通信系统建模与仿真基于Simulink的基带传输系统的仿真设计
设计报告--003---数字基带传输系统的SIMULINK建模与仿真
数字基带传输系统的SIMULINK建模与仿真一.基带传输系统的仿真设计系统仿真采样率为1e4Hz,滤波器采样速率等于系统仿真采样率。
数字信号速率为1000bps,故在进入发送滤波器之前需要10倍升速率,接收解码后再以10倍降速率来恢复信号传输比特率。
仿真模型如图3-1所示,其中系统分为二进制信源、发送滤波器、高斯信道、接收匹配滤波器、接收采样、判决恢复以及信号测量等7部分。
图3-1 高斯信道下的基带传输系统测试模型图3-2 高斯信道下的基带传输系统测试仿真结果分析:将发送数据延迟22个采样单位的发送信号和经过基带传输系统传输过的接收恢复的信号,才吻合。
观察两个波形,不存在相位差。
即恢复定时脉冲的上升沿对准图的最佳采样时刻,定时系统设置成功完成。
图3-3 高斯信道下的基带传输系统测试仿真结果分析:①进行码型变换后的信号②进行波形变换后的信号,即发送滤波器的输出信号③信道输出信号,与信道输入信号即进行波形变换后的信号相比,存在衰减、失真和噪声干扰④接收滤波器输出的信号图3-4 高斯信道下的基带传输系统测试仿真结果分析:经过采样、判决和保持后信号二.接收机定时恢复并系统仿真在上述模型基础上,设计其接收机定时恢复系统并进行仿真。
双极性二进制信号本身不含有定时信息,故需要对其进行非线性处理(如平方或取绝对值),提取时钟的二分频分量,最后通过二分频来恢复接收定时脉冲。
系统仿真模型如图3-5所示,定时恢复子系统的内部结构如图3-6所示,其中采用了锁相环来锁定定时脉冲的二次谐波后,以二分频得出定时脉冲。
示波器用来恢复定时与理想定时之间的相位差,然后通过调整Integer Delay模块的延迟量使恢复定时脉冲的上升沿对准眼图最佳采样时刻。
图3-5 高斯信道下的基带传输系统——定时提取系统的模型图3-6 定时提取子系统的内部结构图3-7 定时提取系统的仿真结果分析:将发送数据延迟22个采样单位的发送信号和经过基带传输系统传输过的接收恢复的信号,才吻合。
基于Simulink的通信系统实现与仿真
Science &Technology Vision 科技视界1基本概念通信系统是用以完成信息传输过程的技术系统的总称,广义上共包括信源、信道和信宿三个部分。
信源是指通信过程中产生和发出信息的设备或计算机的总称,信宿与其相对,是指通信过程中接收、处理信息的终端设备或计算机的总称。
通信信道是数据传输的通路以及信号传输的媒质,是本文讨论的重点。
信道最重要的参数之一就是信息的传递能力,用带宽加以描述。
由于通信设备爆炸式的增加,传统的一个设备占用一个信道的传输方式因其效率低而不再适用。
新的传输方式要求若干个设备使用一个信道,并且安排合理的分配方式使得同一信道上各路通信互不干扰。
最广泛的三种复用方式是:频分复用、时分复用和码分复用。
(1)频分复用频分复用是将通信信道的整个频谱范围,划分成若干个频率范围,每一对通信设备只允许工作在某一个特定的频率范围之内,即不同的通信用户是依靠不同的频率范围来实现通信的。
早期的无线通信系统以及现在的无线广播、短波、大部分专用的通信王伦,仍然采用频分复用的技术加以实现。
(2)时分复用时分复用是将全部通信信道在时间轴上,划分成若干个相等长度的时间间隙。
将每一对通信设备分配在某一个指定的时隙上工作,那么不同的通信用户即可通过不同的时隙划分实现通信。
现在广泛应用的数字蜂窝无线通信系统(GSM)就是应用时分复用的典型实例。
(3)码分复用码分复用不同于频分复用和时分复用,它是利用码组的正交性,将承载着不同通信用户的通信信息加以区分。
每一对通信设备都被分配在特定码组上实现通信。
现在正在使用的数字蜂窝无线通信CDMA、第三代移动通信系统WCDMA,CDMA2000以及SC-CDMA 都采用了码分复用的技术。
码分复用的关键在于通信码组之间的正交性。
一种获得正交码组的方法是使用M 序列发生器。
M 序列是最大长度线性反馈移位寄存器序列的简称,具有很强的自相关特性和很弱的互相关性质。
并且M 序列可以提供与其周期长度相同个数的正交码组。
Simulink通信系统建模与仿真教学设计
详解MATLAB/Simulink通信系统建模与仿真教学设计MATLAB/Simulink是一款广泛应用于各个领域的数学工具,其中Simulink可用于建立系统级仿真模型,以便进行电子、机械、流体和控制系统等领域内的实验分析和设计。
在通信领域中,Simulink非常适合建立通信系统的仿真模型,并用于进行传输计算、信道建模、信号处理和多模调制等。
本文将介绍MATLAB/Simulink通信系统模型的建立,及如何将其应用于通信系统教学设计。
通信系统模型建立数字调制数字调制是通信系统中的关键技术之一。
首先,我们需要在Simulink中建立基带信号源,并使用Math Function模块产生载波信号。
Modulation 模块可用于将基带信号和载波信号结合起来。
为了使得调制系统工作稳定和正常,通常在模型中加入Equalization和Resampling模块,以消除接收端接收到的噪声和信号失真。
当系统处理完成后,我们可以使用Scope模块来对模型工作情况进行进一步的分析。
数字解调数字解调需要在接收端建立解调器模型。
接收端模型包括匹配滤波器、采样器、时钟恢复器、色散补偿器和多值/二次干扰恢复器。
在这个模型中,也需要添加Equalization和Resampling模块以消除接收端所受的噪声和信号失真。
在接收端处理完成之后,我们也可以使用Scope模块对模型结果进行进一步分析。
信道建模信道建模是通信系统中另一个关键环节。
在Simulink中建造通信信道仿真模型,需要引入建立通信信道的数学模型,并建立符合通道模型的信道传输系统。
在建立仿真模型中,包括噪声源、多路复用技术、OFDM技术、信号调制和解调技术。
对于每个信道结构,我们都可以建立相应的仿真模型,进行仿真分析。
OFDM信息传输系统OFDM技术利用多个正交子载波来传输信息,以提高通信质量和可靠性,同时提高频带利用率。
OFDM系统建模主要包括加脉冲造型、IFFT、添加循环前缀、调制调制、运动模糊和色散模拟、反向调制、解压缩、去定时和轻度等模块。
基于Simulink的数字通信系统的建模与仿真
基于Simulink的数字通信系统的建模与仿真作者:赵琳邵敏敏来源:《电脑知识与技术》2009年第27期摘要:该文在理论分析的基础上,利用Simulink工具箱建立了一种数字通信系统的模型。
该模型为带限基带传输系统,其中匹配滤波器的选择和定时提取系统的设计是核心。
该模型在给定仿真条件下运行,通过观测眼图信息和测试误码率的方法来衡量系统性能。
关键词:Simulink;数字通信系统;建模;仿真中图分类号:TN915文献标识码:A文章编号:1009-3044(2009)27-7812-03Based on Simulink's Modelling and Simulation of Digital Communication SystemZHAO Lin, SHAO Min-min(Tianjin Tianshi College, Tianjin 301700, China)Abstract: Based on the academic analysis,this paper establishes a modelling of digital communication system by using the simulink tools.The modelling is a bandwidth limited baseband transmission system,with the emphasis of choosing the filters and designing of the timing extraction system. The modelling runs under the given conditons, the eye pattern and the error rate can show the performance of this system.Key words: simulink; digital communication system; modelling; simulation在数字通信系统中,其传输对象通常是二进制数字信息,它可能来自计算机、网络或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
基于SIMULINK的基带传输系统的仿真
1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
2基带系统的理论分析2.1基带系统传输模型和工作原理1)信道的传输特性为C(w),接收滤波器的传输特性为设系统总的传输特性为GR(w),则基带传输系统的总的传输特性为:H(w)=GT(w)C(w)GR(w),n(t)是信道中的噪声。
2)基带系统的工作原理:信源是不经过调制解调的数字基带信号,信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样判决器进一步去噪恢复基带信号,从而完成基带信号的传输。
2.2基带系统设计中的码间干扰及噪声干扰?码间串扰和信道噪声是影响基带传输系统性能的两个主要因素:1)码间干扰及解决方案??码间干扰:由于基带信号受信道传输时延的影响,信号波形将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。
??解决方案:??①要求基带系统的传输函数H(ω)满足奈奎斯特第一准则:?????若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。
②基带系统的系统函数H(ω)应具有升余弦滚降特性。
如图2所示。
这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。
???2)噪声干扰及解决方案???噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。
???解决方案:???①在接收端进行抽样判决;②匹配滤波,使得系统输出性噪比最大。
3基带系统设计方案3.1信源常见的基带信号波形有:单极性波形:是一种最简单的基带信号波形,用正电平和零电平分别对应二进制码'1'和'0',易于用TTL,CMOS电路产生,但直流分量大,要求传输线路具有直流传输能力,不利于信道传输。
Simulink通信系统建模与仿真实例分析教学设计 (2)
Matlab/Simulink通信系统建模与仿真实例分析教学设计一、教学目标本课程旨在通过【Matlab/Simulink通信系统建模与仿真实例分析】的教学,使学生掌握如下知识和能力:1.了解数字通信系统基本概念及其发展过程;2.掌握数字通信系统的建模方法和仿真技术;3.能够通过实例分析,掌握数字通信系统的性能分析方法;4.能够设计数字通信系统并进行仿真。
二、教学内容1. 数字通信系统概述•数字通信系统基本概念•数字通信系统的应用领域及其发展历程2. 数字通信系统建模方法•数字信号的基本特性•采样、量化和编码的基本原理•数字调制技术•误差控制编码技术3. 数字通信系统的仿真技术•Simulink仿真环境的基本概念和使用方法•通信系统仿真模型设计方法4. 数字通信系统的性能分析方法•常见数字通信系统的性能参数及其定义•数字通信系统的误码率分析方法5. 数字通信系统设计与仿真实例分析•基于Matlab/Simulink的通信系统建模和仿真实例分析三、教学方法本课程采用主题讲授和案例分析相结合的教学模式。
主要教学方法包括:1.讲授:教师通过课堂讲解授予基本概念、原理和技术,并采取案例分析的方法,使学生逐步领悟和掌握学习内容。
2.实验:采用Matlab/Simulink仿真软件进行数字通信系统建模和仿真实验。
3.课堂讨论:设计选题和应用实践案例的课堂讨论。
四、教学评估本课程的教学评估主要通过期末考试、实验报告和作业完成情况来进行。
1. 期末考试期末考试采用闭卷考试形式,主要测试学生对数码通信系统理论的掌握情况,考核内容覆盖课程中所讲述的主要内容。
2. 实验报告实验报告要求学生通过Matlab/Simulink仿真软件对数字通信系统进行建模和仿真,并撰写学习笔记和所完成实验的结果分析。
3. 作业完成情况教师将根据课堂讨论和布置的作业对学生的学习情况进行评估。
五、教学资源教师将为本课程提供以下教学资源:1.选取优秀的课程设计案例,供学生进行仿真和分析;2.为学生提供Matlab/Simulink仿真软件的操作指导和优秀的资源链接。
simulink模拟通信系统仿真及仿真流程
基于Simulink 的通信系统建模与仿真模拟通信系统姓名:完成时间:XXXX 年XX 月XX 日、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
AMI调制原理框图如下AM信号的时域和频域的表达式分别为=匚皿叫(f)十网(f) cos a e (f)式中,卩为外加的直流分量;厂厂可以是确知信号也可以是随机信号,但通常认为其平均值为0,即.。
AM解调AM信号的解调是把接收到的已调信号-丄」:'还原为调制信号?,l*'o AM信号的解调方法有两种:相干解调和包络检波解调。
AM相干解调原理框图如下。
相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
AM包络检波解调原理框图如下。
AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号包络检波器一般由半波或全波整流器和低通滤波器组成_____ 叫们# IPF fDSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(一"=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB DSB调制原理框图如下DSB言号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。
滤波法SSB调制原理框图如下所示。
图中的二:丄小为单边带滤波器。
产生SSB信号最直观方法的是,将7 :厂设计成具有理想高通特性-T■■- 1或理想低通特性広』门,的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。
产生上边带信号时勺…:"即为:;;•-',产生下边带信号时即为二小。
滤波法SSB调制的频域表达式E鰹4)= E口空佃〕H溼(血〕——\M{^+ 帆)+ M(G> -耀『)]耳型〔®)(3-14)相移法SSB调制的原理框图如下。
基于SIMULINK的基带传输码设计与仿真【开题报告】
开题报告通信工程基于SIMULINK的基带传输码设计与仿真一、课题研究意义及现状20世纪60年代出现了数字传输技术,它采用了数字信号来传递信息,从此通信进入了数字化时代。
目前,通信网已基本实现数字化,在我国公众通信网中传输的信号主要是数字信号。
数字通信系统主要的两种通信模式:数字频带传输通信系统,数字基带传输通信系统。
目前,数字通信在卫星通信、光纤通信、移动通信等方面发展很快。
由于基带传输系统在数字传输系统中有不可替代的作用,其应用范围也随着技术的发展渗入网络通信、卫星通信、手机通信、数字电视、数字电话等生活、科技的各方面,日益成为数字通信传输系统中的关键技术。
虽然就潜在能力而言,频带比基带传输的快而且覆盖较长的距离,但频带需要在每个连接末端接入一个调制解调器,这就提高了设备接入局域网的费用。
所以说,基带传输是广泛使用的技术基础,也在广泛的运用于数字传输通信系统中。
准确地传输数字信息是数字通信中的一个重要环节。
在数字传输系统中,它的传输对象通常是二进制数字信息。
它可能是来自计算机、网络或其他数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
这种脉冲信号被成为数字基带信号,这是因为它们所占据的频带通常从直流和低频开始。
数字基带信号不经过载波调制而直接传输,称为基带传输。
数字基带波形被脉冲变换器变换成适应信道传输的码型后送入信道。
在基带传输中,数字基带信号本身是否携带有位同步信息,将很大程度上影响数字基带传输系统的性能。
二、课题研究的主要内容和预期目标主要内容:研究应用Matlab/Simulink对常用数字基带传输码型进行建模和仿真,即在常用传输码型的编码规则和仿真波形以及频谱特性分析的基础上,提出改善基带传输码性能的方法及措施。
预期目标:认识常见数字基带信号,掌握常用数字基带传输码型的编码规则,了解各种基带信号码型的特点,进一步认识码型变换的必要性和重要性。
熟练掌握Simulink的建模和仿真,提出改善基带传输码性能的方法及措施。
基于simulink的数字基带传输系统仿真报告
通信系统建模与仿真课程设计2009 级通信工程专业71 班级题目基于SIMULINK的基带传输系统的仿真姓名张建涛学号091307136指导教师闫利超胡娟小组成员李迎亚黄乔飞2012年5月21日1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
2基带系统的理论分析(参照通信原理教材146页,分两方面说明:1.基带系统传输模型和工作原理;2.基带系统设计中的码间干扰和噪声干扰以及解决方案)1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图 1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。
系统工作过程及各部分作用如下。
g T(t)n定时信号图 1 :数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
基带传输系统的信道通常采用电缆、架空明线等。
信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。
接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。
其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。
抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。
2.基带系统设计中的码间干扰和噪声干扰以及解决方案由图 1所示,其中发送滤波器的传递函数为G T (f ),冲击响应为g T (t );接收滤波器的传递函数为G R (f ),冲击响应为g R (t )。
基于MATLABSimulink的基带传输系统的仿真-通信工程专业《通信原理》课程设计.doc
通信工程专业《通信原理》课程设计题目基于MATLAB/Simulink的基带传输系统的仿真学生姓名学号所在院(系)专业班级通信工程专业xx 班指导教师xx 合作者 xx xx完成地点xx 理工学院物理与电信工程学院实验室2014年 3 月 12 日《通信原理》课程设计通信原理课程设计任务书院(系) 物电学院专业班级通信1104 学生姓名 xxx一、通信原理课程设计题目基于MATLAB/Simulink的基带传输系统的仿真二、通信原理课程设计工作自2014年2月24日起至2014年3月14日止三、通信原理课程设计进行地点: 物电学院实验室四、通信原理课程设计的内容要求:1建立一个基带传输系统模型,选用合适基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计,假设接收定时恢复是理想的。
2.设计题目的详细建模仿真过程分析和说明,仿真的结果可以以时域波形,频谱图,星座图,误码率与信噪比曲线的形式给出。
课程设计说明书中应附仿真结果图及仿真所用到的程序代码(MATLAB)或仿真模型图(Simulink/SystemView)。
如提交仿真模型图,需提交相应模块的参数设置情况。
3.每人提交电子版和纸质的说明书及源程序代码或仿仿真文件。
参考文献:[1]邓华.MATLAB通信仿真及其应用实例详解[M].人民邮电出版社.2003年[2]郑智琴.Simulink电子通信仿真与应用[M].国防工业出版社.2002年[3]赵鸿图.通信原理MATLAB仿真教程[M].人民邮电出版社.2010年[4]刘学勇.详解MATLAB/Simulink通信系统建模与仿真[M].电子工业出版社.2011年[5]达新宇.通信原理实验与课程设计[M].北京邮电大学出版社.2005年[6]邵玉斌.MATLAB/Simulink通信系统建模与仿真实例分析[M].清华大学出版社.2008年指导教师xx 系(教研室)通信工程系接受论文 (设计)任务开始执行日期2014年2月24日学生签名基于MATLAB/Simulin的基带传输系统的仿真xxx(x理工学院物理与电信工程学院通信1104班,xx xx xxxx3)指导教师:xx[摘要]未经调制的数字信号所占据的频谱是从零频或者很低频率开始,称为数字基带信号,不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统。
基于Simulink的OFDM通信系统仿真
基于Simulink的OFDM通信系统仿真※※※※※※※※※※※ 2007级学生数字通信※※ 原理课程设计※※ ※※※※※※※※※ 数字通信原理课程设计报告书基于Simulink的OFDM通信系统课题名称仿真姓名学号物理与电信工程系院、系、部通信工程专业指导教师2010年 1 月15日一、设计任务及要求设计目的符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM) 是解决这一难题中最具前景的方法和技术。
利用OFDM技术和IFFT 方式的数字实现更适宜于多径影响较为显著的环境,本课题设计主要研究基于SIMULINK构建OFDM仿真系统。
设计要求应用OFDM基本原理,基于SIMULINK详细讨论如何构建一个完整的OFDM动态仿真系统。
通过仿真分析信道特性,无信道估计和LS 信道估计对OFDM系统性能的影响。
来证明仿真系统能够很好地模拟OFDM传输系统,为进一步深入研究OFDM通信系统提供了便利。
指导教师签名:2010年 1 月 15日二、指导教师评语:指导教师签名:2010年 1 月 15日三、成绩验收盖章2010年 1 月 15日基于Simulink的OFDM通信系统仿真 1、设计目的符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM) 是解决这一难题中最具前景的方法和技术。
利用OFDM技术和IFFT 方式的数字实现更适宜于多径影响较为显著的环境,本课题设计主要研究基于SIMULINK构建OFDM仿真系统。
2、设计要求及原理应用OFDM基本原理,基于SIMULINK详细讨论如何构建一个完整的OFDM动态仿真系统。
通过仿真分析信道特性,无信道估计和LS 信道估计对OFDM系统性能的影响。
来证明仿真系统能够很好地模拟OFDM传输系统,为进一步深入研究OFDM通信系统提供了便利。
2.1 OFDM基本原理正交频分复用(OFDM) 技术就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。
基于simulink仿真实现的 SK数字带通传输系统 设计报告
[1]樊昌信等编. 通信原理. 国防工业出版社
图2PSK信号的解调原理图
2PSK信号相干解调各点时间波形如图所示,当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。
图2PSK信号相干解调各点时间波形
图是2PSK解调器在无噪声情况下能对2PSK信号的正确解调。(a)是收到的2PSK信号;(b)是本地载波提取电路提取的同频同相载波信号;(c)是接收的2PSK信号与本地载波相乘得到的波形示意图,此波形经过低通滤波器滤波后得到低通信号;(d)是取
图多路选择器参数设置
设置依据:当二进制序列大于0时,输出第一路信号;当二进制序列小于0时,输出第二路信号。
反相载波(Sine Wave Function1)参数设置只需将正相载波参数幅值取为负值,其他的参数设置同模拟调制。
调制波形:
图解调波形
图中第一个图为正相载波的波形,第二个反相载波的波形,第三个图为随机的波形,最后一个图为调制后的2PSK信号。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
在实际通信系统中往往存在噪声,噪声会对判决值产生影响,即会产生误码率,一般假设信道的噪声为高斯白噪声,下面讨论2PSK解调器在高斯白噪声干扰下的误码率:
图 取样值概率密度函数示意图
解调波形(信噪比为70%):
图解调波形
图中第一个图为收到的2PSK波形,第二个图为通过带通滤波器后的波形,第三个图为与同频同向载波相乘后的波形,第四个图为通过低通滤波器后的波形,最后一个图为解调后的二进制序列。
不同信噪比下的误码率
采用模拟调制时,不同信噪比下,误码率恒为:
基于simulimk的数字通信系统的建模与仿真
基于S imulink的数字通信系统的建模与仿真摘要:该文在理论分析的基础上,利用Simulink工具箱建立了一种数字通信系统的模型。
该模型为带限基带传输系统,其中匹配滤波器的选择和定时提取系统信息和测试误码的设计是核心。
该模型在给定仿真条件下运行,通过观测眼图[1]率的方法来衡量系统性能。
[2]关键词:Simulink;数字通信系统;建模;仿真Based on Simulink's Modelling and Simulationof Digital Communication SystemAbstract:Based on the academic analysis,this paper establishes a modelling of digital communication system by using the simulink tools.The modelling is a bandwidth limited baseband transmission system,with the emphasis of choosing the filters and designing of the timing extraction system. The modelling runs under the given conditons, the eye pattern and the error rate can show the performance of this system.Key words: simulink; digital communication system; modelling; simulation目录1.Simulink简介 (3)1.1 Simulink的定义 (3)1.2 Simulink功能 (3)1.3 Simulink特点 (4)1.4 Simulink的启动 (4)1.5 Simulink的模块库介绍 (4)1.5.1 连续模块(Continuous)continuous.mdl (5)1.5.2离散模块(Discrete)discrete.mdl (5)1.5.3 Function&Tables(函数和平台模块)function.mdl (6)1.5.4 Math(数学模块)math.mdl (6)1.5.5 Nonlinear(非线性模块)nonlinear.mdl (6)1.5.6 Signal&Systems(信号和系统模块)sigsys.mdl (7)1.5.7 Sinks(接收器模块)sinks.mdl (7)1.5.8 Sources(输入源模块)sources.mdl (7)1.6 Simulink的仿真步骤 (8)2.数字通信系统的设计 (8)2.1匹配滤波器的设计 (9)2.2 定时提取系统的设计 (10)3.数字通信系统的仿真 (11)4.结论 (12)注释和参考文献 (13)谢辞 (14)1.Simulink简介1.1 Simulink的定义Simulink是MATLAB最重要的组件之一,是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
通信系统建模与仿真课程设计--基于SIMULINK的基带传输系统的仿真
通信系统建模与仿真课程设计--基于SIMULINK的基带传输系统的仿真通信系统建模与仿真课程设计2011 级通信工程专业******** 班级题目基于SIMULINK的基带传输系统的仿真姓名*** 学号*******指导教师胡娟2014年月日1.任务书试建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps 。
(1) 设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
(2) 要求观察接收信号眼图,说明眼图意义与影响因素,改变影响眼图的参数,观察是否有变化。
(3) 设计定时提取系统,说明定时提取的原理,观察定时提取脉冲的波形,说明其正确性。
2. 基带系统的理论分析根据Simulink 提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所示的模型:图3. 2数字调制系统仿真框图基带信号 调制器 信 道 解调器 基带信号噪声源图3.4 2-ASK 信号接收系统组成框图根据3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调整个的仿真系统的调制与解调过程为:首先将信号源的输出信号与载波通过相乘器进行相乘,在接收端通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。
在MATLAB下Simulink仿真平台构建了ASK调制与解调仿真电路图如图3-1所示:将信号源的码数率设为1B/S,即频率为1 Hz。
在调制解调系统中,载波信号的频率一般要大于信号源的频率。
信号源频率为1 Hz,所以将载波频率设置为6 Hz,由于在载波参数设置里,频率的单位是rad/sec,所以即为12*pi。
低通滤波器的频带边缘频率与信号源的频率相同,前面设置信号源频率为1 Hz,所以对话框中“Passband edge frequency (rads/sec):”应填“2*pi”。
simulink通信系统建模与仿真
通信系统建模与仿真课程设计2008 级通信工程专业0813072 班级题目基于SIMULINK的2ASK频带传输系统的仿真姓名李春艳学号081307211 指导教师胡娟闫利超贾晓兰2011年6月1日1 任务书试建立一个ASK 频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行ASK 调制后再送入加性高斯白噪声(AWGN )信道传输,在接收端对其进行ASK 解调以恢复原信号,观察还原是否成功,改变AWGN 信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。
另外,对发送信号和接收信号的功率谱进行估计。
2 二进制振幅键控(2ASK )的理论分析2.1 2ASK 调制原理振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。
当数字基带信号为二进制时,则为二进制振幅键控。
设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。
该二进wctnTs t ang wct t s t sASK cos ])([cos )()(∑-==制符号序列可表示为 其中:⎩⎨⎧=10an 0是以概率p 出现,而1是以概率1-p 出现。
二进制振幅键控信号时间波型如图1 所示。
由图1 可以看出,2ASK 信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。
二进制振幅键控信号的产生方法如图2 所示,图(a)是采用模拟相乘的方法实现, 图(b)是采用数字键控的方法实现。
由图1 可以看出,2ASK 信号与模拟调制中的AM 信号类似。
所以,对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 所示。
2ASK 信号非相干解调过程的时间波形如图4 所示。
图2-1 二进制振幅键控信号时间波型2ASK 信号的功率谱密度由于二进制的随机脉冲序列是一个随机过程,•所以调制后的二进制数字信号也是一个随机过程,因此在频率域中只能用功率谱密度表示。
基于SIMULINK的通信系统仿真毕业设计
题目基于SIMULINK的通信系统仿真摘要在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。
本文应用了幅度调制以及键控法产生调制与解调信号。
本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。
首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。
关键词通信系统调制 SIMULINKI目录1. 前言 (1)1.1选题的意义和目的 (1)1.2通信系统及其仿真技术 (2)3. 现代通信系统的介绍 (3)3.1通信系统的一般模型 (3)3.2模拟通信系统模型和数字通信系统模型 (3)3.2.1 模拟通信系统模型 (3)3.2.2 数字通信系统模型 (4)3.3模拟通信和数字通信的区别和优缺点 (5)4. 通信系统的仿真原理及框图 (8)4.1模拟通信系统的仿真原理 (8)4.1.1 DSB信号的调制解调原理 ....................... 错误!未定义书签。
4.2数字通信系统的仿真原理 (9)4.2.1 ASK信号的调制解调原理 (9)5. 通信系统仿真结果及分析 (11)5.1模拟通信系统结果分析 (11)5.1.1 DSB模拟通信系统 (11)5.2仿真结果框图 (11)5.2.1 DSB模拟系统仿真结果 ......................... 错误!未定义书签。
基于SIMULINK的基带传输系统的仿真
一.任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
二.基带系统的理论分析1.基带系统传输模型和工作原理;它主要由码波形变换器、发送滤波器、基带传输波形信道、接收滤波器和取样判决器等5个功能电路组成。
模型如下(图1)图1发送滤波器对接收滤波器的传输特性为:)wwCH,)(n twG()G()(w)(RT为信道噪声工作原理:基带传输系统的输入信号是随机脉冲序列,为了使脉冲序列适合信道的传输,先经过码型变换器,将二进制脉冲序列变为适合信道传输的双极性码(AMI码或HDB3码),还要进行波形变换,使信号在基带传输系统内减小码间干扰。
当信号经过信道时,由于信道特性不理想以及信道噪声的干扰,使信号受到干扰而变形。
在接收端为了减小噪声的影响,首先使信号进入接收滤波器,然后再经过均衡器,校正波形失真或码间串扰。
最后进行抽样,判决恢复出基带数字信号。
2.基带系统设计中的码间干扰和噪声干扰以及解决方案(1)根据奈奎斯特准则:数字基带传输系统无码间干扰的充要条件的频域表达形式为 s s i s T w T T i w H ππ≤=+∑,)2( ,若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。
(2)基带系统的系统函数H(ω)应具有升余弦滚降特性。
如图2所示。
这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。
(3)噪声干扰及解决方案噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。
解决方案: ①在接收端进行抽样判决;②匹配滤波,使得系统输出性噪比最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信系统建模与仿真课程设计题目基于Simulink的基带传输系统的仿真2013年6月14日1任务书试建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps。
(1)设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
(2)要求观察接收信号眼图,说明眼图意义与影响因素,改变影响眼图的参数,观察是否有变化。
(3)设计定时提取系统,说明定时提取的原理,观察定时提取脉冲的波形,说明其正确性。
2基带系统的理论分析(1.基带系统传输模型和工作原理;2.基带系统设计中的码间干扰和噪声干扰以及解决方案,3.定时提取原理)1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图 1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。
系统工作过程及各部分作用如下。
定时信号图 1 :数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
基带传输系统的信道通常采用电缆、架空明线等。
信道既传送信号,同时又因存在噪声和频率特性不理想而对数字信号造成损害,使得接收端得到的波形与发送的波形具有较大差异。
接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。
其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。
抽样判决器首先对接收滤波器输出的信号在规定的时刻(由定时脉冲控制)进行抽样,获得抽样信号,然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。
2.基带系统设计中的码间干扰和噪声干扰以及解决方案实际通信中传输信道的带宽是有限的,带限信道的冲击响应在时间上是无限的,因此一个时隙代表数据的波形经过带限信道后将在邻近的其他时隙上形成非零值,即波形的拖尾。
拖尾和邻近时隙的传输波形相互叠加,形成传输数据之间的混叠,造成码间串扰。
由于随机性的码间串扰和噪声的存在,使抽样判决电路在判决时可能出错。
显然,只有当码间干扰和随机干扰很小时,才能保证上述判决的正确;当干扰及噪声严重时,则判错的可能性就很大。
1)码间干扰及解决方案码间干扰解决方案:①要求基带系统的传输函数H(w)满足奈奎斯特第一准则:若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。
②基带系统的系统函数H(ω)应具有升余弦滚降特性。
如图2所示。
这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。
2)噪声干扰及解决方案噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。
解决方案:①在接收端进行抽样判决;②匹配滤波,使得系统输出性噪比最大。
3.定时提取原理:双极性二进制信号本身不含定时信息,需要对其进行非线性处理(取绝对值),提取时钟的二倍频分量,最后通过二分频来恢复接收定时时钟。
用锁相环来锁定定时脉冲的二次谐波后以二分频得出定时脉冲。
用示波器观察恢复定时与理想定时之间的相位差,然后通过调整Integer Delay模块的延时量使恢复定时脉冲的上升沿对准眼图最佳采样时刻。
3基带系统设计方案(分别对各模块的选择说明原因)○1信源的选择:本次课程设计的发送数据为二进制双极性不归零码。
在simulink的模块库中“Bernoulli Binary Generator(伯努利二进制信源)”模块可产生伯努利分布的随机二进制数序列。
再通过一个“Relay”模块即可将其变为双极性不归零码。
○2发送滤波器和接收滤波器的选择:基带系统设计的核心问题是滤波器的选取,根据对信源的分析,为了使系统冲激响应h(t)拖尾收敛速度加快,减小抽样时刻偏差造成的码间干扰问题,要求发送滤波器应具有升余弦滚降特性,同时为了得到最大输出信噪比,在此选择平方根升余弦滤波器作为发送(接收)滤波器,滚降系数为0.5,接收滤波器与发送滤波器相匹配。
以得到最佳的通信性能(即误码率最小)○3信道的选择:信道是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,且含有加性噪声。
因此本次系统仿真采用加性高斯信道。
○4抽样判决器的选择:抽样判决器是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。
根据二进制双极性不归零码的特点,在接收中的判决门限为0。
采用“Relay”判决模块进行判决,用“Product”相乘器模块进行采样,“Triggered Subsystem”保持模块构成抽样判决器。
5:对比发送数据与恢复数据波形用“Scope”模块,统计误码率用“Error Rate Calculation”模块。
4SIMULINK下基带系统的设计(分别说明各模块参数设置情况,最后给出总的模型图)1信源的建模及相关参数设置二进制双极性不归零码用到的simulink模块有“Bernoulli Binary Generator”、“Relay”。
考虑到设计要求,“Bernoulli Binary Generator”参数设置为“Sample time”为“1/1000”,其余参数为默认值;“Pulse Generator”参数设置为“Sample time”为“1e-4”,“Period”为“10”“Pulse Width”为“5”,其余参数为默认值。
“Relay”判决门限为0.5,大于0.5输出1,小于0.5则输出-1,其余参数为默认。
其模型搭建方式如下图所示发送滤波器、信道、接收匹配滤波器的建模及参数设置:发送滤波器参数AWGN参数匹配接收滤波器参数抽样与判决器的建模及参数设置:Relay判决模块参数基带传输系统的总模型:定时提取子系统:5仿真结果分析(波形对比分析,误码率分析,接收信号眼图分析等)1、发送数据波形与接收数据波形从以上两图可以看出,发送数据波形与接收数据波形完全吻合,由于误码率很低且示波器的显示围有限,在图中看不到传输错误的码元。
通过接收端与发送端时域波形对比,可以看出设计的抽样判决器的抽样判决门限比较合理,可以顺利的完成对基带信号的抽样判决,与理论分析相一致。
2、经过升速率,发送滤波器,高斯信道,接收匹配滤波器后各点时域波形:3、接收眼图波形与分析:加性高斯信道的信噪比为50dB时:(1)从上图中可以看出,眼图的线迹比较细,比较清晰,并且“眼睛”很大,说明误码率比较低,码间串扰与噪声对系统传输可靠性影响不大。
(2)从上图中可以看出最佳时刻是0.5,1.5左右等时刻“眼睛”最大即抽样最佳时刻。
(3)因为眼图眼边的斜率比较大,所以看出定时误差灵敏度比较敏感。
(4)“眼睛”开的宽度为可抽样的时间围。
(5)抽样时刻,上下两个阴影区的间隔距离之半为噪声容限,若噪声瞬时值超过它就可能发生错判。
加性高斯信道的信噪比为10dB时:(6)从上图可以看出眼图比较乱,说明误码率较大。
对比两图可发现噪声对系统的传输有很大影响。
4、误码率统计与分析:通过误码率统计“Error Rate Calculation”模块。
可知该系统的误码率为0.001,且误码率会随着仿真时间的增长逐步降低。
出现错误的原因可能有以下几个方面:○1、误码有可能是由于噪声造成的。
由于噪声的存在,可能会使原有基带信号的正负电平出现逆转,由于抽样判决门限为0,造成判决出错出现误码。
○2、有可能是码间干扰的原因。
虽然理论分析可以完全消除码间干扰,但是由于平方根升余弦滤波器等部件不可能是完全理想的,所以在仿真及实际工程中码间干扰是不会完全消除的。
○3、由于采用相乘器等模块构造解码器,其解码过程也有可能会出错。
5:定时提取脉冲的波形:(上图是定时提取系统的输出波形,下图是以Pulse Generatorl模块作为理想接收恢复定时的输出波形。
)(1):当定时提取子模块延时4个时隙时:(2):当定时提取子模块延时8个时隙时:(1)(2)对比两图可发现定时提取模块延时改变,眼图变化不大,但误码率差别很大。
当延时为4时,误码率小,说明恢复定时脉冲的上升沿对准了眼图的最佳采样时刻,且与理想定时器的采样时刻相同。
延时改变时,误码率增大,与理想定时器的采样时刻不对应。
6遇到的问题及解决的方法因为通信建模书上有相似的例题,所以只是把两个例题的模块组合到一起,然后修改下要求的参数。
但仿真后眼图很乱,而且发送数据与恢复数据波形相比有一定延时。
经过思考影响眼图的因素,最终发现原因在加性高斯信道上,信噪比高,眼图就好,信噪比低眼图就很乱。
由于发送滤波器和接收滤波器的滤波延时均设计为10个传输码元时隙,所以在传输中共延时20个时隙,所以接收数据比发送数据延时了20个码元。
7结束语(收获、体会和改进设计的建议)这次的课程设计虽然时间很短,但我学到了很多东西。
通过这次的课程设计,让我更加清楚明了的学习到Simulink中的通信系统模型的搭建流程及各种功能模块的作用和参数设置的具体情况,同时,也让我学会了当遇到问题时,该如何思考及解决,根据产生及影响问题的因素去寻找解决方法。
并且,这次的课程设计大大提高了我的动手操作能力、问题分析及解决的能力。
设计的系统中应该再加入一些对功率,频谱等的测量以便更好地分析系统性能。
8指导教师评语(总页数在10页左右)。