2)1()3(,,,,PP k X P k 1)1()(,,,,故X 的概率分布是pp pp pp pk k 12)1()1()1(3216.设随机变量X 的概率分布为12345601015020301201003.......试求P X P X P X(),(),()4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(X P XP XP X P X P X P 72.01.012.03.02.0)5()4()3()2()52(XP X P X P XP X P 7.03.01)3(1)3(XP X P7.设随机变量X 具有概率密度f x x x(),,2010其它试求P XP X (),()12142.解:412)()21(2122121xxdxdxx f XP 16152)()241(1412141241xxdx dxx f X P 8. 设X f x x x~(),,2010其它,求E X D X (),().解:32322)()(1031xxdxx dxx xf X E 21422)()(10410222x xdx xdx x f x X E 181)32(21)]([)()(222x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218;⑵P X ()0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(X P X P 0475.09525.01)67.1(1)67.16.01()0(X P XP 10.设X X X n 12,,,是独立同分布的随机变量,已知E X D X (),()112,设XnX i i n11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E nX n E X E nn1)]()()([1)(1)1()(2122121n n ni i X D X D X D nX X X D n X nD X D 22211nnn工程数学作业(第四次)第6章统计推断(一)单项选择题⒈设x x x n 12,,,是来自正态总体N(,)2(,2均未知)的样本,则(A )是统计量.A. x 1B. x 1C.x122D.x 1⒉设x x x 123,,是来自正态总体N(,)2(,2均未知)的样本,则统计量(D )不是的无偏估计.A. max{,,}x x x 123B.1212()x x C. 212x x D. x x x 123(二)填空题1.统计量就是不含未知参数的样本函数.2.参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3.比较估计量好坏的两个重要标准是无偏性,有效性.4.设x x x n 12,,,是来自正态总体N (,)2(2已知)的样本值,按给定的显著性水平检验H H 0010:;:,需选取统计量nxU /0.5.假设检验中的显著性水平为事件u x||0(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解:6.336101101101i ix x878.29.2591)(110121012i ix x s2.设总体X 的概率密度函数为f x x x(;)(),,1010其它试分别用矩估计法和最大似然估计法估计参数.解:提示教材第214页例3矩估计:,121)1()(110ni i x nxdxx x X E xx 112?最大似然估计:)()1()1();,,,(21121n nini n x x x x x x x L 0ln 1ln ,ln )1ln(ln 11ni inii x n d L d x n L ,1ln ?1ni ix n3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5109.0110.0 110.5112.0测量值可以认为是服从正态分布N(,)2的,求与2的估计值.并在⑴225.;⑵2未知的情况下,分别求的置信度为0.95的置信区间.解:11051?51i ix x875.1)(151?5122i ix x s (1)当225.时,由1-α=0.95,975.021)(查表得:96.1故所求置信区间为:]4.111,6.108[],[n xn x(2)当2未知时,用2s 替代2,查t (4, 0.05 ) ,得776.2故所求置信区间为:]7.111,3.108[],[ns x ns x 4.设某产品的性能指标服从正态分布N(,)2,从历史资料已知4,抽查10个样品,求得均值为17,取显著性水平005.,问原假设H 020:是否成立.解:237.0162.343|10/42017||/|||0n xU ,由975.021)(,查表得:96.1因为237.0||U > 1.96 ,所以拒绝0H 5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(005.).解:由已知条件可求得:0125.20x 0671.02s 1365.0259.0035.0|8/259.0200125.20||/|||0ns x T 62.2)05.0,9()05.0,1(t n t ∵| T | < 2.62∴接受H 0即用新材料做的零件平均长度没有变化。

国开电大《工程数学(本)》形考任务二答案国家开放大学形考任务试题

国开电大《工程数学(本)》形考任务二答案国家开放大学形考任务试题

国家开放大学《工程数学(本)》形成性考核作业二测验答案一、单项选择题(答案在最后)试题1:设线性方程组的两个解,则下列向量中()一定是的解.设线性方程组的两个解,则下列向量中()一定是的解.试题2:设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().试题3:若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组().a.有无穷多解b.可能无解c.无解d.有唯一解以下结论正确的是().a.方程个数小于未知量个数的线性方程组一定有解b.方程个数等于未知量个数的线性方程组一定有唯一解c.方程个数大于未知量个数的线性方程组一定有无穷多解d.齐次线性方程组一定有解试题4:若向量组线性相关,则向量组内()可被该向量组内其余向量线性表出.a.至少有一个向量b.任何一个向量c.至多有一个向量d.没有一个向量若向量组线性无关,则齐次线性方程组a.有非零解b.只有零解c.无解d.有无穷多解试题5:矩阵的特征值为().a.1,-1b.-1,4c.-1,2d.1,4矩阵A的特征多项式,则A的特征值为 ( ).试题6:设矩阵的特征值为0,2,则3A的特征值为 ( ) .a.0,6b.0,0c.2,6d.0,2已知可逆矩阵A的特征值为-3,5,则A-1的特征值为( ) .试题7:设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论()成立.设是矩阵A的属于不同特征值的特征向量,则向量组的秩是().a.不能确定b.2c.1d.3试题8:设A,B为两个随机事件,则()成立.设A,B为两个随机事件,下列事件运算关系正确的是().试题9:如果()成立,则事件A与B互为对立事件.若事件A,B满足,则A与B一定().a.互不相容b.不互斥c.不相互独立d.相互独立试题10:袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().二、判断题(答案在最后)试题11:线性方程组可能无解.()非齐次线性方程组相容的充分必要条件是.()试题12:当1时,线性方程组只有零解.()当1时,线性方程组有无穷多解.()试题13:设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.()设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.()试题14:若向量组线性相关,则也线性相关.()若向量组线性无关,则也线性无关.()试题15:特征向量必为非零向量.()若A矩阵可逆,则零是A的特征值.()二、填空题(答案在最后)试题16:当时,齐次线性方程组有非零解.若线性方程组有非零解,则.试题17:向量组线性.一个向量组中如有零向量,则此向量组一定线性相关.试题18:设齐次线性方程组的系数行列式,则这个方程组有解。

2021年国开电大工程数学(本)形成性考核作业4测验答案

2021年国开电大工程数学(本)形成性考核作业4测验答案

国开电大工程数学(本)形成性考核作业4测验答案 答案在第三四页一、餅答题1.设 4= \ !<= : \ ,求(1)』+ 幻 (2) A + C ;.—3 5J L 4 3」 匸3 — L(3) (4) (J5/C.r — 3 10 1 0 2 2.已知X=-1 21 .5= -1 1 1,求满足方程3A-2X = B 中的X. 3 4 2J |_2 1 1_ 3. 写岀4阶行列式-14 30 2-53 1 1中元素。

如四的代数余子式,并求其值.4. 用初等行变换求下列矩阵的逆矩阵'2 1 -22 -2 1 5.求矩阵 6. 设有线性方程组Z 为何值时,方程组有唯一解減有无穷多解。

的秩.2 -1-67.计算下列向量组的秩,并且(1)判断该向量组是否线性相关I (2)求岀该向量组的f极大无关组.T-12,气= -78,% =■-r-30.«4 ='19639-33413-36• «8.求齐次线性方程组Xj -3x, 十毛一2X4 = 0-5xj +x2 -2X3+3X4 =0-Xj -1+ 2x3 - 5X4 = 03x x +5xj +4 七=0的一个基础解系.9.求下列线性方程组的全部解.Xi —5x2 + 2X3—3X4 = 11-3x t +xj - 4X3+2X4 = -5-- 9x>—4X4 = 175xj + 3x, + 6X3 -x4 = -1二、证明题(答案在最后)1.对任意方阵,4,试证H + 4是对称矩阵.2.若A是〃阶方阵,且.4A'=I,试证|』| = 1或-】・3.试证:线性方程组有解时,它有唯一解的充分必要条件是,相应的齐次线性方程组只有零解.。

最新电大工程数学形成性考核册作业【1-4】答案参考知识点复习考点归纳总结

最新电大工程数学形成性考核册作业【1-4】答案参考知识点复习考点归纳总结

三一文库()*电大考试*电大工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B ). A. B.C.D.⒐设均为阶可逆矩阵,则(D ). A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ).A. B. C.D.(二)填空题(每小题2分,共20分)⒈ 7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵.⒋二阶矩阵⎥⎦⎤⎢⎣⎡1051. ⒌设,则⎥⎦⎤⎢⎣⎡--815360 ⒍设均为3阶矩阵,且,则72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则⎥⎦⎤⎢⎣⎡--1211A O O A .(三)解答题(每小题8分,共48分) ⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设,求.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知,求满足方程中的.解:∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式中元素的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ ; ⑵ ; ⑶ .解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r rr I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵,试证是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴是对称矩阵 ⒏若是阶方阵,且,试证或.证明:是阶方阵,且∴ 12==='='I A A A A A∴ 或1-=A⒐若是正交矩阵,试证也是正交矩阵.证明: 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得的解为(C ).A. B. C.D.⒉线性方程组(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩秩 B. 秩秩 C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分) ⒈当1 时,齐次线性方程组有非零解.⒉向量组线性 相关 .⒊向量组的秩是 3 . ⒋设齐次线性方程组的系数行列式,则这个方程组有 无穷多 解,且系数列向量是线性 相关 的.⒌向量组的极大线性无关组是21,αα.⒍向量组的秩与矩阵的秩 相同 .⒎设线性方程组中有5个未知量,且秩,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA)()(A R A R ≠∴ 方程组无解 ∴不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=0000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-0001000143100145010001002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.。

国家开放大学工程数学(本)形成性考核作业一、二、三

国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程数学作业(第二次)(满分100分)
第3章 线性方程组
(一)单项选择题(每小题2分,共16分)
⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩
⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).
A. [,,]102-'
B. [,,]--'722
C. [,,]--'1122
D. [,,]---'1122
⒉线性方程组x x x x x x x 12313232326334
++=-=-+=⎧⎨⎪

⎪( ).
A. 有无穷多解
B. 有唯一解
C. 无解
D. 只有零解
⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤

⎥⎥⎥,,,,的秩为( ).
A. 3
B. 2
C. 4
D. 5
⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤


⎥⎥⎥,,,,则( )是极大无关组.
A. αα12,
B. ααα123,,
C. ααα124,,
D. α1
⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1
⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ).
A. 方程个数小于未知量个数的线性方程组一定有解
B. 方程个数等于未知量个数的线性方程组一定有唯一解
C. 方程个数大于未知量个数的线性方程组一定有无穷多解
D. 齐次线性方程组一定有解
⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.
A. 至少有一个向量
B. 没有一个向量
C. 至多有一个向量
D. 任何一个向量
(二)填空题(每小题2分,共16分)
⒈当λ= 1 时,齐次线性方程组x x x x 121
20
0+=+=⎧⎨⎩λ有非零解.
⒉向量组[][]αα12000111==,,,,,线性 .
⒊向量组[][][][]
123120100000,,,,,,,,,,,的秩是 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方
程组有 解,且系数列向量ααα123,,是线性 的.
⒌向量组[][][]
ααα123100100===,,,,,的极大线性无关组是 . ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 .
⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解
向量有 个.
⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .
(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组
λλλλλ11111112
⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦
⎥⎥
⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?
2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中
βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦

⎥⎥⎥83710271335025631123,,, 3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦
⎥⎥⎥⎥⎥⎥,,,
4.求齐次线性方程组
x x x x x x x x x x x x x x x 12341234
123412
43205230112503540-+-=-+-+=--+-=++=⎧⎨
⎪⎪⎩⎪⎪ 的一个基础解系.
5.求下列线性方程组的全部解.
x x x x x x x x x x x x x x x 12341234124123
452311
3425
94175361
-+-=-+-+=----=++-=-⎧⎨
⎪⎪⎩⎪⎪
6.求下列线性方程组的全部解.
x x x x x x x x x x x x x x x x 1234123412341234
3263850
2412432
---=-++=-+-+=--+--=⎧⎨
⎪⎪⎩⎪⎪ (四)证明题(本题4分)
⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.
工程数学作业(第四次)(满分100分)
第6章 统计推断
(一)单项选择题(每小题2分,共6分)
⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则( )是统计量.
A. x 1
B. x 1+μ
C. x 12

D. μx 1
⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量( )不是μ的无偏估计.
A. max{,,}x x x 123
B. 1
2
12()x x +
C. 212x x -
D. x x x 123--
3.对正态总体方差的检验用的是( ).
(A) U 检验法 (B) T 检验法 (C)
2χ检验法 (D) F 检验法
(二)填空题(每小题2分,共14分) 1.统计量就是 .
2.参数估计的两种方法是 和 .常用的参数点估计有 和 两种方法.
3.比较估计量好坏的两个重要标准是 , .
4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2
已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量 . 5.假设检验中的显著性水平α为 发生的概率.
6.当方差2σ已知时,检验0100
μμμμ≠=:,:H H 所用的检验量是 。

7.若参数θ的估计量),,,(21n x x x ϕ满足 ,则)
,,,(21n x x x ϕ称为θ的无偏估计。

(三)解答题(每小题10分,共80分) 1.设对总体X 得到一个容量为10的样本值
4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,
5.0, 3.5, 4.0
试分别计算样本均值x 和样本方差s 2
. 2.在测量物体的长度时,得到三个测量值:
3.00 2.85 3.15
若测量值X N ~(,)μσ2,试求μσ,2
的最大似然估计值. 3.设总体X 的概率密度函数为
f x x x (;)(),,
θθθ=+<<⎧⎨⎩101
0其它
试分别用矩估计法和最大似然估计法估计参数θ.
4.测两点之间的直线距离5次,测得距离的值为(单位:m ):
108.5 109.0 110.0 110.5 112.0
测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2
的估计值.并在⑴σ225=.;⑵
σ2未知的情况下,分别求μ的置信度为0.95的置信区间.
5.测试某种材料的抗拉强度,任意抽取10根,计算所测数值的均值,得
∑===10
1
20
101i i x x ∑==--=10
1
22521101i i x x s .)(
假设抗拉强度,试以95%的可靠性估计这批材料的抗拉强度的置信区间。

6.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 7.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):
20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5
问用新材料做的零件平均长度是否起了变化(α=005.).
8.从一批袋装食盐中随机抽取5袋称重,重量分别为(单位:g )
1000,1001,999,994,998
假设这批食盐的重量服从正态分布,试问这批食盐重量的均值可否认为是1000g?( 05.0=α).。

相关文档
最新文档