人教版八年级上数学公式总结

合集下载

八年级人教版数学公式

八年级人教版数学公式

八年级人教版数学公式
八年级人教版数学公式主要包括平方差公式、完全平方公式等。

具体如下:
1. 平方差公式:(a+b)(a-b)=a^2-b^2。

2. 完全平方公式:(a±b)^2=a^2±2ab+b^2。

口诀为“前平方,后平方,积的两倍中间放,中间符号看情况”。

此外,还有因式分解的注意事项和解题技巧,具体如下:
1. 选择因式分解方法的一般次序是:一提取,二公式,三分组,四十字。

2. 使用因式分解公式时要特别注意公式中的字母都具有整体性。

3. 因式分解的最后结果要求分解到每一个因式都不能分解为止。

4. 因式分解的最后结果要求每一个因式的首项符号为正。

5. 因式分解的最后结果要求加以整理。

6. 因式分解的最后结果要求相同因式写成乘方的形式。

7. 因式分解的解题技巧包括换位整理、加括号或去括号整理、提负号、全变号、换元、配方等。

以上信息仅供参考,如需获取更多详细信息,建议查阅人教版八年级数学教材或咨询数学老师。

人教版八年级数学上册第14章2 乘法公式

人教版八年级数学上册第14章2 乘法公式

知2-练
例 3 计算: (1)(x+7y)2; (2)(-4a+5b)2; (3)(-2m-n)2; (4)(2x+3y)(-2x-3y).
解题秘方:确定公式中的“a”和“b”,利用完全平方 公式进行计算.
(1)(x+7y)2;
知2-练
解:(x+7y)2=x2+2·x·(7y)+(7y)2 =x2+14xy+49y2;
知2-练
解:原式=4y2-4y+1; 原式=9a2+12ab+4b2; 原式=x2-4xy+4y2; 原式=4x2y2+4xy+1.
2
例4
计算:(1)9992;(2)
30
1 3
.
知2-练
解题秘方:将原数转化成符合完全平方公式的形式,再 利用完全平方公式展开计算即可.
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
增项变化 (a-b+c)(a-b-c)=(a-b)2-c2
连用公式 (a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
特别解读
知1-讲
公式的特征:
1. 等号左边是两个二项式相乘,这两个二项式中有一项完
全相同,另一项互为相反数.
2. 等号右边是乘式中两项的平方差,即相同项的平方减去
=1 000 000-2 000+1=998 001;
2
(2)
30
1 3
.
2
2
2
30
1 3

30+
1 3
=302+2×30×13+
1 3
=900+20+
19=920 19.
4-1. 运用完全平方公式进行简便计算:

人教版初中数学八年级上册第十四章 平方差公式

人教版初中数学八年级上册第十四章 平方差公式

探究新知
14.2 乘法公式/
归纳总结
对于平方差中的a和b可以是具体的数, 也可以是单项式或多项式.在探究整除性或 倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整 除性或倍数关系.
巩固练习
14.2 乘法公式/
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
(2m)2 – 12 (5y)2 – z2
想一想 这些计算结果有什么特点?
探究新知
14.2 乘法公式/
平方差公式
(a+b)(a−b)= a2−b2 两数和与这两数差的积,等于这两个数的平方差. 公式变形:
1.(a – b ) ( a + b) = a2 – b2
2.(b + a )( –b + a ) = a2 – b2
解:李大妈吃亏了. 理由:原正方形的面积为a2,
改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
探究新知
14.2 乘法公式/
归纳总结
解决实际问题的关键是根据题意 列出算式,然后根据公式化简算式, 解决问题.
巩固练习
14.2 乘法公式/
如图1,在边长为a的正方形中挖掉一个边长为b的正方
D.4x2+1
3. 两个正方形的边长之和为5,边长之差为2,那么用较大的 正方形的面积减去较小的正方形的面积,差是___1_0____.
课堂检测
14.2 乘法公式/
4. 利用平方差公式计算:
(1)(a+3b)(a– 3b);
(2)(3+2a)(–3+2a);
解:原式=(a)2–(3b)2 解: 原式=(2a+3)(2a–3)

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版第十一章三角形。

1. 三角形的概念。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。

3. 三角形的三边关系。

- 三角形两边之和大于第三边,两边之差小于第三边。

- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。

4. 三角形的高、中线与角平分线。

- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。

- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线都在三角形内部,且相交于一点。

5. 三角形的内角和与外角和。

- 三角形内角和定理:三角形的内角和为180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。

- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。

- 三角形的一个外角大于与它不相邻的任何一个内角。

- 三角形的外角和为360^∘。

数学八年级上册人教版知识点

数学八年级上册人教版知识点

第十一章:三角形一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边相邻两边的公共端点叫做三角形的顶点相邻两边所组成的角叫做三角形的内角,简称三角形的角。

★2、三角形的特性与表示三角形有下面三个特性:(三角形是封闭图形)(1)三角形有三条线段(2)三条线段不在同一直线上(3)首尾顺次相接★3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

★4、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(平分三角形的面积)(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线。

(简称三角形的高)三角形的面积= 1/2×底×高注意:三角形的高不一定在三角形内部,其交点也不一定在三角形内部。

★5、三角形的分类三角形按边的关系分类如下:★三角形按角的关系分类如下:★把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

★6、三角形的稳定性(1)三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

(2)三角形稳定性的应用:三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

(3)四边形不具有稳定性。

(4)三角形的表示:三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。

★7、三角形的内角外角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

人教版八年级上册数学公式概念定理归纳

人教版八年级上册数学公式概念定理归纳

八年级上册数学概念、定义、公式归纳1.2.全等三角形的对应边相等, 对应角相等。

3.全等三角形对应边上的中线、对应角的平分线、对应边上的高相等。

4.作图: 作一个角等于已知角(课本P8)、作已知角的平分线(课本P19)、作线段的垂直平分线(课本P35)、作轴对称图形(课本P40)。

5.全等三角形的判定方法:三边对应相等的两个三角形全等。

(简写成SSS)两边和它们的夹角对应相等的两个三角形全等。

(简写成SAS)两角和它们的夹边对应相等的两个三角形全等。

(简写成ASA)两个角和其中一个角的对边对应相等的两个三角形全等。

(简写成AAS)斜边和一条直角边对应相等的两个直角三角形全等。

(简写成HL)6.7.8.9.10.成轴对称的两个图形全等。

11.12.13.14.15.“最短问题”解题方法: 课本P4216.17.18.19.20.21.22.负数没有算术平方根。

任何非负数的算术平方根只有一个。

23.24.25.1²=.2²=.3²=.4²=1.5²=2.6²=3.7²=4.8²=6.9²=8.10²=10.11²=12.12²=14.13²=16.14²=19.15²=22.16²=25.17²=28.18²=32.19²=36.20²=40.1³=.2³=.3³=2.4³=6.5³=12.6³=21.7³=34.8³=51.9³=72926.27.28.29.30.3132.33.在一个变化过程中, 我们称数值发生变化的量为变量, 数值始终不变的量叫常量。

34.35.36.37.38.39.40.41.42.4344.45.整式乘除法公式和方法:46.因式分解定义:47.因式分解方法:(1)提公因式法(2)公式法(将平方差公式、完全平方公式逆用)。

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。

人教版数学八年级上册-14.2--乘法公式

人教版数学八年级上册-14.2--乘法公式
是 10 的整数倍.
方法总结:对于平方差中的 a 和 b 可以是具体的数, 也可以是单项式或多项式,在探究整除性或倍数问 题时,一般先将整式化为最简,然后根据结果的特 征,判断其是否具有整除性或倍数关系.
例5 王大伯家把一块边长为 a 米的正方形土地租给了 邻居李大妈.今年王大伯对李大妈说:“我把这块地 一边减少 4 米,另外一边增加 4 米,继续原价租给你, 你看如何?”李大妈一听,就答应了.你认为李大妈 吃亏了吗?为什么? 解:李大妈吃亏了.理由如下:原正方形的面积为 a2,
(3) 通过以上规律请你进行下面的探索: ① (a-b)(a+b)=_a_2_-__b_2_; ② (a-b)(a2+ab+b2)=__a_3-__b_3__; ③ (a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.
内容
两个数的和与这两个数的差的积, 等于这两个数的平方差
平方差 公式
a−b b
a−b (a−b)2 b(a−b) a
b
ab
a (a − b)2 = a2 − ab − b(a − b) = a2 − 2ab + b2 差的完全平方公式: (a - b)2 = a2 - 2ab + b2 .
问题 观察下面两个完全平方式,比一比,回答下列问题:
(a + b)2 = a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2.
1. 字母表示:(a + b)(a-b) = a2-b2
注意
2. 紧紧抓住 “一同一反”这一特征, 在应用时,只有两个二项式的积才有 可能应用平方差公式;不能直接应用 公式的,要经过适当变形才可以应用
人教版数学八年级上册

人教版初中数学八年级上册14.2乘法公式(教案)示例

人教版初中数学八年级上册14.2乘法公式(教案)示例
实践活动中的实验操作部分,学生们对立方和与立方差公式的直观理解有了显著提高。但我认为,这部分内容的教学还可以进一步深化,比如通过更多的实际操作和物理模型来加强学生对立方公式的感知。
此外,我发现学生们在解决具体问题时,对于何时使用平方差公式和立方和差公式还不够自信。这可能是因为他们在公式选择和应用上缺乏足够的练习。因此,我计划在下一节课中增加更多针对性的练习,特别是那些涉及公式选择和综合应用的题目。
2.培养学生的数学运算能力,使学生能够熟练运用乘法公式进行简便计算,解决实际问题,增强数学运算的准确性。
3.培养学生的空间想象力和抽象思维能力,通过乘法公式的学习,引导学生从具体实例中提炼出数学规律,提升对数学概念的理解。
4.培养学生的团队协作和交流表达能力,课堂上鼓励学生进行小组讨论,分享乘法公式的发现与应用,提高学生的沟通能力。
-灵活运用乘法公式:学生在解决问题时,可能难以判断何时使用哪个乘法公式,需要通过大量练习和讲解,让学生掌握乘法公式的应用场景。
-识别并分解问题中的乘法结构:学生在面对复杂问题时,可能难以识别其中的乘法结构,需要教师指导如何分解问题,找到适用的乘法公式。
举例:
-难点突破:通过展开(a+b)²和(a-b)²,让学生观察并发现完全平方公式的规律,理解平方差公式的来源。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘法公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,我观察到学生们在讨论乘法公式在日常生活中的应用时,能够提出一些很有创意的想法。这表明他们能够将学到的知识应用到实际问题中。然而,我也发现有些小组在讨论时,成员之间的交流并不充分,导致部分学生的参与度不高。在未来的教学中,我需要更加注重引导学生之间的互动,确保每个学生都能积极参与讨论。

2023年人教版八年级上册数学必背公式(含解析)

2023年人教版八年级上册数学必背公式(含解析)

2023年人教版八年级上册数学必背公式(含解析)1. 平方公式- 两个相同数的平方差公式:$a^2 - b^2 = (a + b)(a - b)$2. 乘法公式- 平方差求积公式:$(a+b)(a-b) = a^2 - b^2$- 二次完全平方公式:$a^2 + 2ab + b^2 = (a + b)^2$- 二次不完全平方公式:$a^2 - 2ab + b^2 = (a - b)^2$3. 分式运算- 分式相乘公式:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$- 分式相除公式:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b}\times \frac{d}{c} = \frac{a \times d}{b \times c}$4. 代数运算- 求和公式:$a + b + c = c + b + a$- 求差公式:$a - b \neq b - a$- 求积公式:$a \times b = b \times a$- 求商公式:$\frac{a}{b} \neq \frac{b}{a}$5. 几何公式- 直角三角形斜边长度公式(勾股定理):$c^2 = a^2 + b^2$- 三角形内角和公式:$a + b + c = 180^\circ$- 相似三角形边长比例公式:$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$- 三角形周长公式:$P = a + b + c$6. 统计与概率公式- 平均数计算公式:$\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$- 可能性计算公式:$P(A) = \frac{\text{有利事件的个数}}{\text{总事件的个数}}$以上是2023年人教版八年级上册数学必背公式的完整版及相应解析。

【备考期末】初中数学八年级上册知识点及公式总结大全(人教版)

【备考期末】初中数学八年级上册知识点及公式总结大全(人教版)

【备考期末】初中数学八年级上册知识点及公式总结大全(人教版)人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章整式的乘除与分解因式一、知识框架:第十五章分式一、知识框架:初中物理、英语、数学网课特惠报名立即报名☟☟☟老生都知道的良心网校↓↓↓阅读原文。

最新人教版八年级数学上册第十四章《乘法公式》教材梳理

最新人教版八年级数学上册第十四章《乘法公式》教材梳理

庖丁巧解牛知识·巧学·升华一、乘法公式把具有特殊形式的多项式相乘的式子及其结果写成公式的形式,就是乘法公式.在多项式乘以多项式时,有一些问题形式固定、结果固定,因此我们把它归纳为乘法公式,利用乘法公式计算比利用多项式乘法法则计算简便得多.二、平方差公式(a+b)(a-b)=a2-b21.语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.例如:(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b22.特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方),而不要认为是前项的平方减去后项的平方,这和项的位置无关,应该首先分清相同项和相反项.3.公式中的字母a、b可以表示数,也可以表示单项式、多项式.某些式子,可以通过添加括号,变成平方差公式再应用.如果是单项式或多项式运用平方差公式,平方时,应把单项式或多项式加上括号.例如:(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b-c)(b-c)=a2-(b2-2bc+c2)=a2-b2+2bc-c2三、完全平方差公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b21.语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.例如:(a+3b)2=a2+2×a×3b+(3b)2=a2+6ab+9b2(2x-3)2=(2x)2-2×2x×3+32=4x2-12x+9记忆要诀简记为“首平方,末平方,积的2倍放中央”.2.特征:左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.3.公式中的a、b可以表示数,也可以表示单项式或多项式.4.有些问题要用到添括号法则、运算律或幂的有关性质.如(-a-b)2=[-(a+b)]2=(a+b)2;(-a+b)2=(b-a)2.5.两个完全公式之间的关系:(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2-4ab.四、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号.a+b+c=a+(b+c),a-b-c=a-(b+c)注意:(1)括号内的项是指哪些项;(2)括号前是正号还是负号.(3)逆用乘法分配律也具有添括号的作用.如-10x+5y+15z=-5(2x-y-3z).问题·思路·探究问题 在一次数学课外活动中,四个同学进行比赛,其计算的题目和过程如下: A :98×102=(100-2)(100+2)=1002-22=9 996;B :(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=12-2x 2=1-2x 2;C :2 0042-1 9962=(2 004+1 996)(2 004-1 996)=32 000;D :(2a +b )(3a-b )=(2a )2-b 2=4a 2-b 2.谁对谁错,请你当评委.思路:该问题主要是对平方差公式 (a +b )(a-b )=a 2-b 2的运用及其逆用.平方差公式实质上进行的是特殊形式的多项式乘法,运用平方差公式及其逆用往往使计算更简便.如(a-b +c )2-(a +b-c )2=[(a-b +c )+(a +b-c )][(a-b +c )-(a +b-c )]=-4ab +4ac.此外,平方差公式有如下的几何意义.如图15-3-1,平方差公式表示从边长为a 的大正方形面积中去掉边长为b 的小正方形后的阴影部分的面积.图15-3-1探究:98×102=(100-2)(100+2)=1002-22=9 996,故A 对;(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=1-4x 2,故B 错,他们都是利用平方差公式进行计算.2 0042-19962=(2 004+1 996)(2 004-1 996)=32 000,是逆用平方差公式,故C 对;而(2a +b )(3a-b )不符合平方差公式的特征不能用平方差公式,只能根据多项式乘法法则计算,结果为6a 2+ab-b 2,故D 错.典题·新题·热题例1计算:(1)5012;(2)99.82;(3)6031×5932;(4)2 0062-2 005×2 007. 思路解析:本题是利用平方差公式和完全平方公式进行简便运算,关键是写成公式的形式.解:(1)5012=(500+1)2=5002+2×500×1+12=250 000+1 000+1=251 001.(2)99.82=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.(3)6031×5932=(60+31)(60-31)=602-(31)2=3 600-91=3 59998. (4)原式=2 0062-(2 006-1)×(2 006+1)=2 0062-(2 0062-1)=1.深化升华 利用公式可以简便运算,应观察每个题的特征,找到符合公式的特征,利用公式,达到简便运算的目的.例2大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x (x +y )=2x 2+2xy 就可以用图15-3-2(1)的面积表示.图15-3-2(1)请写出图15-3-2(2)所表示的代数恒等式:________________;(2)请写出图15-3-2(3)所表示的代数恒等式:________________;(3)试画出一个几何图形,使它的面积能表示(x +y )(x +3y )=x 2+4xy +3y 2. 思路解析:本题是图形的拼接问题,可以看成是一种图形的两种面积表示方法,所以它们是相等的.计算面积时,列出的是整式的乘法式.解:(1)(x +y )(2x +y )=2x 2+3xy +y 2.(2)(2x +y )(x +2y )=2x 2+5xy +2y 2.(3)答案不唯一,如图15-3-3.图15-3-3例3已知(a +b )2=7,(a-b )2=4,求a 2+b 2和ab 的值.思路解析:由于(a +b )2和(a-b )2的展开式中都只含有a 2+b 2和ab ,所以把(a +b )2和(a-b )2展开,已知的两个等式可看成是关于a 2+b 2和ab 的二元一次方程组,可求a 2+b 2和ab 的值.解:由(a +b )2=7,得________ a 2+2ab +b 2=7.①由(a-b )2=4,得a 2-2ab +b 2=4.②①+②得________2(a 2+b 2)=11,________∴a 2+b 2=211. ①-②得4ab =3,∴ab =43. 深化升华 完全平方和、完全平方差与平方和之间的关系是整式变形的基础: (a +b )2-(a-b )2=4ab ,(a +b )2=(a 2+b 2)+2ab ,(a-b )2=(a 2+b 2)-2ab.例4已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.思路解析:式子a2+b2+c2-ab-bc-ac=0体现了三角形三边a、b、c的关系,从形式上看与完全平方式相仿,但差着2ab中的2倍,因此可以对等式两边都扩大2倍,从而得到结论.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0,即(a2-2ab+b2)+(b2-2bc+c2)+(c2+a2-2bc)=0.∴a-b=0,b-c=0,c-a=0,即a=b=c,所以△ABC是等边三角形.深化升华和例3一样,当式子中有平方和时,经常“凑”乘积的2倍,构造完全平方和,构造出非负数的和为0的情况.。

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳

精心整理第十一章全等三角形11.1全等三角形(1)形状、大小相同的图形能够完全重合;(2)全等形:能够完全重合的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)平移、翻折、旋转前后的图形全等;(5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)对应角:全等三角形中相互重合的角叫做对应角;(7)对应边:全等三角形中相互重合的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形全等来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:课本第19页;(2)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线相交于一点,该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

人教版初中数学知识点总结及公式大全

人教版初中数学知识点总结及公式大全

人教版初中数学知识点总结及公式大全一、数与式1.自然数与整数•自然数是从1开始的正整数:1, 2, 3, 4…•整数是包括0及其正整数和负整数的集合:…,-3,-2,-1,0,1,2,3,…•正整数、负整数、0之间的大小关系:负整数<0<正整数2.有理数•有理数包括整数、分数及它们的负数:–整数可以表示为分母为1的分数。

–有理数可用分数表示,分数有正负之分。

3.实数•实数是包括有理数和无理数的集合:–有理数是可以准确表示为有限位小数或无限循环小数的数。

–无理数是不能准确表示为有限位小数或无限循环小数的数,如π,√2等。

4.数轴与数的比较•数轴是用于表示数与数之间大小关系的图形。

•数轴上的两个数,位于数轴的左侧的数较小,位于数轴右侧的数较大。

5.数的绝对值•数a的绝对值表示为|a|,用来表示a与0之间的距离。

–若a>0,|a|=a;–若a=0,|a|=0;–若a<0,|a|=-a。

6.数与式的定义和性质•数是表示数量的抽象概念,如:0,1,2,3…•式是由数、代数式、运算符号和等号组成的符号集合。

7.集合与集合间的关系•集合是由不同对象组成的整体,如:奇数集合{1, 3, 5, …},偶数集合{2, 4, 6, …}。

•子集:集合B的一切元素都是集合A的元素,则集合B是集合A的子集,用B⊆A表示。

•并集:由集合A和集合B的所有元素组成的集合,记作A∪B。

•交集:既属于集合A又属于集合B的元素组成的集合,记作A∩B。

二、代数式1.代数式的定义和性质•代数式是由数、字母、运算符号和括号组成的符号集合,代表一类数。

•代数式的值与其中的字母有关,通常用字母x表示。

2.代数式化简•合并同类项:将含字母和数的项的系数相加,字母部分保持不变。

•变形:利用代数式的特性经过一系列变形达到化简的目的。

3.代数式的加减法与乘除法•加减法:合并同类项的加减法则,将相同字母的项的系数相加减。

•乘法:用Distributive Law,即分配律,将每一个字母项进行相乘。

人教版初中数学知识点总结+公式

人教版初中数学知识点总结+公式

第一章 有理数一. 知识框架(1)凡能写成 (p , q 为整数且p 0) 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统p 称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; pa i 不是有理数;正整数正整数(2)有理数的分类: ①②有理数负整数 正分数 负分数负有理数 分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表 示某数的点离开原点的距离;a (a 0) a (a 0)(2) 绝对值可表示为: a 0 (a 0) 或 a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正 数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的 16.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么 的倒数是 ;若 ab=1a 、a(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;a.(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a) =-a或(a-b) =-(b-a) ,当nn n n n为正偶数时:(-a) =a或(a-b) =(b-a) .n n n n14.乘方的定义:15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数,这种记数法叫n16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上数学公式总结
1、三角形两边之和大于第三边;三角形两边之差小于第三边;(注:只要最短的两边之和大于最长边,则可围成三角形)
2、两边之差<第三边<两边之和,即:第三边c的取值范围是:a-b<c<a+b;
3、锐角:大于0小于90的角,钝角:大于90小于180的角,
4、锐角三角形的三条高交于三角形内部一点;钝角三角形的三条高不相交于一点,但三条高所在直线交于外部一点;直角三角形的三条高交于直角顶点;(注:三角形三条高所在直线交于一点)∵AD是高: ∴∠ADB=∠ADC=90
5、三角形三条中线相交于三角形内一点,且把三角形分成面积相等的两部分;三角形三条中线的交点叫做三角形的重心。

:如图3:∵AD是△ABC的中线,∴
6、三角形三条角平分线相交于三角形内一点,且这点到三角形三边的距离相等;如图4:∵AD是△ABC角平分线,∴
7、三角形的高、中线、与角平分线都是线段;
8、三角形具有稳定性,而四边形没有稳定性。

9、三角形三个内角的和等于180;
10、正北与正北平行,正南与正南平行;
11、直角三角形的两个锐角互余,即相加等于90;有两个角互余的三角形是直角三角形;
12、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

13、三角形的外角等于与它不相邻的两个内角和;
∴∠ACD=∠A+∠B
14、过多边形的一个顶点出发作它的对角线,可以作出(n-3)条对角线;
15、多边形的对角线总数=条;
16、正多边形:边和角都相等的多边形;正三角形也就是等边三角形,正四边形也就是正方形;
17、n边形内角和等于(n-2)180;多边形外角和都等于360;正n边形每个内角的度数=;正n边形每个外角的度数= ;(注:内角相等,则外角也相等,因为外角与相邻内角的和等于180)
18、一个多边形的边都相等,则它的内角不一定都相等;反之,一个多边形的内角都相等,则它的边不一定都相等;多边形最多有3个锐角;
19、只有正三角形、正四边形、正六边形可以一种镶嵌。

第二章:全等三角形
1、能够完全重合的两个三角形叫做全等三角形;“全等”用“≌”表示,读作“全等于”;
2、全等三角形的对应边相等,对应角相等;周长相等,面积相等;
3、判定两个三角形全等的5个方法:①三边分别相等的两个三角形全等;简写成“边边边”或“SSS”。

②两边和它们的夹角分别相等的两个三角形全等;简写成“边角边”或“SAS”。

③两角和它们的夹边分别相等的两个三角形全等;简写成“角边角”或“ASA”。

④两角和其中一个角的对边分别相等的两个三角形全等;简写成“角角边”或“AAS”。

⑤斜边和一条直角边分别相等的两个直角三角形全等;简写成“斜边、直角边”或“HL”。

(注:Rt△就是直角三角形)
4、角平分线上的点到角的两边的距离相等;角的内部到角的两边的距离相等的点在角的平分线上;∵OC是∠AOB的角平分线∴, ∠AOB=2∠AOC=2∠BOC∵OC是∠AOB的角平分线,且PD⊥OA,PE⊥OB;∴PD=PE(注:三角形三条角平分线的交点到三角形三边的距离相等)第三章:轴对称
1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

2、垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

3、垂直平分线上的点到这条线段两个端点的距离相等。

(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

如图5:∵CD是AB的垂直平分线,
∴∠COA=∠COB=∠DOA=∠DOB=90,AO=BO,CA=CB;
4、三角形三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

5、对应点所连线段的垂直平分线就是它们的对称轴。

(注:对称轴是一条直线)
6、关于某条直线对称的两个图形是全等形,即:对应线段相等,对应角相等。

7、关于x轴对称,x不变,y变;(变为相反数)
关于y轴对称,y不变,x变;关于原点对称,两个都要变。

8、有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰与底边的夹角叫做底角;
9、①等腰三角形的两个底角相等,(简写成“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,(简写成“三线合一”);
10、如果一个三角形有两个角相等,那么这两个角所对的边也相等,(简写成“等角对等边”);
11、三边都相等的三角形叫做等边三角形,等边三角形是一种特殊的等腰三角形;
12、等边三角形的三个内角都相等,并且每一个角都等于60;
13、①三边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60的等腰三角形是等边三角形;
14、注:等腰三角形只是底边“三线合一”,而等边三角形则各边都“三线合一”;
15、在直角三角形中,30的角所对的边等于斜边的一半;反之,如果一个直角三角形的一边等于斜边的一半,则可得这边所对的角是30;
16、求两条线段之和最短问题:如:求AC+BC最短?做法(如图6):①作出点B关于L的对称点,②然后再把与A连接,与直线L的交点C即为所求。

第四章:整式的乘法与因式分解
1、;逆运算:
2、;逆运算:
3、;逆运算:;;
4、;(注:;互为倒数的两个数相乘得1,互为相反数的两个数相加得0)
5、;或;逆运算:;(注:)
6、7、平方差公式:;或:;注:;
8、完全平方公式:
和;即:;
9、;;;
10、①去括号法则:;;②添括号法则:;;即:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

即:遇“+”不变,遇“-”都变。

11、分解因式:就是化解成相乘的形式。

分解因式有三个方法:①提公因式法;②平方差公式,即:;③完全平方公式,即:;如:;;
12、(a+b)(p+q)=ap+aq+bp+bq;(am+bm)m=amm+bmm第五章:分式
1、分母中含有字母的式子就叫做分式;注:π不是字母;
2、要有意义分母不能为0,若分母等于0,则分式没有意义;
3、当分子等于0,代入分母不等于0,分式的值就为0;
4、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变;即:
5、约分:把分式的分子、分母的公因式约去,彻底约分后没有公因式的分式叫最简分式。

(注:)
6、通分:化成相同分母的形式;求最简公分母的法则:首先要对分母进行因式分解,然后:一边有,一边没有的要,两边都有的要最高的那个。

(注:数字部分要它们的最小公倍数)。

7、小于1的数用科学计数法表示为:的形式;1米=纳米;1纳米=米;
8、分母中含有未知数的方程叫做分式方程;首先要对分母进行因式分解,然后再去分母,即方程两边同乘以最简公分母,最后要进行检验:将解代入最简公分母,如果最简公分母不为0,则就是原方式方程的解;如果代入最简公分母为0或代入分式方程的分母为0,则这个解不是原方式方程的解,原方式方程无解。

(注:若方程无解,则算出的解代入最简公分母要等于0)。

9、顺流速度=船的速度+水的速度,逆流速度=船的速度-水的速度;;(一般把工作总量看作整体1),工作量=工作效率时间人数;;(注:“提前”是“时间少”的意思);;;。

相关文档
最新文档