人教版 九年级数学 第26章 反比例函数 章末复习(含答案)
初三数学下册(人教版)第二十六章反比例函数26.1知识点总结含同步练习及答案
k S = P M ⋅ P N = |y| ⋅ |x| = |xy| .因为 y = ,所以 k = xy ,故 S = |k|.连接 P O ,MN ,则 △P MO 和 △MON x 1
1 和 △P NO 的面积都相等,其值为 |k| . 2
x
常见模型 ① A ,B 为反比例函数上任意不重合两点,连接 OA ,OB ,过 A ,B 分别作 AE ⊥ x 轴,BF ⊥ x 轴于点 E,F , 则 S △OAB = S 四边形AEFB .
k1 k 上一点,向 x,y 轴上作垂线,交反比例函数 y = 2 上于点 A ,B ,交 x 轴于点 x x
③ 当反比例函数过矩形对角线交点时,则 S 四边形OABC = 4k .
④ 当反比例函数过矩形一个顶点,并且原点在矩形的一条对角线上时,则 S 1 = S 2 = k.
⑤ 四边形 ABCD 为平行四边形,对角线的交点与原点重合,A 、B 、C 、D 在反比函数图象上,则
10 ,当 1 < x < 2 时,y 的取值范围是( ) x B. 1 < y < 2 C. 5 < y < 10 D. y > 10
如图,A 、B 两点在双曲线 y =
S 1 + S 2 =(
)
4 上,分别经过 A 、B 两点向轴作垂线段,已知阴影部分的面积为 1 ,则 x
A. 3 B. 4 C. 5 D. 6 解:D. 因为过 A 、B 两点所作出的矩形面积为 4 ,所以 S 1 = S 2 = 3 . 如图,原点O 是矩形 ABCD 的对称中心,顶点 A 、C 在反比例函数图象上,AB 平行 x 轴.若矩形 ABCD 的面积 为 8 ,那么反比例函数的解析式是______.
人教版 九年级数学 第26章 反比例函数 复习题(含答案)
人教版九年级数学第26章反比例函数复习题一、选择题(本大题共10道小题)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的叙述,姜老师给出的这个函数表达式可能是( )A. y=3xB. y=3 xC. y=-1x D. y=x22.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v千米/小时与时间t小时的函数关系是( )A. v=320tB. v=320t C. v=20t D. v=20t3.(2019·江苏扬州)若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是A.B.C.D.4. 如图,一次函数y1=ax+b与反比例函数y2=k x的图象如图所示,当y1<y2时,则x的取值范围是( )A. x<2B. x>5C. 2<x<5D. 0<x<2或x>55. (2020·长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为106 m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是 ···········································()A.B.C.D.6. (2019·江苏无锡)如图,已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为A.2 B.﹣2C.4 D.﹣47. (2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B (3,0)为顶点的R t△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y的图象上,则k的值为()A.36 B.48 C.49 D.648. (2020·威海)一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是()A.B.C.D.9. 反比例函数y=1-6t x的图象与直线y=-x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )A. t<16 B. t>16 C. t≤16 D. t≥1610. (2019·江苏宿迁)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为A.B.C.2 D.二、填空题(本大题共8道小题)11. 已知反比例函数y=k x(k≠0)的图象如图所示,则k的值可能是________(写一个即可).12.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=-3x的图象上有一些整点,请写出其中一个整点的坐标________.13. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.14. 双曲线y=m-1 x在每个象限内,函数值y随x的增大而增大,则m的取值范围是________.15. (2019·浙江绍兴)如图,矩形ABCD的顶点A,C都在曲线y(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是__________.16. 如图,点A,B是双曲线y=6 x上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和.为________.17. 如图,已知点A,C在反比例函数y=ax的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,AB与CD间的距离为6,则a-b的值是________.18. (2019·浙江宁波)如图,过原点的直线与反比例函数y(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为__________.三、解答题(本大题共4道小题)19. 如图,一次函数y=kx+b的图象与反比例函数y=m x(x>0)的图象交于A(2,-1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.20. 如图,在直角坐标系中,直线y=-12x与反比例函数y=kx的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=-1 2x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.21. (2019·浙江金华)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.22. (2019·浙江舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB 的顶点A在反比例函数y的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,求a的值.人教版九年级数学第26章反比例函数复习题-答案一、选择题(本大题共10道小题)1. 【答案】B 【解析】图象经过一,三象限,则它可能是正比例函数或反比例函数;在每一个象限内,y随x的增大而减小,则它是反比例函数,并且反比例函数中的比例系数大于0,故本题选B.2. 【答案】B【解析】∵由题意可得路程s=80×4=320,∴v=320 t.3. 【答案】C【解析】∵反比例函数上两个不同的点关于y轴对称的点,在一次函数y=–x+m图象上,∴反比例函数与一次函数y=–x+m有两个不同的交点,联立两个函数解方程,∵有两个不同的交点,∴有两个不等的根,∴Δ=m2–8>0,∴m>2或m<–2,故选C.4. 【答案】D【解析】根据图象得:当y1<y2时,x的取值范围是0<x<2或x>5.5. 【答案】A【解析】本题考查了对实际问题的解析能力,根据题意找到函数中的数量关系,运送速度=运送总量÷时间,因此本题选A.6. 【答案】D【解析】∵AB⊥y轴,∴S△OAB=|k|,∴|k|=2,∵k<0,∴k=﹣4.故选D.7. 【答案】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△P AE +S△P AB+S△PBD+S△OAB=S矩形PEOD,∴t×(t﹣4)5×t t×(t﹣3)3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y得k=6×6=36.故选:A.8. 【答案】:A 、由函数y =ax ﹣a的图象可知a >0,﹣a >0,由函数y (a ≠0)的图象可知a <0,错误;B 、由函数y =ax ﹣a 的图象可知a <0,由函数y (a ≠0)的图象可知a >0,相矛盾,故错误;C 、由函数y =ax ﹣a 的图象可知a >0,由函数y (a ≠0)的图象可知a <0,故错误;D 、由函数y =ax ﹣a 的图象可知a <0,由函数y (a ≠0)的图象可知a <0,故正确; 故选:D .9.【答案】B 【解析】将y =-x +2代入到反比例函数y =1-6tx中,得:-x +2=1-6t x ,整理,得:x 2-2x +1-6t =0,∵反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,∴⎩⎪⎨⎪⎧(-2)2-4(1-6t )>01-6t <0,解得t >16.10. 【答案】A【解析】设D (m ,),B (t ,0),∵M 点为菱形对角线的交点,∴BD ⊥AC ,AM =CM ,BM =DM ,∴M (,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB=,∴.故选A.二、填空题(本大题共8道小题)11. 【答案】-2(答案不唯一)【解析】根据反比例函数的图象在二、四象限,则k<0,如k=-2(答案不唯一).12. 【答案】(1,-3)(答案不唯一,合理即可)【解析】对于y=-3x,依题意,说明只要x是3的约数即可,如(1,-3),(-1,3).13. 【答案】8[解析]由得或,∴A的坐标为(2,2),C的坐标为(-2,-2).∵AD⊥x轴于点D,CB⊥x轴于点B,∴B(-2,0),D(2,0),∴BD=4,AD=2,∴四边形ABCD的面积=AD·BD×2=8.14. 【答案】m<1【解析】∵在每个象限内,函数值y随x的增大而增大,∴双曲线在二、四象限内,∴在函数y=m-1x中,m-1<0,即m<1.15. 【答案】y x【解析】∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入,得,解得,∴直线BD的解析式为y x.故答案为y x.16. 【答案】8【解析】设两个空白矩形面积为S1、S2,则根据反比例函数的几何意义得:S1+2=S2+2=6,∴S1=S2=4,∴两个空白矩形的面积和为:S1+S2=8.17. 【答案】3【解析】设点A的纵坐标为y1,点C的纵坐标为y2,∵AB∥CD∥x轴,∴点B的纵坐标为y1,点D的纵坐标为y2,∵点A在函数y=ax的图象上,点B在函数y=bx的图象上,且AB=34,∴ay1-by1=34,∴y1=4(a-b)3,同理y2=2(b-a)3,又∵AB与CD间的距离为6,∴y1- y2=4(a-b)3-2(b-a)3=6,解得a-b=3.18. 【答案】6【解析】如图,连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠BAE=∠DAE,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE =S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC(DH+AF)×FH+S△HDC2m12,∴2k=12,∴k=6;故答案为6.三、解答题(本大题共4道小题)19. 【答案】解:(1)∵点A(2,-1)在反比例函数y=mx的图象上,∴-1=m2,即m=-2.(1分)∴反比例函数的解析式为y=-2x.(2分)∵点B(12,n)在反比例函数y=-2x的图象上,∴n=-212=-4,即点B的坐标为(12,-4).将点A(2,-1)和点B(12,-4)分别代入y=kx+b,得⎩⎪⎨⎪⎧2k+b=-112k+b=-4,解得⎩⎪⎨⎪⎧k=2b=-5,∴一次函数的解析式为y=2x-5.(5分)(2)如解图,设直线AB交y轴于点D.令y=2x-5中x=0,得y=-5,即点D的坐标是(0,-5),∴OD=5.(7分)∵直线y=2与y轴交于点C,∴C点的坐标是(0,2),(8分)∴CD=OC+OD=7.∴S△ABC=S△ACD-S△BCD=12×7×2-12×7×12=7-74=214.(10分) 20. 【答案】解:(1)∵点A的纵坐标是3,当y=3时,3=-12x, 解得x=-6,∴点A 的坐标为(-6,3),(1分)把A(-6,3)代入y =k x ,得3=k-6, 解得k =-18,∴反比例函数的解析式为y =-18x .(3分)解图(2)如解图,连接CO ,∵A ,B 关于原点对称, ∴AO =BO ,∴S △AOC =12S △ABC =24.(4分)作CF ⊥x 轴于点F ,AE ⊥x 轴于点E ,则S △CFO =S △AEO =12AE·EO =12×3×6=9,S △AOC =S 梯形AEFC =24.设C(x ,-18x ),则有(3-18x )(x +6)2=24,(5分)整理得x 2-16x -36=0, ∴x 1=-2,x 2=18(舍去), ∴C(-2,9),(7分)设y =-12x 平移后的解析式为y =-12x +b , 把C(-2,9)代入上式得, 9=1+b , 解得b =8,∴平移后的直线的函数表达式为y =-12x +8.(8分)21. 【答案】(1)点A 在该反比例函数的图象上,理由见解析;(2)Q 点横坐标为;【解析】(1)点A 在该反比例函数的图象上,理由如下: 如图,过点P 作x 轴垂线PG ,连接BP ,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG,∴P(2,),∵P在反比例函数y上,∴k=2,∴y,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)由题易得点D的坐标为(3,0),点E的坐标为(4,),设直线DE的解析式为y=ax+b,∴,∴,∴y x﹣3,联立方程,解得x(负值已舍),∴Q点横坐标为;(3)A(1,2),B(0,),C(1,0),D(3,0),E(4,),F(3,2),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(1﹣m,2n),B(﹣m,n),C(1﹣m,n),D(3﹣m,n),E(4﹣m,n),F(3﹣m,2n),①将正六边形向左平移两个单位后,E(2,),F(1,2);则点E与F都在反比例函数图象上;②将正六边形向左平移–1个单位,再向上平移个单位后,C(2,),B(1,2),则点B与C都在反比例函数图象上;③将正六边形向左平移2个单位,再向上平移–2个单位后,B(﹣2,),C(﹣1,﹣2);则点B与C都在反比例函数图象上.22. 【答案】(1)反比例函数的解析式为y;(2)a的值为1或3.【解析】(1)如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y,解得k=4.∴反比例函数的解析式为y;(2)分两种情况讨论:①当点D是A′B′的中点,如图2,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y代入y,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH,O′H=1.把y代入y,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.。
人教版九年级下册数学第二十六章 反比例函数含答案(满分必刷)
人教版九年级下册数学第二十六章反比例函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,反比例函数的图象在其所在的每个象限内y随x的增大而减小,则k的取值范围是A. B. C. D.2、如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y= (k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE,OF,EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°, EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2B.3C.4D.53、一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是( )A. B. C. D.4、如图,在Rt△OAB中,∠OBA=90°,OA在x轴上,AC平分∠OAB,OD平分∠AOB,AC与OD相交于点E,且OC=,CE=,反比例函数的图象经过点E,则k的值为()A. B. C. D.5、如图,平行四边形AOBC中,对角线交于点E,双曲线y= (k>0)经过A、E两点,若平行四边形AOBC的面积为24,则k的值是()A.8B.7.5C.6D.96、在同平面直角坐标系中,函数y=x﹣1与函数y=的图象大致是()A. B. C. D.7、已知点M(-2,4)在双曲线y= 上,则下列各点一定在该双曲线上的是()A.(-2,-4)B.(4,-2)C.(2,4)D.(4,2)8、已知广州市的土地总面积约为7434 km2,人均占有的土地面积S(单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为()A.S=7434nB.S=C.n=7434SD.S=9、如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y= 的图象交BC于D,连接AD,则四边形AOCD的面积是()A.6B.7C.9D.1010、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.11、如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A.32B.64C.16D.16+1612、若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )A.0B.1C.2D.以上都不是13、已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B. C. D.14、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上,若AB=2,则k的值为()A.4B.2C.2D.15、下列各式不能确定为反比例函数关系的是()A. B. C. D.二、填空题(共10题,共计30分)16、给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.17、若反比例函数的图象经过点,则m=________.18、点(2,5)在反比例函数的图象上,那么k=________.19、双曲线y1, y2在第一象限的图象如图,已知y1=,过y1上的任意一点A作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=,则y2的表达式是________.20、已知点(,),(,),(,)均在反比例函数的图象上,则,,的大小关系是________.(用“<”连接)21、若反比例函数y=的图象经过第一、三象限,则 k的取值范围是________ .22、已知反比例函数的图象具有下列特征:在所在的象限内,y随x 的增大而增大,那么m的取值范围是________.23、如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为________.24、如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.25、如图,已知第一象限内的点A在反比例函数y= 上,第二象限的点B在反比例函数y= 上,且OA⊥OB,tanA= ,则k的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?28、已知函数y=(m﹣1)x|m|﹣2是反比例函数.(1)求m的值;(2)求当x=3时,y的值.29、如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B (4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.30、在平面直角坐标系中,反比例函数y= (k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、A6、C7、B8、B9、C10、A11、A12、A13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
人教版数学九年级下册 第26章 反比例函数 复习练习题及答案
人教版数学九年级下册 第26章 反比例函数 复习练习题及答案人教版数学九年级下册 第26章 反比例函数 复习练习题1. 如图,过反比例函数y =1x (x >0)的图象上任意两点A ,B 分别作x轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设△AOC 和△BOD 的面积分别是S 1,S 2,比较它们的大小,可得( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定2. 若直线y =kx +b 经过第一、二、四象限,则函数y =kb x 的图象在( )A .第一、三象限B . 第一、二象限C .第三、四象限D .第二、四象限3. 已知点(-1,y 1),(2,y 2),(π,y 3)在双曲线y =-k 2+1x 上,则下列关系式正确的是( )A .y 1>y 3>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 1>y 24. 下列等式中,____________________是反比例函数(填序号)(1)y =x 3;(2)y =-2x ;(3)xy =21;(4)y =5x +2;(5)y =-32x ; (6)y =1x +3;(7)y =x -4.5. 函数y =-1x +2中,自变量x 的取值范围是________.6. 若函数y =(2m -1)x 与y =3-m x 的图象交于第一、三象限,则m的取值范围是________.7. 反比例函数y =-2x ,当x =-2时,y =________;当x <-2时,y 的取值范围是________;当-2<x <0时,y 的取值范围是________.8. 下列哪个等式中的y 是x 的反比例函数?_________________y =4x ,y x =3,y =6x +1,xy =123.9. 京沈高速公路全长658 km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需的时间t(h )与行驶的平均速度v(km /h )之间的函数关系式为________.10. 已知y 是x 的反比例函数,当x =2时,y =6.写出y 关于x 的函数关系式.求当x =4时,y 的值.11. 当m 取什么值时,函数y =(m -2)x3-m 2是反比例函数?12. 已知y 是x 的反比例函数,并且当x =3时,y =-8.(1)写出y 与x 之间的函数关系式;(2)当y =2时,求x 的值.13. 画出反比例函数y =6x 与y =-6x 的图象.14. 已知反比例函数y =(m -1)xm 2-3的图象在第二、四象限,求m 的值,并指出在每个象限内y 随x 的变化情况.15. 已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?随自变量的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?16. 如图是反比例函数y=m-5x的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在上图的图象上任取点A(a,b)和点B(a′,b′),如果a>a′,那么b和b′有怎样的大小关系?17. 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?18. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?19. 一个用电器的电阻是可调节的,其范围为110 Ω~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?20. 一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数.当V=10 m3时,ρ=1.43 kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2 m3时氧气的密度ρ.21. 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15 m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15 m,相应的,储存室的底面积应改为多少才能满足需要?(保留两位小数)参考答案:1. B2. D3. A4. (2)(3)(5)5. x ≠-2.6. 12<m <37. 1 y <1 y >18. xy =1239. t =658v10. 解:设y =k x ,因为x =2时,y =6,所以有6=k 2,解得k =12,因此y =12x ,把x =4代入y =12x ,得y =124=3.11. 由题意可知⎩⎪⎨⎪⎧m -2≠0,3-m 2=-1,解得m =-2. 12. (1)y =-24x(2)x =-1213.14. 解:∵y =(m -1)xm 2-3是反比例函数,∴m 2-3=-1,且m-1≠0.又∵图象在第二、四象限,∴m -1<0.解得m =±2,且m <1,则m =- 2.在每个象限内,y 随x 的增大而增大.反比例函数y =k x 的图象,当k >0时,在每一个象限内,y 的值随x值的增大而减小;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.15. 解:(1)设这个反比例函数的解析式为y =k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数解析式,得6=k 2,解得k =12,即这个反比例函数的表达式为y =12x .因为k>0,所以这个函数的图象在第一、三象限内,y 随x 的增大而减小.(2)把点B ,C 和D 的坐标代入y =12x ,可知点B 、点C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,所以点B 、点C 在函数y =12x 的图象上,点D 不在该函数的图象上.16. 解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m -5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小,因为a>a ′,所以b <b ′.17. 解:(1)设轮船上的货物总量为k 吨,根据已知条件得k =30×8=240,所以v 关于t 的函数解析式为v =240t .(2)把t =5代入v =240t ,得v =2405=48(吨).从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数v =240t ,当t>0时,t 越小,v 越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.18. 解:(1)根据“杠杆原理”,得Fl =1 200×0.5,所以F 关于l 的函数解析式为F =600l .当l =1.5 m 时,F =6001.5=400(N ).对于函数F =600l ,当l =1.5 m 时,F =400 N ,此时杠杆平衡,因此,撬动石头至少需要400 N 的力.(2)对于函数F =600l ,F 随l 的增大而减小.因此,只要求出F =200 N时对应的l 的值,就能确定动力臂l 至少应加长的量.当F =400×12=200时,由200=600l 得l =600200=3(m ),3-1.5=1.5(m ).对于函数F =600l ,当l>0时,l 越大,F 越小.因此,若想用力不超过400 N 的一半,则动力臂至少要加长1.5 m .19. 解:(1)根据电学知识,当U =220时,得P =2202R . ① (2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值R =110代入①式,得到功率的最大值P =2202110=440(W); 把电阻的最大值R =220代入①式,得到功率的最小值 P =2202220=220(W).因此用电器功率的范围为220W ~440W.20. (1)ρ=mV ,当V =10 m 3时,ρ=1.43 kg/m 3,所以m =ρV =10×1.4=14.3,所以ρ=14.3v ;(2)当V =2 m 3时,ρ=14.32=7.15(kg/m 3). 21. 我们知道圆柱的容积是底面积×高,而现在容积一定为104 m 3,所以S ·d =104.变形就可得到底面积S 与其深度d 的函数关系式,即S =104d ,所以储存室的底面积S 是其深度d 的反比例函数.根据函数S =104d ,我们知道给出一个d 的值就有唯一的S 的值和它相对应,反过来,知道S 的一个值,也可求出d 的值.根据S =104d ,得500=104d ,解得d =20,即施工队施工时应该向下挖进20米.根据S =104d ,把d =15代入此式,得S =10415≈666.67(m 2).当储存室的深为15 m时,储存室的底面积应改为666. 67 m2才能满足需要.人教版九年级数学下册第二十六章 反比例函数 单元测试题一、选择题(本大题共6小题,每小题4分,共24分)1.点(-3,4)在反比例函数y =kx 的图象上,则下列各点中不在此函数图象上的是( )A .(-4,3)B .(3,-4)C .(2,-6)D .(-6,-2)2.已知反比例函数y =-2x ,则下列结论不正确的是( )A .其图象必经过点(-1,2)B .y 随x 的增大而增大C .其图象在第二、四象限内D .若x >1,则-2<y <03.当x >0时,下列四个函数:y =-x ,y =2x +1,y =-1x ,y =2x ,其中y 随x 的增大而增大的有( )A .1个B .2个C .3个D .4个4.二次函数y =ax 2+b (b >0)与反比例函数y =ax 在同一平面直角坐标系中的图象可能是( )图15.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =-4x 的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 16.如图2,在平面直角坐标系中,已知△ABC 为等腰直角三角形,CB =CA =5,点C的坐标为(0,3),点B 在x 轴正半轴上,点A 在第三象限,且在反比例函数y =kx (x <0)的图象上,则k 的值为( )图2A .3B .4C .6D .12二、填空题(本大题共6小题,每小题5分,共30分)7.已知点P (3,-2)在反比例函数y =kx 的图象上,则k =________;在第四象限内,y随x 的增大而________.8.已知反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是________.9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图3所示.如果以此蓄电池为电源的用电器的限制电流不超过12 A ,那么该用电器的可变电阻R 应控制的范围是__________.图310.如图4,点A 在函数y =4x (x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为__________.图411.如图5,直线y =x +4与双曲线y =kx(x <0)相交于A (-1,a ),B 两点,在y 轴上找一点P ,当P A +PB 的值最小时,点P 的坐标为________.图512.如图6,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,与AB ,BC 分别交于点D ,E ,若四边形ODBE 的面积为9,则k 的值为________.图6三、解答题(本大题共4小题,共46分)13.(10分)已知反比例函数y =kx 的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.14.(10分)已知函数y 1=x -1和y 2=6x.(1)在所给的坐标系中画出这两个函数的图象; (2)求这两个函数图象的交点坐标; (3)观察图象,当x 在什么范围内时,y 1>y 2?图715.(12分)如图8,在平面直角坐标系中,直线y =-12x 与反比例函数y =kx 在第二象限内的图象相交于点A (m ,1).(1)求反比例函数的解析式;(2)将直线y =-12x 向上平移后与反比例函数在第二象限内的图象交于点B ,与y 轴交于点C ,且△ABO 的面积为32,求直线BC 的解析式.图816.(14分)试验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x的关系可近似地用反比例函数y=kx(k>0)刻画(如图9所示).(1)根据上述数学模型计算:①喝酒后几小时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.图9答案解析1.D [解析] ∵点(-3,4)在反比例函数y =kx 的图象上,∴k =(-3)×4=-12.A 项,∵(-4)×3=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.B 项,∵3×(-4)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.C 项,∵2×(-6)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.D 项,∵(-6)×(-2)=12≠-12,∴此点不在该反比例函数的图象上,故本选项符合题意.故选D.2.B3.B [解析] 正比例函数y =-x 中,y 随x 的增大而减小;一次函数y =2x +1中,y 随x 的增大而增大;反比例函数y =-1x 中,k <0,当x >0时,y 随x 的增大而增大;反比例函数y =2x中,k >0,当x >0时,y 随x 的增大而减小.所以符合题意的有2个.故选B.4.B5.A [解析] ∵在反比例函数y =-4x 中,k =-4<0,∴函数图象在第二、四象限,在每一象限内,y 随x 的增大而增大.∵x 1<x 2<0,∴0<y 1<y 2.∵x 3>0,∴y 3<0,∴y 3<y 1<y 2.故选A. 6.A [解析] 过点A 作AH ⊥y 轴于点H . 易证△ACH ≌△CBO ,∴AH =OC ,CH =OB .∵C (0,3),BC =5,∴OC =3,则OB =52-32=4,∴CH =OB =4,AH =OC =3,∴OH =1,∴A (-3,-1).∵点A 在函数y =kx (x <0)的图象上,∴k =3.故选A.7.[答案] -6 增大[解析] ∵点P (3,-2)在反比例函数y =kx 的图象上,∴k =3×(-2)=-6.∵k =-6<0,∴反比例函数y =-6x 的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∴在第四象限内,y 随x 的增大而增大.8.[答案] a >12[解析] ∵函数图象有一支位于第一象限, ∴2a -1>0,∴a >12.故答案为a >12.9.[答案] R ≥3 Ω[解析] 由题意可得I =U R .将(9,4)代入I =UR,得U =IR =36.∵以此蓄电池为电源的用电器的限制电流不超过12 A ,∴36R ≤12,解得R ≥3 Ω.10.[答案] 2 6+4[解析] ∵点A 在函数y =4x (x >0)的图象上,∴设点A 的坐标为(n ,4n )(n >0).在Rt △ABO 中,∠ABO =90°,OA =4, ∴OA 2=AB 2+OB 2. 又∵AB ·OB =4n·n =4,∴(AB +OB )2=AB 2+OB 2+2AB ·OB =42+2×4=24, ∴AB +OB =2 6或AB +OB =-2 6(舍去), ∴C △ABO =AB +OB +OA =2 6+4. 11.[答案] (0,52)[解析] 把A (-1,a )代入y =x +4,得-1+4=a ,解得a =3,即A (-1,3). 把A (-1,3)代入y =kx ,得3=-k ,解得k =-3.联立两函数解析式,得⎩⎪⎨⎪⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-1,y 1=3,⎩⎪⎨⎪⎧x 2=-3,y 2=1, ∴点B 的坐标为(-3,1).作点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为满足要求的点P ,此时P A +PB 的值最小,点C 的坐标为(1,3).设直线BC 的解析式为y =mx +b ,把B ,C 两点的坐标代入y =mx +b , 得⎩⎪⎨⎪⎧-3m +b =1,m +b =3,解得⎩⎨⎧m =12,b =52,∴直线BC 的函数解析式为y =12x +52,它与y 轴的交点坐标为(0,52).12.[答案] 3[解析] 设M (a ,k a ),则AB =2k a ,D (2a ,k2a ).∵S △OBA =S △OBC ,S △ODA =S △OEC ,∴S △OBD=S △OBE =92,∴12OA ·BD =92,即12·2a ·(2k a -k 2a )=92,解得k =3.13.解:(1)∵反比例函数y =kx 的图象经过点A (2,3),把点A 的坐标代入解析式,得3=k 2,解得k =6,∴这个函数的解析式为y =6x. (2)点B 不在这个函数的图象上,点C 在这个函数的图象上. 理由:分别把点B ,C 的坐标代入y =6x,可知点B 的坐标不满足函数解析式,点C 的坐标满足函数解析式, ∴点B 不在这个函数的图象上,点C 在这个函数的图象上. (3)∵当x =-3时,y =-2; 当x =-1时,y =-6.又由k >0,知当x <0时,y 随x 的增大而减小,∴当-3<x <-1时,-6<y <-2. 14.解:(1)函数y 1的自变量的取值范围是全体实数;函数y 2的自变量的取值范围是x ≠0.列表可得:所画图象如图所示.(2)联立两个函数解析式,得⎩⎪⎨⎪⎧y =x -1,y =6x,解得⎩⎪⎨⎪⎧x 1=-2,y 1=-3,⎩⎪⎨⎪⎧x 2=3,y 2=2.∴两函数图象的交点坐标分别为(-2,-3),(3,2). (3)观察图象可得:当-2<x <0或x >3时,y 1>y 2. 15.解:(1)∵点A (m ,1)在直线y =-12x 上,∴m =-2,即A (-2,1).∵点A (-2,1)在函数y =kx (x <0)的图象上,∴k =-2,∴反比例函数的解析式为y =-2x.(2)如图,连接AC ,过点A 作AD ⊥OC 于点D ,则AD =2.∵BC ∥AO ,S △ABO =32,∴S △ACO =S △ABO =32,∴12·AD ·OC =32,∴OC =32,∴直线BC 的解析式为y =-12x +32.16.解:(1)①y =-200x 2+400x =-200(x -1)2+200,∴喝酒后1小时血液中的酒精含量达到最大值,最大值为200毫克/百毫升.②∵当x =5时,y =45,y =kx ,∴k =xy =45×5=225. (2)不能驾车去上班.理由:∵晚上20:00到第二天早上7:00,一共有11小时,将x =11代入y =225x ,得y =22511>20,∴第二天早上7:00不能驾车去上班.人教版九年级下册第二十六章《反比例函数》单元测试(解析版)一、选择题1、如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1 B.2 C.3 D.42、反比例函数y=的图象如图所示,则下列结论正确的是()A.常数m<1 B.y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上3、在反比例函数的图象的每一条曲线上,都随的增大而增大,则的值可以是()A.-1B.0C.1D.24、已知一次函数y1=kx+b与反比例函数y2=kx-1在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>35、点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y36、已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,则有()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<07、如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68、如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为6,则k等于()A.3 B.6 C.12 D.249、如图,函数与在同一平面直角坐标系中的图像大致( )10、反比例函数,的图像在( )A.一、二象限 B一、三象限 C.二、三象限 D.二、四象限11、某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是()A.小于0.64m3 B.大于0.64m3 C.不小于0.64m3 D.不大于0.64m312、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()二、填空题13、己知反比例函数的图像经过点,的值为 .14、已知直线与双曲线的一个交点A的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.15、已知反比例函数,当时,的取值范围是.16、如图,在平面直角坐标系中,点为轴正半轴上一点,过点的直线轴,且直线分别与反比例函数和的图像交于、两点,若,则的值为。
第二十六章《反比例函数》单元综合复习题(含答案)
九年级数学下册第二十六章《反比例函数》单元综合复习题(含答案)(本试卷共三个大题,26个小题,总分150分,时间 120分)一.选择题(每题4分,共40分)1.在下列表达式中,x 均表示自变量:①x y 52-= ②2x y = ③1--=x y ④2=xy ⑤11+=x y ⑥xy 4.0= .其中y 是x 的反比例函数的个数有( )个。
A. 3 B. 4 C. 5 D. 6 2.如果反比例函数xky =的图象经过点(-3,4),那么函数的图象应在( ) A.第一、三象限 B. 第一、二象限 C. 第二、四象限 D. 第三、四象限 3.已知反比例函数xky =经过点(-1,2),那么一次函数2+=kx y 的图象一定不经过( ) A .第一象限 B.第二象限 C. 第三象限 D. 第四象限 4.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( ) A.成正比例 B.成反比例 C.有可能成正比例,也有可能成反比例 D.不能确定 5.如图,函数)1(+=x k y 与xky =在同一坐标系中,图象只能是下图中的( )6.三角形的面积为42cm ,底边上的高)(cm y 与底边)(cm x 之间的 函数关系图象大致为( )7.已知反比例函数)0(<=k xky 的图象上有两点A ),(11y x 、B ),(22y x ,且21x x <,则21y y -的值是( )A. 正数B. 负数C. 非正数D. 不能确定8.如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (a 3,a )是反比例函数)0(>=k xky 的图象与正方形的一个交点,若图中阴影部分的面积等于9,则k 的值为( )A. 1 B . 2 C . 3 D. 49.如图,正比例函数x y =和)0(>=m mx y 的图象与反比例函数)0(>=k xky 的图象分别交于A 、C 两点,过A 、C 两点分别向x 轴作垂线,垂足分别为B 、D 若R t △AOB 与Rt △COD 的面积分别为1S 和2S ,则1S 与2S 的关系为( )0 xyB DC A 9题第8题第16题A .21S S > B. 21S S < C. 21S S = D. 与m 、k 的值无关 10.如图,已知直线b x k y +=1与x 轴、y 轴相交于P 、Q 两点,与xk y 22=的图象相交于A (-2,m )、B (1,n )两点,连接OA 、OB.给出下列四个结论:①021<k k ;②021=+n m ;③S △AOP=S △BOQ ;④不等式x kb x k 21>+的解集 是2-<x 或10<<x ,其中正确的结论是( )A.①②③④B.①②③C.②③④D.①③④ 二.填空题(每题4分,共40分) 11.如果一个反比例函数xky =的图象经过点(2,-1)那么这 个反比例函数的解析式是 。
人教版 九年级数学 第二十六章 反比例函数 综合复习(含答案)
人教版九年级数学第二十六章反比例函数综合复习一、选择题(本大题共10道小题)1. (2020·海南)下列各点中,在反比例函数y=图象上的点是( ) A.(-1,8) B.(-2,4) C.(1,7) D.(2,4)2. 反比例函数y=-1 x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是( )A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y23. (2020·湖北孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图像如图所示,则这个反比例函数的解析式为( )A.=B.=C.=D.=4.(2019·江苏扬州)若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是A.B.C.D.5. (2020·黔东南州)如图,点A是反比例函数y(x>0)上的一点,过点A 作AC⊥y轴,垂足为点C,AC交反比例函数y的图象于点B,点P是x轴上的动点,则△P AB的面积为()A.2 B.4 C.6 D.86. (2020•湘西州)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4).下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,-2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y17. (2019·江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是A.反比例函数y2的解析式是y2=–B.两个函数图象的另一交点坐标为(2,–4)C.当x<–2或0<x<2时,y1<y2D.正比例函数y1与反比例函数y2都随x的增大而增大8. (2020·潍坊)如图,函数与的图象相交于点两点,则不等式的解集为()yxOBAA. B. 或 C. D.或9.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48 x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A. 60B. 80C. 30D. 4010. (2019•河北)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q二、填空题(本大题共8道小题)11.如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若函数y1=1x,则y2与x的函数表达式是________.12. 如图所示,反比例函数y=k x(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D,若矩形OABC的面积为8,则k的值为________.13. (2019·贵州安顺)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=__________.14. 如图,点A在函数y=4 x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为_______ _.15. 如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为_______ _.16. (2019•山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(–4,0),点D的坐标为(–1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为__________.17. (2019·黑龙江齐齐哈尔)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为__________.18. (2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为__________.三、解答题(本大题共4道小题)19. (2019•广东)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(–1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.20.如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y=k x的图象上,一次函数y=x+b的图象经过点A,且与反比例函数图象的另一交点为B.(1)求k和b的值;(2)设反比例函数值为y1,一次函数值为y2,求y1>y2时x的取值范围.21. (2019•河南)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=–x+.满足要求的(x,y)应是两个函数图象在第__________象限内交点的坐标.(2)画出函数图象函数y=(x>0)的图象如图所示,而函数y=–x+的图象可由直线y=–x平移得到.请在同一直角坐标系中直接画出直线y=–x.(3)平移直线y=–x,观察函数图象①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为__________;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为__________.22.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.人教版九年级数学第二十六章反比例函数综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】∵反比例函数的系数8,∴该反比例函数图象上的点的横坐标与纵坐标之积为8,故选D.2. 【答案】D 【解析】根据反比例函数的性质或者利用特殊值法即可作出选择.方法一:∵反比例函数y=-1 x中k=-1<0,∴当x<0时,y>0;当x>0时,y<0.又∵x1<0<x2,∴y1>0>y2 .故选D.方法二:令x1=-1,则y1=1,令x2=1,则y2=-1,∴y1>0>y2.3. 【答案】C【解析】设反比例函数解析式为=,把图中点(8,6)代入得:k=8×6=48.故选C.4. 【答案】C【解析】∵反比例函数上两个不同的点关于y轴对称的点,在一次函数y=–x+m图象上,∴反比例函数与一次函数y=–x+m有两个不同的交点,联立两个函数解方程,∵有两个不同的交点,∴有两个不等的根,∴Δ=m2–8>0,∴m>2或m<–2,故选C.5. 【答案】A【解析】利用反比例函数中比例系数k的几何意义求解.如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC|6|=3,S△BPC=S△BOC|2|=1,∴S△PAB=S△APC﹣S△BPC=2.6. 【答案】D【解析】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.∵正比例函数y1的图象与反比例函数y2的图象相交于点(﹣2,4),∴正比例函数y1=﹣2x,反比例函数y2,∴两个函数图象的另一个交点为(2,﹣4),∴A、B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2中,在每个象限内y随x的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.因此本题选D.7. 【答案】C【解析】∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数y1=2x,反比例函数y2=,∴两个函数图象的另一个交点为(–2,–4),∴A,B选项错误;∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=中,在每个象限内y随x的增大而减小,∴D选项错误,∵当x<–2或0<x<2时,y1<y2,∴选项C正确,故选C.8. 【答案】【答案】D【解析】本题是数形结合题,通过观察反比例函数与一次函数的图像解决问题.通过图像观察,可知,当或时,一次函数的图像在反比例函数图像的上方.故选D.9. 【答案】D 【解析】如解图所示,过点A作AG⊥OB,垂足为G,设A点纵坐标为4m,∵sin∠AOB=45,∴OA=5m,根据勾股定理可得OG=3m,又∵点A在反比例函数y=48 x上,∴3m×4m=48,∴m1=2,m2=-2(不合题意,舍去),∴AG=8,OG=6,OA=OB=10,∵四边形OBCA是菱形,∴BC∥OA,∴S△AOF=1 2S菱形OBCA=12×AG×OB=12×8×10=40.故选D.10. 【答案】A【解析】由已知可知函数y=关于y轴对称,所以点M是原点;故选A.二、填空题(本大题共8道小题)11. 【答案】y2=4 x【解析】设y2与x的函数关系式为y2=kx,A点坐标为(a,b),则ab=1.又A点为OB的中点,因此,点B的坐标为(2a,2b),则k=2a·2b=4ab=4,所以y2与x的函数关系式为y2=4 x.12. 【答案】 2 【解析】由题意可知,D点在反比例函数图象上,如解图所示,过点D作DE⊥x 轴于点E,作DF⊥y轴于点F,则k=x D·y D=DF·DE=S矩形OEDF,又D为对角线AC中点,所以S矩形OEDF=14S矩形OABC=2,∴k=2.13. 【答案】8【解析】根据反比例函数k的几何意义可知:△AOP的面积为k1,△BOP的面积为k2,∴△AOB的面积为k1﹣k2,∴k1﹣k2=4,∴k1﹣k2=8,故答案为8.14. 【答案】26+4【解析】设点A的坐标为(x,y),根据反比例函数的性质得,xy=4,在Rt△AB O中,由勾股定理得,OB2+AB2=OA2,∴x2+y2=16,∵(x+y)2=x2+y2+2xy=16+8=24,又∵x+y>0,∴x+y=26,∴△ABC的周长=26+4.15. 【答案】 6 【解析】设A点的坐标为(a ,9a),直线OA的解析式为y=kx,于是有9a =ka,∴k=9a2,直线为y=9a2x ,联立得方程组⎩⎪⎨⎪⎧y=9a2xy=1x,解得B点的坐标为(a3,3a),∵AO=AC,A(a,9a),∴C(2a,0),∴S△ABC=S△AOC-S△BOC=12×2a×9a-12×2a×3a=9-3=6.16. 【答案】16【解析】过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵四边形ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(–4,0),D(–1,4),∴DF=CE=4,OF=1,AF=OA–OF=3,在Rt△ADF中,AD==5,∴OE=EF–OF=5–1=4,∴C(4,4),∴k=4×4=16,故答案为:16.17. 【答案】﹣【解析】过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣,∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.18. 【答案】0【解析】∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴对称,∴B(a,–b),∵点B在双曲线y=上,∴k2=–ab;∴k1+k2=ab+(–ab)=0;故答案为:0.三、解答题(本大题共4道小题)19. 【答案】(1)由图象可得:k1x+b>的x的取值范围是x<–1或0<x<4;(2)直线解析式y=–x+3,反比例函数的解析式为y=–;(3)P(,).【解析】(1)∵点A的坐标为(–1,4),点B的坐标为(4,n).由图象可得:k1x+b>的x的取值范围是x<–1或0<x<4;(2)∵反比例函数y=的图象过点A(–1,4),B(4,n),∴k2=–1×4=–4,k2=4n,∴n=–1,∴B(4,–1),∵一次函数y=k1x+b的图象过点A,点B,∴,解得k=–1,b=3,∴直线解析式y=–x+3,反比例函数的解析式为y=–;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=–=1,∴×3x P=1,∴x P=,∵点P在线段AB上,∴y=–+3=,∴P(,).20. 【答案】解:(1)把点A(2,5)代入反比例函数的解析式y=k x,∴k=xy=10,把(2,5)代入一次函数的解析式y=x+b,(2分) ∴5=2+b,∴b=3.(3分)(2)由(1)知k =10,b =3, ∴反比例函数的解析式是y =10x ,一次函数的解析式是y =x +3.解方程x +3=10x ,(4分) ∴x 2+3x -10=0,(5分) 解得x 1=2(舍去),x 2=-5, ∴点B 坐标是(-5,-2),∵反比例函数的值大于一次函数值,即反比例函数的图象在一次函数图象上方时,x 的取值范围,∴根据图象可得不等式的解集是x <-5或0<x <2.(6分)21. 【答案】(1)一;(2)见解析;(3)m ≥8.【解析】(1)x ,y 都是边长,因此,都是正数,故点(x ,y )在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入y =–x +得:2=–2+,解得:m =8;②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y =和y =–x +并整理得:x 2–mx +4=0,△=m 2–4×4≥0时,两个函数有交点,解得m ≥8,即:0个交点时,m <8;1个交点时,m =8;2个交点时,m >8. (4)由(3)得:m ≥8.22. 【答案】(1)【思路分析】如解图,过点A 作AE ⊥x 轴于点E ,由三角函数求出点A 坐标,再用待定系数法求出反比例函数的解析式便可.解:如解图过点A 作AE ⊥x 轴于点E ,∵OA =5,sin ∠AOC =35,∴AE =OA·sin ∠AOC =5×35=3, OE =OA2-AE2=4, ∴A(-4,3),(3分)设反比例函数的解析式为y =kx (k≠0),把A(-4,3)代入解析式,得k =-12, ∴反比例函数的解析式为y =-12x .(5分)(2)【思路分析】先把B 点坐标代入所求出的反比例函数解析式,求出m 的值,进而求出直线AB 的解析式,再求出点D 的坐标,便可求△AOD 与△BOD 的面积之和,即△AOB 的面积.解:把B(m ,-4)代入y =-12x 中,得m =3, ∴B(3,-4).设直线AB 的解析式为y =kx +b ,把A(-4,3)和B(3,-4)代入得,⎩⎪⎨⎪⎧-4k +b =33k +b =-4, 解得⎩⎪⎨⎪⎧k =-1b =-1,(7分)∴直线AB 的解析式为y =-x -1,(8分) 则AB 与y 轴的交点D(0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5.(10分)。
第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册
第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。
(人教版)北京九年级数学下册第二十六章《反比例函数》经典复习题(答案解析)
一、选择题1.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .y=5x 2C .y=21xD .y=13x2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .53.关于反比例函数3y x =,下列说法错误的是( ) A .图象关于原点对称 B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =4.如图,已知双曲线()0k y x x =>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .4 5.将函数 6y x =的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+B .61y x =-C .61y x =+D .61y x =- 6.如图,正比例函数y = ax 的图象与反比例函数k y x=的图象相交于A ,B 两点,其中点A的横坐标为2,则不等式ax<kx的解集为()A.x < - 2或x > 2 B.x < - 2或0 < x < 2C.-2 < x < 0或0 < x < 2 D.-2 < x < 0或 x > -27.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.58.若点A(a,b)在反比例函数2yx的图像上,则代数式ab-4的值为()A.0 B.-2 C.2 D.-69.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A .B .C .D .10.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数 C .-1 D .不能确定 11.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤ 12.如图,在平面直角坐标系中,直线y x =-与双曲线k y x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14- 13.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x =(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .1614.函数y =x +m 与m y x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .15.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题16.若点()()125,,3,A y B y --在反比例函数3y x =的图象上,则12,y y ,的大小关系是_________. 17.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.18.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______. 19.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)k y x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.20.函数y =||12m m x --是y 关于x 的反比例函数,那么m 的值是_____. 21.反比例函数2(0)m y x x +=<的图象如图所示,则m 的取值范围为__________.22.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,则y 1,y 2的大小关系是y 1_____y 2. 23.如图,反比例函数( 0)k y x x=>经过,A B 两点,过点A 作 AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.24.如图,直线y =34-x +6与反比例函数y =k x(k >0)的图象交于点M 、N ,与x 轴、y 轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.25.如图,在平面直角坐标系中,反比例函数y=k x(k≠0),经过▱ABCD 的顶点B .D ,点A 的坐标为(0,-1),AB ∥x 轴,CD 经过点(0,2),▱ABCD 的面积是18,则点C 的坐标是______.26.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =k x(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____.三、解答题27.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数m y x =的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x 的取值范围;(3)若点P 在y 轴上,且使四边形OMDP 的面积与四边形OMNC 的面积相等,求点P 的坐标.28.已知反比例函数k y x=的图象与正比例函数2y x =的图象交于点()2,m ,求这个反比例函数的表达式,并在同一平面直角坐标系内,画出这两个函数的图象.29.如图,已知反比例函数y =k x的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.30.如图,直线y=2x-6与反比例函数kyx的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)求△OAB的面积.。
【3套】人教版数学九年级下册 第26章 反比例函数 复习练习题及答案
人教版数学九年级下册 第26章 反比例函数 复习练习题及答案人教版数学九年级下册 第26章 反比例函数 复习练习题1. 如图,过反比例函数y =1x (x >0)的图象上任意两点A ,B 分别作x轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设△AOC 和△BOD 的面积分别是S 1,S 2,比较它们的大小,可得( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定2. 若直线y =kx +b 经过第一、二、四象限,则函数y =kb x 的图象在( )A .第一、三象限B . 第一、二象限C .第三、四象限D .第二、四象限3. 已知点(-1,y 1),(2,y 2),(π,y 3)在双曲线y =-k 2+1x 上,则下列关系式正确的是( )A .y 1>y 3>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 1>y 24. 下列等式中,____________________是反比例函数(填序号)(1)y =x 3;(2)y =-2x ;(3)xy =21;(4)y =5x +2;(5)y =-32x ; (6)y =1x +3;(7)y =x -4.5. 函数y =-1x +2中,自变量x 的取值范围是________.6. 若函数y =(2m -1)x 与y =3-m x 的图象交于第一、三象限,则m的取值范围是________.7. 反比例函数y =-2x ,当x =-2时,y =________;当x <-2时,y 的取值范围是________;当-2<x <0时,y 的取值范围是________.8. 下列哪个等式中的y 是x 的反比例函数?_________________y =4x ,y x =3,y =6x +1,xy =123.9. 京沈高速公路全长658 km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需的时间t(h )与行驶的平均速度v(km /h )之间的函数关系式为________.10. 已知y 是x 的反比例函数,当x =2时,y =6.写出y 关于x 的函数关系式.求当x =4时,y 的值.11. 当m 取什么值时,函数y =(m -2)x3-m 2是反比例函数?12. 已知y 是x 的反比例函数,并且当x =3时,y =-8.(1)写出y 与x 之间的函数关系式;(2)当y =2时,求x 的值.13. 画出反比例函数y =6x 与y =-6x 的图象.14. 已知反比例函数y =(m -1)xm 2-3的图象在第二、四象限,求m 的值,并指出在每个象限内y 随x 的变化情况.15. 已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?随自变量的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?16. 如图是反比例函数y=m-5x的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在上图的图象上任取点A(a,b)和点B(a′,b′),如果a>a′,那么b和b′有怎样的大小关系?17. 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?18. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?19. 一个用电器的电阻是可调节的,其范围为110 Ω~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?20. 一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数.当V=10 m3时,ρ=1.43 kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2 m3时氧气的密度ρ.21. 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15 m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15 m,相应的,储存室的底面积应改为多少才能满足需要?(保留两位小数)参考答案:1. B2. D3. A4. (2)(3)(5)5. x ≠-2.6. 12<m <37. 1 y <1 y >18. xy =1239. t =658v10. 解:设y =k x ,因为x =2时,y =6,所以有6=k 2,解得k =12,因此y =12x ,把x =4代入y =12x ,得y =124=3.11. 由题意可知⎩⎪⎨⎪⎧m -2≠0,3-m 2=-1,解得m =-2. 12. (1)y =-24x(2)x =-1213.14. 解:∵y =(m -1)xm 2-3是反比例函数,∴m 2-3=-1,且m-1≠0.又∵图象在第二、四象限,∴m -1<0.解得m =±2,且m <1,则m =- 2.在每个象限内,y 随x 的增大而增大.反比例函数y =k x 的图象,当k >0时,在每一个象限内,y 的值随x值的增大而减小;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.15. 解:(1)设这个反比例函数的解析式为y =k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数解析式,得6=k 2,解得k =12,即这个反比例函数的表达式为y =12x .因为k>0,所以这个函数的图象在第一、三象限内,y 随x 的增大而减小.(2)把点B ,C 和D 的坐标代入y =12x ,可知点B 、点C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,所以点B 、点C 在函数y =12x 的图象上,点D 不在该函数的图象上.16. 解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m -5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小,因为a>a ′,所以b <b ′.17. 解:(1)设轮船上的货物总量为k 吨,根据已知条件得k =30×8=240,所以v 关于t 的函数解析式为v =240t .(2)把t =5代入v =240t ,得v =2405=48(吨).从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数v =240t ,当t>0时,t 越小,v 越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.18. 解:(1)根据“杠杆原理”,得Fl =1 200×0.5,所以F 关于l 的函数解析式为F =600l .当l =1.5 m 时,F =6001.5=400(N ).对于函数F =600l ,当l =1.5 m 时,F =400 N ,此时杠杆平衡,因此,撬动石头至少需要400 N 的力.(2)对于函数F =600l ,F 随l 的增大而减小.因此,只要求出F =200 N时对应的l 的值,就能确定动力臂l 至少应加长的量.当F =400×12=200时,由200=600l 得l =600200=3(m ),3-1.5=1.5(m ).对于函数F =600l ,当l>0时,l 越大,F 越小.因此,若想用力不超过400 N 的一半,则动力臂至少要加长1.5 m .19. 解:(1)根据电学知识,当U =220时,得P =2202R . ①(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值R =110代入①式,得到功率的最大值P =2202110=440(W); 把电阻的最大值R =220代入①式,得到功率的最小值P =2202220=220(W).因此用电器功率的范围为220W ~440W.20. (1)ρ=m V ,当V =10 m 3时,ρ=1.43 kg/m 3,所以m =ρV =10×1.4=14.3,所以ρ=14.3v ;(2)当V =2 m 3时,ρ=14.32=7.15(kg/m 3).21. 我们知道圆柱的容积是底面积×高,而现在容积一定为104 m 3,所以S ·d =104.变形就可得到底面积S 与其深度d 的函数关系式,即S =104d ,所以储存室的底面积S 是其深度d 的反比例函数.根据函数S =104d ,我们知道给出一个d 的值就有唯一的S 的值和它相对应,反过来,知道S 的一个值,也可求出d 的值.根据S =104d ,得500=104d ,解得d =20,即施工队施工时应该向下挖进20米.根据S =104d ,把d =15代入此式,得S =10415≈666.67(m 2).当储存室的深为15 m时,储存室的底面积应改为666. 67 m2才能满足需要.第二十六章反比例函数单元练习题(含答案)一、选择题1.矩形面积为4,它的一边长y与邻边长x的函数关系用图象表示大致是() A.B.C.D.2.)若点M(-3,a),N(4,-6)在同一个反比例函数的图象上,则a的值为() A.8B.-8C.-7D.53.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.在每个象限内y随x的增大而增大4.平面直角坐标系中,反比例函数y=的图象只可能是()A.B.C.D.5.如图,点B是反比例函数y=(x>0)的图象上任意一点,过点B分别向x轴、y轴作垂线,垂足分别为点A和点C,则矩形OABC的面积为()A.1B.2C.4D.不能确定6.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例7.如图,A,B,C为反比例函数图象上的三个点,分别从A,B,C向xy轴作垂线,构成三个矩形,它们的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1=S2>S3B.S1<S2<S3C.S1>S2>S3D.S1=S2=S38.已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.9.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-210.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<1二、填空题11.长方形的面积为100,则长方形的长y与宽x间的函数关系是____________.12.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是______________.13.如果反比例函数y=的图象经过点(1,3),那么它一定经过点(-1,______).14.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1 200牛和0.5米,那么动力F和动力臂之间的函数关系式是_______________.15.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为________________.16.已知函数y=(k-3)为反比例函数,则k=__________.17.小王驾车从甲地到乙地,他以70千米/时的平均速度4小时到达目的地,当他按原路匀速返回甲地时,汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为________________.18.已知圆柱的侧面积是10π cm2,若圆柱底面半径为r cm,高为h cm,则h与r的函数关系式是______________.19.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是___________.20.若函数y=(3+m)是反比例函数,则m=______.三、解答题21.甲、乙两地相距100 km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.22.画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.23.当k为何值时,y=(k-1)是反比例函数?24.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.25.某科技小组进行野外考察,途中遇到一片十几米宽的泥地,他们沿着前进路线铺了若干块木板,构成一条临时近道,木板对地面的压强P(Pa)是木板面积S( m2)的反比例函数,其图象如图所示.(1)写出这一函数的关系式和自变量的取值范围.(2)当木板面积为0.2 m2时,压强是多少?(3)如果要求压强不超过6 000 Pa,那么木板的面积至少为多少?26.如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?27.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为a=(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:______________(s为常数,s≠0).28.在同一直角坐标系中分别画出函数y=x与y=的图象,利用这两个图象回答:(1)x取什么值时,x比大?(2)x取什么值时,x比小?答案解析1.【答案】A【解析】∵xy=4,∴y=(x>0,y>0),故选A.2.【答案】A【解析】设反比例函数解析式为y=,根据题意得k=-3a=4×(-6),解得a=8.故选A.3.【答案】D【解析】A.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;B.把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;C.反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;D.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故本选项正确.故选D.4.【答案】A【解析】由k=3>0可知,反比例函数的图象在一三象限.故选A.5.【答案】B【解析】矩形OABC的面积=|2|=2.故选B.6.【答案】B【解析】设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.7.【答案】D【解析】过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.设点A坐标为(x1,y1) 点B坐标(x2,y2) 点C坐标(x3,y3),∵S1=x1·y1=k,S2=x2·y2=k,S3=x3·y3=k,∴S1=S2=S3.故选D.8.【答案】C【解析】由图可知,m<-1,n=1,∴m+n<0,∴一次函数y=mx+n经过第一、二、四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二、四象限;故选C.9.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.10.【答案】A【解析】根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k-1>0,解得k>1.故选A.11.【答案】y=【解析】根据长方形的面积公式即可求解.长方形的面积为100,则长方形的长y=,故答案是y=.12.【答案】(-1,-3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(-1,-3).故答案为(-1,-3).13.【答案】-3【解析】∵反比例函数y=的图象经过点(1,3),∴k=1×3=3,∵3=(-1)×(-3),∴它一定过点(-1,-3).14.【答案】F=【解析】由题意知,F阻=1 200牛,L阻=0.5米,由杠杆平衡条件得:F动×L动=F阻×L阻,动力F===,故答案为F=.15.【答案】(2,-3)【解析】根据题意知,点A与B关于原点对称,∵点A的坐标是(-2,3),∴B点的坐标为(2,-3).故答案是(2,-3).16.【答案】-3【解析】∵函数y=(k-3)为反比例函数,∴8-k2=-1且k-3≠0.解得k=-3.故答案是-3.17.【答案】y=(x>0)【解析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到y与x的函数解析式.由已知,得甲地去乙地的路程=70×4=280,则汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为y=(x>0).18.【答案】h=(r>0)【解析】圆柱的侧面积是一个长方形,根据面积=底面周长×高=2πrh可列出关系式.由题意,得h与r的函数关系式是h==,半径应大于0.故本题答案为h=(r>0).19.【答案】y1<y2【解析】∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2.20.【答案】3【解析】根据反比例函数的一般形式:x的次数是-1,且系数不等于0,即可求解.根据题意,得解得m=3.故答案是3.21.【答案】解∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【解析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.22.【答案】解根据题意,作出y=的图象,(1)根据图象,过(-2,0)作与x轴垂直的直线,与双曲线相交,过交点向y轴引垂线,易得y =-3,故当x=-2时,y的值为-3,(2)根据图象,当-2<x<1时,可得y<-3或y>6.(3)同理,当-3<y<2时,x的取值范围是x<-2或x>3.【解析】根据题意,作出y=的图象,根据所作的图象回答问题即可.23.【答案】解y=(k-1)是反比例函数,得解得k=-1,当k=-1时,y=(k-1)是反比例函数.【解析】根据反比例函数的定义,可得答案.即y=(k≠0)中,k-1≠0,k2-2=-1.24.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC =6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x 的可能取值代入验证,得到AD和DC的长.25.【答案】解(1)设所求P与S之间的函数关系式为P=(k≠0).∵A(1.5,400)在该函数的图象上,∴400=,解得k=600.∴P与S之间的函数关系式为P=(S>0).(2)当S=0.2时,P==3 000,故当木板面积为0.2 m2时,压强是3 000 Pa.(3)由题意知,≤6 000,解得S≥0.1.故木板的面积至少为0.1 m2.【解析】26.【答案】解(1)由表格猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入,得k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为y=;(2)把y=24代入y=,得x=12.5,∴当砝码的质量为24 g时,活动托盘B与点O的距离是12.5 cm.(3)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.【解析】(1)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(2)把x=24代入解析式求解,可得答案;(3)利用函数增减性即可得出,随着活动托盘B与O点的距离不断增大,砝码的示数应该不断减小.27.【答案】解本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出y=(S为常数,S≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出y=.【解析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.28.【答案】解在y=x经过点(0,0)和(1,1).(1)当-1<x<0或x>1时,x比大;(2)当x<-1或0<x<1时,x比小.【解析】首先画出两个函数的图象.(1)当y=x的图象在反比例函数的图象的上边,x比大;(2)当y=x的图象在反比例函数的图象的下边,x比小.人教版九年级下册第二十六章《反比例函数》单元测试一、选择题1、如果反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6 B.6 C.﹣3 D.32、若反比例函数的图象过点(2,1),则这个函数的图象一定过点 ( )A.(2,—1) B.(1,—2) C.(—2,1) D.(—2,—1)3、如图:反比例函数的图像如下,在图像上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为A. 2B. 3C. 6D. 不确定4、如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A.3 B.6 C.12 D.5、函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.6、如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.57、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<168、如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣9、如图所示,一张正方形的纸片,•剪去两个一样的小矩形得到一个“E”字形图案,设小矩形的长,宽分别为x,y,剪去部分的面积为20,若2≤x≤10,则y与x的函数关系的图象是下图中的()A B C D二、填空题10、若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是.11、、已知反比例函数,当时,的取值范围是.12、如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB 于点D.若D为OB的中点,△AOD的面积为3,则k的值为.13、如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为5面积单位,△EOF的面积为S,则S是面积单位。
(完整版)人教版初三数学下册第二十六章反比例函数全章复习与练习含答案,推荐文档
反比例函数全章复习与巩固【学习目标】1. 使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式y = k(k ≠ 0) ,能判断一个给定函数是否为反比例函数;x2. 能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3. 能根据图象数形结合地分析并掌握反比例函数 y = k(k ≠ 0) 的性质,能利用这些性质分析x和解决一些简单的实际问题. 【要点梳理】要点一、反比例函数的概念一般地,形如 y = k(k ≠ 0) 的函数称为反比例函数,其中 x 是自变量, y 是函数,自变x量 x 的取值范围是不等于 0 的一切实数. 要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数 y = k中,只有一个待定系x数k ,因此只需要知道一对 x 、y 的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.要点三、反比例函数的图象和性质1. 反比例函数的图象反比例函数 y = k(k ≠ 0) 的图象是双曲线,它有两个分支,这两个分支分别位于第一、三x象限或第二、四象限.它们关于原点对称,反比例函数的图象与 x 轴、 y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 2. 反比例函数的性质 (1) 图象位置与反比例函数性质当k > 0 时, x 、y 同号,图象在第一、三象限,且在每个象限内, y 随 x 的增大而减小; 当k < 0 时,x 、y 异号,图象在第二、四象限,且在每个象限内, y 随 x 的增大而增大.(2) 若点(a,b)在反比例函数 y = k的图象上,则点(-a ,-b )也在此图象上,故反比例函数x的图象关于原点对称. (3) 正比例函数与反比例函数的性质比较kk < 0 ,二、四象限 k < 0 ,二、四象限增减性k > 0 , y 随 x 的增大而增大k < 0 , y 随 x 的增大而减 小k > 0 ,在每个象限, y 随 x 的增大而减小k < 0 ,在每个象限, y 随 x 的增大而 增大(4) 反比例函数 y = 中k 的意义①过双曲线 y = k( k ≠0) 上任意一点作 x 轴、 y 轴的垂线,所得矩形的面积为 k .x ②过双曲线 y = k( k ≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面x积为 2 .要点四、应用反比例函数解决实际问题须注意以下几点1. 反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意 将实际问题转化为数学问题.2. 列出函数关系式后,要注意自变量的取值范围. 【典型例题】类型一、确定反比例函数的解析式例 1、已知函数 y = (k + 2)x k -3 是反比例函数,则k 的值为 . 举一反三:【变式】反比例函数 y =n + 5图象经过点(2,3),则n 的值是( ).xA. - 2B. - 1C. 0D. 1类型二、反比例函数的图象及性质例 2、已知,反比例函数 y = 4 - 2m的图象在每个分支中 y 随 x 的增大而减小,试求 2m-1 的x取值范围.举一反三:【变式】已知反比例函数y =k - 2,其图象位于第一、第三象限内,则k 的值可为x(写出满足条件的一个k 的值即可).-k例3、在函数y =x(k ≠ 0, k为常数)的图象上有三点(-3,y1)、(-2,y2)、(4,y3),则函数值的大小关系是()A. y1<y2<y3举一反三:B. y3<y2<y1C. y2<y3<y1D. y3<y1<y2【变式1】在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是().A. B.C. D.【变式 2】已知 a>b,且a ≠ 0, b ≠ 0, a +b ≠ 0 则函数 y=ax+b 与y =a +b在同一坐标系中的图象不x 可能是( ) .例 4、如图所示,P 是反比例函数y =k图象上一点,若图中阴影部分的面积是 2,求此反比例x 函数的关系式.举一反三:【变式】如图,过反比例函数y =2(x > 0) 的图象上任意两点 A、B,分别作x 轴的垂线,垂足x为A'、B',连接 OA,OB,A A' 与OB 的交点为 P,记△AOP与梯形PA'B'B 的面积分别为S 、1S2,试比较S1、S2的大小.类型三、反比例函数与一次函数综合5、已知反比例函数y =k和一次函数 y=mx+n 的图象的一个交点坐标是(-3,4),且一x次函数的图象与x 轴的交点到原点的距离为 5,分别确定反比例函数和一次函数的表达式.举一反三:【变式】如图所示,A、B 两点在函数y =m(x > 0) 的图象上.xx(1) 求m 的值及直线 AB 的解析式; (2) 如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.类型四、反比例函数应用6、一辆客车从甲地出发前往乙地,平均速度 v (千米/小时)与所用时间 t (小时)的函数关系如图所示,其中 60≤v ≤120. (1) 直接写出 v 与 t 的函数关系式; (2) 若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶 20 千米,3 小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站 A 、B ,它们相距 200 千米,当客车进入 B 加油站时,货车恰好进入 A 加油站(两车加油的时间忽略不计),求甲地与 B 加油站的距离.课堂练习: 一.选择题1 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( ) A .(2,3) B .(3,2) C .(﹣2,3) D .(﹣2,﹣3)2. 函数 y=x+m 与 y = m(m ≠ 0) 在同一坐标系内的图象可以是( )33. 反比例函数 y= k的图象经过点 P(-1,2),则这个函数的图象位于( ).xA. 第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 4. 数 y = (m -1)x m2-2是反比例函数,则m 的值是()A .±1B .1C .D .-15. 如图所示,直线 y=x+2 与双曲线 y = k相交于点 A ,点 A 的纵坐标为 3, k 的值为().xA .1B .2C .3D .46. 点 (-1,是( ).y 1 ),(2, y 2 ),(3, y 3 )在反比例函数 y = - k 2 -1x的图象上.下列结论中正确的 A. y 1 > y 2 > y 3B. y 1 > y 3 > y 2C. y 3 > y 1 > y 2D. y 2 > y 3 > y 17. 已知 p (x , y ) 、 p (x , y ) 、 p (x , y ) 是反比例函数 y = 2图象上的三点,且 x < x < 0 < x , 1 1 1 2 2 2 3 3 3 x123则 y 1 、 y 2 、 y 3 的大小关系是()A. y 1 > y 2 > y 3B. y 3 > y 2 > y 1C. y 3 > y 1 > y 2D. y 1 > y 3 > y 28. 如图所示,点 P 在反比例函数 y = 1(x > 0) 的图象上,且横坐标为 2.若将点 P 先向右平移x两个单位,再向上平移一个单位后所得的像为点 P ',则在第一象限内,经过点 P '的反比例函数图象的解析式是( ).A . y = - 5(x > 0)x B . y = 5 (x > 0) x C . y = - 6 (x > 0) x D . y = 6(x > 0)x二.填空题9. 图象经过点(-2,5)的反比例函数的解析式是.10. 若函数y =m - 2的图象在其象限内 y 的值随 x 值的增大而增大,则 m 的取值范围 x.11. 反比例函数 y = k(k ≠ 0) 的图象叫做 x.当 k>0 时,图象分居第 象限, 在每个象限内 y 随 x 的增大而 ;当 k<0 时,图象分居第 象限,在每个象限内 y 随 x 的增大而 .12. 若点 A(m ,-2)在反比例函数 y = 4 的图像上,则当函数值 y ≥-2 时,自变量 x 的取值 x范围是 .13. 若变量 y 与x 成反比例,且 x=2 时,y=-3,则 y 与 x 之间的函数关系式是 ,在每个象限内函数值 y 随 x 的增大而 . 14. 已知函数y = m ,当 x = - 1 时,y=6,则函数的解析式是 . x 215. 如图,面积为 3 的矩形 OABC 的一个顶点 B 在反比例函数 y = k的图象上,另三点在坐标x轴上,则k = .16. 在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积 V 时,气体的密度 ρ 也随之改变.在一定范围内,密度 ρ 是容积 V 的反比例函数.当容积为 5 m 3时,密度是 1.4 kg 三.解答题m 3 ,则 ρ 与 V 的函数关系式为 .17.一辆汽车匀速通过某段公路,所需时间 t( h )与行驶速度 v( kg h )满足函数关系:t = k,其图象为如图所示的一段曲线且端点为 A(40,1)和 B( m ,0.5). v(1) 求k 和m 的值;(2) 若行驶速度不得超过 60 kg h ,则汽车通过该路段最少需要多少时间?18.在压力不变的情况下,某物体承受的压强P(Pa)是它的受力面积S()的反比例函数,其图象如图所示.(1)求P 与S 之间的函数关系式;(2)求当S=0.5 时物体承受的压强P.19.如图,直线y= 4 x3k 与双曲线y= (x>0)交于点 A,将直线 y= x 4x 向下平移个 6 单位后,3k与双曲线 y= (x>0)交于点 B,与x 轴交于点 C.x(1)求C 点的坐标.(2)若 =2,则 k 的值为?20.如图所示,一次函数y=k x + 2 与反比例函数y =k2 的图象交于点 A(4,m )和1 12 xB(-8,-2),与y 轴交于点 C.(1) k1=,k2=;(2)根据函数图象可知,当y1>y2时,x 的取值范围是;(3)过点 A 作AD⊥x 轴于点 D,点P 是反比例函数在第一象限的图象上一点.设直线 OP 与线段AD 交于点 E,当S四边形ODAC: S△ODE= 3: 1时,求点 P 的坐标.⎩2 ⎪ ⎪ 【答案与解析】一.选择题1.【答案】D ;【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称, ∴该点的坐标为(﹣2,﹣3).故选:D . 2.【答案】B ;【解析】分m >0,和m <0 分别画出图象,只有 B 选项是正确的. 3. 【答案】D ;【解析】 ∵ 点 P(-1,2)在第二象限,∴ 反比例函数 y = k的图象在第二、四象限.x4. 【答案】D ;⎧m -1 ≠ 0【解析】由反比例函数的意义可得: ⎨m 2 - 2 = -1.解得, m =-1.5. 【答案】C ;【解析】把 y =3 代入 y = x + 2 ,得 x = 1 .∴ A(1,3).把点 A 的坐标代入 k = xy = 3 .6. 【答案】B ;y = kx ,得【解析】∵ -k 2 -1 = -(k 2 +1) < 0 ,∴ 反比例函数 y =-k 2 -1 的图象位于第二、四象限,x画出函数图象的简图,并在图象上表示出已知各点,易知 y 1 > y 3 > y 2 .7. 【答案】C ;【解析】观察图象如图所示.8. 【答案】D ;【解析】 由点 P 的横坐标为 2,可得点 P 的纵坐标为 1.2∴ P ⎛ 2, 1 ⎫ .由题意可得点 P '⎛ 4, 3 ⎫.⎝ ⎭ ⎝ ⎭∴ 在第一象限内,经过点 P '的反比例函数图象的解析式为 y = 6(x > 0) .故选 D 项.x二.填空题9. 【答案】 y = -10 ; x10. 【答案】m <2;【解析】∵函数 y=的图象在其象限内 y 的值随 x 值的增大而增大,∴m﹣2<0,解得 m <2.11. 【答案】双曲线;一、三;减小;二、四;增大; 12. 【答案】 x ≤-2 或x > 0 ;【解析】结合图象考虑反比例函数增减性.13. 【答案】 y = - 6;增大 ;x y = - 314. 【答案】x ; 15. 【答案】-3;【解析】由矩形 OABC 的面积=3,可得 B 点的横坐标与纵坐标的乘积的绝对值=3,又因为图象在第四象限,所以反比例函数的k < 0 .16. 【答案】= 7.V三.解答题 17. 【解析】解:(1)将(40,1)代入t = k,得1 = v ∴ 该函数解析式为t = 40.vk ,解得k =40.40 ∴ 当 t =0.5 时, 0.5 = 40,解得m =80,m∴ k =40, m =80.(2)令 v =60,得t = 40 = 2,60 3结合函数图象可知,汽车通过该路段最少需要 2小时.318. 【解析】解:(1)设所求函数解析式为p = ks ,把(0.25,1000)代入解析式,k得 1000=0.25 , 解得k =250∴所求函数解析式为p =250s (s>0)(2)当s=0.5 时,P=500(Pa)19.【解析】解:(1)∵将直线y=x 向下平移个6 单位后得到直线BC,∴直线BC 解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);(2)∵直线y=x 与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6 与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B 的坐标代入y=中,得(+)=k,解得 k=12.20.【解析】1解:(1) ,16;2(2)-8<x <0 或x >4;(3)由(1)知,y1=1x + 2 ,y2 2=16.x∴ m =4,点 C 的坐标是(0,2),点 A 的坐标是(4,4).∴CO=2,AD=OD=4.∴ S梯形ODAC =CO +AD⨯OD =2 + 4⨯4 =12 .2 2∵ S梯形ODAC : S△ODE= 3: 1 ,∴ S△ODE=1⨯S3 梯形ODAC=1⨯12 = 43即1OD DE = 4 ,∴DE=2.∴点E 的坐标为(4,2).2又点E 在直线OP 上,∴DE=2.∴点E 的坐标为(4,2).⎧y =16, ⎧⎧⎨1 ⎨x= 4 2, ⎨ ⎪x2=-4 2,由x⎪y1= 2 2, y =-2 2. (不合题意舍去)⎪y =x,⎩ 2得⎪1⎪2∴P 的坐标为(4 2, 2 2) .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
人教版数学九年级下册第二十六章 反比例函数 章末专题训练含答案
人教版数学九年级下册第二十六章反比例函数章末专题训练含答案人教版数学九年级下册第二十六章反比例函数章末专题训练一、选择题1.某反比例函数的图象过点,则此反比例函数解析式为 CA. B. C. D.2.下列式子中,y是x的反比例函数的是 DA. B. C. D.3.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(小时),那么能正确表示d与t之间的函数关系的图象是( C )A. B.C. D.4.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是( A )A.﹣6 B.﹣2 C.2 D.65.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图26-2-2所示,则下列说法正确的是( D )图26-2-2A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.如图,已知点A在反比例函数上,轴,垂足为点C,且的面积为4,则此反比例函数的表达式为 CA.B.C.D.7.下列关系中,两个量之间为反比例函数关系的是 DA. 正方形的面积S与边长a的关系B. 正方形的周长l与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,长a与宽b之间的关系8. 函数y=与y=2x的图象没有交点,则k的取值范围是( D )A. k<0B. k<1C. k>0D. k>19.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示.P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是( A )A.0.5米 B.5米 C.1米 D.0.2米10.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)之间满足函数解析式ρ=kV(k为常数,k≠0),其图象如图26-2-4所示,则k的值为( A )图26-2-4A.9 B.-9 C.4 D.-4二、填空题11.若函数的图象经过点,点,写出一个符合条件的函数表达式______ .【答案】12.函数是y关于x的反比例函数,则______.【答案】313.如图,点A,B是双曲线y=上的点,分别经过A,B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.【答案】414.已知反比例函数y=K/X的图象经过点(﹣3,﹣1),则k= .【答案】315.如图,在中,,,点C在OA上,,的圆心P在线段BC上,且与边AB,AO都相切若反比例函数的图象经过圆心P,则 ______ .【答案】三、解答题16.如图,在四边形OABC中,,,点A,B的坐标分别为,,点D为AB上一点,且,双曲线经过点D,交BC于点E 求双曲线的解析式;求四边形ODBE的面积.解:作轴于M,作轴于N,如图,点A,B的坐标分别为,,,,,,∽,,即,,,,点坐标为,把代入得,反比例函数解析式为;.17.已知y是x的反比例函数,且当时,,请你确定该反比例函数的解析式,并求当时,自变量x的值.解:设反比例函数,当时,,,与x之间的函数关系式.把代入,则.18.某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的表达式;(2)当气体体积为1 m3时,气压是多少?(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不大于多少?(1) 【答案】设p与V的函数关系式为p=,将V=0.8,p=120代入,得k=0.8×120=96,所以p与V的函数关系式为p=.(2) 【答案】当V=1时,p=96,即气压是96 kPa.(3) 【答案】由p=≤140,得V≥0.69,所以气球的体积应大于等于0.69 m3.19.(2018•杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.20.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为.求反比例函数的表达式;求点F的坐标.解:反比例函数的图象经过点A,A点的坐标为,,反比例函数的解析式为;过点A作轴于点M,过点C作轴于点N,由题意可知,,,点C的坐标为,设,则,,在中,,解得:,点B的坐标为,设直线BC的函数表达式为,直线BC过点,,,解得:,直线BC的解析式为,根据题意得方程组,解此方程组得:或点F在第一象限,点F的坐标为21.已知函数.若它是正比例函数,则 ______ ;若它是反比例函数,则 ______ .解:是正比例函数,,,是反比例函数,,,,故答案为:3,.根据是常数,是正比例函数,可得m的值;根据是常数,是反比例函数,可得m的值.人教版数学九年级下册 第二十六章 反比例函数 单元训练题 含答案人教版数学九年级下册 第二十六章 反比例函数 单元训练题1. 函数y =m (m -1)x是反比例函数,则m 必须满足( )A .m ≠1B .m ≠0或m ≠1C .m ≠0D .m ≠0且m ≠12. 若反比例函数y =m +1x的图象在第一、三象限,则m 的取值范围是( )A .m >-1B .m ≥-1C .m <-1D .m ≤-1 3. 如图所示,直线y =x 与双曲线y =kx (k>0)的一个交点为A ,且OA=2,则k 的值为( )A .1B .2 C. 2 D .2 24.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大5.已知两点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =3x 的图象上,当x 1>x 2>0时,下列正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<0 6.若双曲线y =kx 与直线y =2x +1的一个交点的横坐标为-1,则k的值为( )A .-1B .1C .-2D .27.已知过原点的一条直线与反比例函数y =kx (k ≠0)的图象交于A ,B两点,若A 点坐标为(a ,b),则B 点坐标为( )A .(a ,b)B .(b ,a)C .(-b ,-a)D .(-a ,-b) 8.反比例函数y =kx 在第一象限的图象如图所示,则k 的值可能是( )A .1B .2C .3D .49. 如图,已知反比例函数y =kx(x>0),则k 的范围是( )A .1<k<2B .2<k<3C .2<k<4D .2≤k ≤4 10.如图所示是三个反比例函数y =k 1x ,y =k 2x ,y =k 3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系是( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 11. 反比例函数y =13x的比例系数为_________.12.已知一个函数的图象与y =6x的图象关于y 轴对称,则该函数的表达式为____.13.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系为 ___________.(不考虑x 的取值范围) 14.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图,当V =2 m 3时,气体的密度是____kg/m 3.15.如图,P 是反比例函数y =k x 的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的比例系数是____.16.反比例函数y =8x的图象与一次函数y =kx +k 的图象在第一象限交于点B (4,n ),则k =_____,n =_______.17.直线y =ax +b (a >0)与双曲线y =3x相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为____.18.如图,在反比例函数y =2x(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=___________.19. 已知反比例函数y =(2k -3)xk 2-5的图象在所在的象限内,y 随x 的增大而增大,则k =______.20. 直线y =kx +b 过第一、三、四象限,则双曲线y =kbx的图象在第__________象限.21. 下列各式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)x =-25y ;(2)-xy -2=0.22. 在下列函数中,m 为何值时,y 是x 的反比例函数? (1)y =m 2-4x ;(2)y =(m +1)xm 2-2.23. 已知点A(x 1,y 1)和点B(x 2,y 2)都在y =6x 的图象上,若x 1·x 2=4,求y 1·y 2的值.24. 如图,一次函数y =kx +b 与反比例函数y =6x (x>0)的图象交于A(m ,6),B(3,n)两点. (1) 求一次函数的表达式;(2) 根据图象写出kx +b -6x <0的x 的取值范围.25. 如图,直线y =k 1x +b 与双曲线y =k 2x 只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的表达式.26. 如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.26. 制作一种产品,需先将材料加热达到60 ℃,再进行操作,该材料温度为y(℃),从加热开始计算的时间为x(分钟),据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系(如图所示).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1) 分别求出将材料加热和停止加热进行操作时,y与x的函数表达式;(2) 根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?参考答案:1---10 DABCA BDCCC 11. 1312. -6x13. y =90x14. 4 15. -6 16. 25 217. 6 18. 3219. 2 20. 二、四21. 解:(1)是,k =-25(2)是,k =-222. 解:(1)根据题意有m 2-4≠0,即:m≠±2 (2)根据题意有m 2-2=-1,且m +1≠0,解得m =123. 解:根据题意x 1·y 1=6,x 2·y 2=6,所以x 1·x 2·y 1·y 2=36,因为x 1·x 2=4,所以y 1·y 2=924. 解:(1)根据题意知A(1,6),B(3,2),∴⎩⎪⎨⎪⎧2=3k +b 6=k +b ,∴⎩⎪⎨⎪⎧k =-2b =8,∴一次函数表达式为y =-2x +8 (2)0<x<1或x>325. 解:根据题意知D(1,0),B(2,0),∵A(1,2)在y =k 2x 上,∴k 2=2,又A(1,2),B(2,0)在y =k 1x +b 上,∴⎩⎪⎨⎪⎧2=k 1+b 0=2k 1+b ,∴⎩⎪⎨⎪⎧k 1=-2b =4∴y =2x,y =-2x +426. 解:(1)y =9x +15(0≤x<5),y =300x (x ≥5) (2)由y =300x =15得x =20,∴共经历了20分钟人教版九年级下册数学《第26章反比例函数》单元测试题(解析版)一.选择题(共10小题)1.若函数y=(m﹣1)是反比例函数,则m的值是()A.±1B.﹣1C.0D.12.反比例函数y=的图象如图,则函数y=﹣kx+2的图象可能是()A.B.C.D.3.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.如图,点A在反比例函数y=的图象上,AM⊥y轴于点M,P是x轴上一动点,当△APM的面积是4时,k的值是()A.8B.﹣8C.4D.﹣46.若点A(a,b)在双曲线上,则代数式2ab﹣4的值为()A.﹣1B.1C.6D.97.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=8.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>29.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=10.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.2二.填空题(共8小题)11.请写出一个过点(﹣1,1),且函数值y随自变量x的增大而增大的函数表达式.12.如图,点A在双曲线y=上,AB⊥x轴于B,且△AOB的面积S=1,则k=.△AOB13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是.16.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.17.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.18.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为.三.解答题(共8小题)19.画出函数y=(x>0)的图象.20.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.21.已知反比例函数y=,分别根据下列条件求出字母k的取值范围.(1)函数的图象位于一、三象限;(2)在第二象限内,y随x的增大而增大.22.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB23.已知:点P(m,4)在反比例函数y=﹣的图象上,正比例函数的图象经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)求P、Q两点之间的距离.24.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.25.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X 轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).26.一次函数y=kx+b的图象是直线l,点A(,)在反比例函数y=的图象上.(1)求m的值;(2)如图,若直线l与反比例函数的图象相交于M、N两点,不等式kx+b>的解集为1<x<2,求一次函数的表达式;(3)当b=4时,一次函数与反比例函数的图象有两个交点,求k的取值范围.2019年春人教版九年级下册数学《第26章 反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.若函数y =(m ﹣1)是反比例函数,则m 的值是( ) A .±1B .﹣1C .0D .1【分析】根据反比例函数的定义.即y =(k ≠0),只需令m 2﹣2=﹣1,m ﹣1≠0即可.【解答】解:∵y =(m ﹣1)是反比例函数,∴.解之得m =﹣1. 故选:B .【点评】本题考查了反比例函数的定义,特别要注意不要忽略k ≠0这个条件.2.反比例函数y =的图象如图,则函数y =﹣kx +2的图象可能是( )A .B .C .D .【分析】直接利用反比例函数的性质得出k 的符号,再利用一次函数的性质得出答案.【解答】解:∵反比例函数y =的图象分布在第二、四象限,则﹣k>0,∴函数y=﹣kx+2的图象可能是:.故选:B.【点评】此题主要考查了一次函数以及反比例函数的性质,正确掌握函数图形与系数之间的关系是解题关键.3.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.【点评】本题考查了反比例函数图象的对称性.关于原点对称的两点的横纵坐标互为相反数.4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.5.如图,点A在反比例函数y=的图象上,AM⊥y轴于点M,P是x轴上一动点,当△APM的面积是4时,k的值是()A.8B.﹣8C.4D.﹣4【分析】设点A的坐标为:(x,),根据三角形的面积公式计算即可.【解答】解:设点A的坐标为:(x,),由题意得,×|x|×||=4,解得,|k|=8,∵反比例函数y=的图象在第四象限,∴k=﹣8,故选:B.【点评】本题考查的是反比例函数系数k的几何意义,反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.6.若点A(a,b)在双曲线上,则代数式2ab﹣4的值为()A.﹣1B.1C.6D.9【分析】由点A(a,b)在双曲线上,可得ab=5,则可求2ab﹣4的值.【解答】解:∵点A(a,b)在双曲线上,∴ab=5∴2ab﹣4=10﹣4=6故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=(k≠0),把(1,﹣2)代入得:k=﹣2,则反比例函数解析式为y=﹣,故选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.8.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.9.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.10.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.2【分析】过D作DE⊥OA于E,设D(a,),于是得到OA=2a,OC=,根据矩形的面积列方程即可得到结论.【解答】解:如图,过D作DE⊥OA于E,设D(a,),∴OE=a.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2a,OC=,∵矩形OABC的面积为8,∴OA•OC=2a•=8,∴k=2,故选:A.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.二.填空题(共8小题)11.请写出一个过点(﹣1,1),且函数值y随自变量x的增大而增大的函数表达式y=x+2.【分析】设此函数为一次函数,其解析式为y=kx+b,根据该函数的增减性确定其比例系数的取值,然后代入已知点后即可求得其解析式.【解答】解:如果此函数为一次函数,∵函数值y随自变量x的增大而增大,∴可设解析式为:y=x+b,∵图象经过点(﹣1,1),∴1=﹣1+b,解得:b=2;∴解析式为:y=x+2(答案不唯一).故答案为y=x+2.【点评】本题考查了函数的性质,也可以举反比例函数或二次函数的例子.12.如图,点A在双曲线y=上,AB⊥x轴于B,且△AOB的面积S=1,则k=2.△AOB【分析】由S的面积利用反比例函数系数k的几何意义可求出k值,结合反比例函数在△AOB第一象限有图象,即可确定k的值,此题得解.【解答】解:∵点A在双曲线y=上,AB⊥x轴于B,=|k|=1,∴S△AOB∴k=±2.∵反比例函数y=在第一象限有图象,∴k=2.故答案为:2.【点评】反比例函数系数k的几何意义,牢记反比例函数系数k的几何意义是解题的关键.13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为﹣1.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=1×2=﹣2n,然后解关于n的方程即可.【解答】解:设反比例函数解析式为:y=,根据题意得:k=1×2=﹣2n,解得n=﹣1.故答案为:﹣1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是x≤﹣6或0<x≤2.【分析】当y1≤y2时,x的取值范围就是当y1的图象与y2重合以及y1的图象落在y2图象的下方时对应的x的取值范围.【解答】解:根据图象可得当y1≤y2时,x的取值范围是:x≤﹣6或0<x≤2.故答案为x≤﹣6或0<x≤2.【点评】本题考查了反比例函数与一次函数图象的交点问题,理解当y1≤y2时,求x的取值范围就是求当y1的图象与y2重合以及y1的图象落在y2图象的下方时对应的x的取值范围,解答此题时,采用了“数形结合”的数学思想.16.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.17.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为12.【分析】根据题意和旋转的性质,可以得到点C的坐标,由点C在反比例函数y=的图象上,从而可以得到k的值,本题得以解决.【解答】解:∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,∴点C的坐标为(6,2),∴2=,解得,k=12,故答案为:12.【点评】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化﹣旋转,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题)19.画出函数y=(x>0)的图象.【分析】找出部分反比例函数图象上点的坐标,列表、描点、连线即可画出反比例函数图象.【解答】解:列表如下:描点,连线,画出函数图象,如图所示.【点评】本题考查了反比例函数的图象,熟练掌握反比例函数图象的画法是解题的关键.20.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.【分析】(1)根据反比例函数的定义设出表达式,再利用待定系数法解出系数则可;(2)分别代入x 的值求得y 值后即可求得y 的取值范围;【解答】解:(1)设反比例函数是y =(k ≠0), 当x =3时,y =8,代入可解得k =24.所以y =.(2)当x =3时,y =8,当x =4时,y =6,∴自变量x 的取值范围为3≤x ≤4.y 的取值范围为6≤y ≤8.【点评】本题考查了反比例函数的性质及反比例函数的定义,能够利用待定系数法确定反比例函数的解析式是解答本题的关键,难度不大.21.已知反比例函数y =,分别根据下列条件求出字母k 的取值范围.(1)函数的图象位于一、三象限; (2)在第二象限内,y 随x 的增大而增大.【分析】根据反比例函数的性质,k >0时,函数图象位于一三象限,y 随x 的增大而减小;k <0时,函数图象位于二四象限,y 随x 的增大而增大.【解答】解:(1)函数图象位于第一、三象限;根据反比例函数的性质,4﹣k >0,k <4; (2)在每一象限内,y 随x 的增大而增大;根据反比例函数的性质,4﹣k <0,k >4.【点评】本题考查了反比例函数的性质,应注意y =中k 的取值.22.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC﹣S △BOD ﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2, ∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4 =8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.23.已知:点P (m ,4)在反比例函数y =﹣的图象上,正比例函数的图象经过点P 和点Q (6,n ).(1)求正比例函数的解析式; (2)求P 、Q 两点之间的距离.【分析】(1)设正比例函数解析式为y =kx (k ≠0),把点P 的坐标代入反比例函数解析式求出m 的值,从而得到点P 的坐标,然后代入正比例函数解析式求解即可; (2)把点Q 的坐标代入正比例函数解析式求出n ,根据两点间的距离公式即可得到结论. 【解答】解:(1)设正比例函数解析式为y =kx (k ≠0),∵点P (m ,4)在反比例函数y =﹣的图象上,∴﹣=4,解得m =﹣3,∴P 的坐标为(﹣3,4), ∵正比例函数图象经过点P , ∴﹣3k =4,解得k =﹣,∴正比例函数的解析式为y =﹣x ;(2)∵正比例函数图象经过点Q(6,n),∴n=﹣×6=﹣8,∴点Q(6,﹣8),∴P、Q两点之间的距离==15.【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积,(2)利用两个三角形的差表示出△MPQ的面积是解题的关键,也是本题的难点,注意要分情况讨论.24.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.。
第二十六章反比例函数章末复习 课件(共25张PPT) 2024-2025学年人教版九年级数学下册
例4
如图,两个反比例函数
y
1 x
和y
2 x
的图象
分别是 l1 和 l2.设点 P 在 l1 上,PC⊥x 轴,垂足为 C,
交 l2 于点 A;PD⊥y 轴,垂足为 D,交 l2 于点 B,则△PAB 的面积为
y
l2
l1
x0,x10
( C ).
BDP
A.3 B.4 C.9 D.5 2
OC x A
关系? 关于原点成中心对称.
②本章知识结构框图
现实世界中的 反比例关系
归纳 抽象
反比例函数 y k x
实际应用
y k 的图象和性质 x
典例精析
考点1 反比例函数的概念
例1 下列函数中是反比例函数的有
.
(√1)y
5 x
(5)y
x π
(2)y=5-x
(6)y
6 x2
(3)y x 2
(√4)xy=2
在每个象限内, y 都随 x 的增 大而增大
c.怎样求反比例函数的解析式? 一般采用待定系数法,设y k .
x
d.如图,过 y k 的图象上任意一点 P 作两坐 x
标轴的平行线与两坐标轴所围成的矩形的面积
为__| _k_|__.
e.如果反比例函数 y k 与正比例函数y = mx x
有两个交点,那么这两个交点坐标之间有什么
考点2 反比例函数的性质
例3 在函数 y a2 1(a 为常数)的图象上有
x 三个点(-1,y1),(
1
, 4
y2),(
,12 y3)
则 y1,y2,y3 的大小关系是( D ).
A.y2<y3<y1 C.y1<y2<y3
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
人教版九年级数学上册第二十六章反比例函数综合复习题附答案
人教版九年级数学上册第二十六章反比例函数综合复习题附答案一、单选题1.下列函数中是反比例函数的是()A .2y x =-B .6y x =-C .213y x =-D .3y x =+2.若反比例函数()0ky k x =≠的图象经过点()2,3P -,则该函数的图象不经过的点是()A .()3,2-B .()1,6-C .()1,6-D .()1,6--3.已知点()2,M a -在反比例函数6y x =的图象上,则a 的值为()A .-2B .2C .-3D .34.在双曲线2y x =中,当2x <时,y 的取值范围是()A .1y >B .1y <C .0y <D .1y >或0y <5.若()11,A x y 、()22,B x y 都在函数3y x =的图象上,且120x x <<,则().A .12уу<B .12уу=C .12уу>D .12уу=-6.如图,点A 在反比例函数12y x =-的图象上,过点A 作AB x ⊥轴于点B ,则△OAB 的面积是()A .3B .6C .9D .127.反比例函数3y x =-在平面直角坐标系中的图象可能是()A .B .C .D .8.对于反比例函数2y x =,下列说法不正确的是()A .当0x >时,y 随x 的增大而增大B .当0x <时,y 随x 的增大而减小C .点(-2,-1)在它的图象上D .它的图象在第一、三象限9.已知近视眼镜的度数y (度)与镜片焦距x (米)之间成反比例函数关系,如图所示,则眼镜度数y 与镜片焦距x 之间的函数关系式是()A .100y x =B .200y x =C .100y x =D .200y x=10.如图,A ,B 是反比例函数8y x=图象上的两点,分别过点A ,B 作x 轴,y 轴的垂线,构成图中的三个相邻且不重叠的小矩形1S ,2S ,3S ,已知23S =,13S S +的值为()A .16B .10C .8D .5二、填空题11.若反比例函数3y x=-的反比例系数是______.12.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压(kPa)p 是气体体积()3mV 的反比例函数,其图象如图所示,则这个函数的表达式为________.13.如图,已知直线2y x =与反比例函数2y x=的图象交于M ,N 两点.若点M 的坐标是()1,2,则点N 的坐标是______.14.在函数a y x=(其中a ≠0,a 为常数)()11,A x y ,()22,B x y ,()33,C x y 在其图象上,且3120x x x <<<,则把1y 、2y 、3y 按从小到大排列为______.15.设有反比例函数6k y x -=,()11,A x y ,()22,B x y 为其图象上两点,若120x x <<,则12y y >,则k 的取值范围是__________.16.如图,点O 为坐标原点,点A 在双曲线()10y x x =>上,点B 在双曲线()50y x x=>上,点C 在x 轴的正半轴上,若四边形OABC 是平行四边形,则四边形OABC 的面积为______.三、解答题17.当m 取何值时,()2312m m y m x ++=+是关于x 的反比例函数?18.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于()2,M m ,()1,4N --两点.(1)求反比例函数的解析式及m 的值;(2)观察图象,直接写出不等式k ax b x>+的解集.19.反比例函数k y x=与一次函数24y x =-的图像都过(,4)A n .(1)求A 点坐标;(2)求反比例函数解析式.20.如图,抛物线2y ax bx c =++的对称轴为直线12x =,与x 轴的一个交点为(2,0).(1)抛物线与x 轴的另一个交点坐标为;(2)双曲线a y x =分居在第象限,直线y bx c =+不经过第象限;(3)有以下的说法:①<0abc ;②0a b +=;③420a b c ++<;④若(0,1y ),(1,2y )是抛物线上的两点,则12y y =.上述说法中,正确的有.(填序号)21.已知一次函数y =3x -1与一个反比例函数图象交于A 、B 两点,其中点A 的坐标是()1,m .(1)求出m 的值;(2)求出点B 的坐标.22.如图,直线43y x =与双曲线k y x=交于(),4A a 和B 两点,动点P 在第一象限内的该双曲线上,且点P 在点A 的右侧,PC y ⊥轴于点C ,与直线AB 交于点E .(1)求双曲线的表达式;(2)连接PA 、BC ,若PAE BCE S S =△△,求点P 的坐标.23.如图一次函数y ax b =+的图象与反比例函数k y x=的图象交于()2,2M 、()1,N m -两点.(1)求反比例函数和一次函数的解析式;(2)连接OM 、ON ,求MON △的面积.24.如图,在平面直角坐标系中,一次函数y=2x+4的图象与x轴交于点A,与y轴交于点B,与反比例函数kyx=(k≠0)的图象交于C,D两点,点C的坐标为(n,6).(1)求该反比例函数的表达式;(2)求点D的坐标;(3)连接OC,OD,求 COD的面积.25.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(0x>)的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?26.近视眼镜的度数y (度)与镜片焦距x (m )成反比例函数关系.已知400度近视眼镜镜片的焦距为0.25m .(1)求y 与x 之间的函数关系式;(2)当近视眼镜的度数y =300时,求近视眼镜镜片焦距x 的值.27.装卸工人往一辆大型运货车上装载货物,装完货物所需时间y (min )与装载速度()/min x t 之间的函数关系如图:(1)求y 与x 之间的函数关系式;(2)货车到达目的地后开始卸货,如果以1.5/min t 的速度卸货,需要多长时间才能卸完货物?参考答案:1.B 【解析】反比例函数的定义:一般地,形如k y x=(k 为常数,0k ≠)的函数叫做反比例函数,根据定义逐一判断即可.解:A 、2y x =-不满足反比例函数特征,是正比例函数,不符合题意;B 、6y x =-符合反比例函数特征,是反比例函数,符合题意;C 、213y x =-不满足反比例函数特征,是二次函数,不符合题意;D 、3y x =+不满足反比例函数特征,是一次函数,不符合题意.故选B .本题考查了反比例函数的定义,熟练掌握其形式是解题的关键.2.D【解析】把()2,3P -代入解析式,可得6k xy ==-,据此即可判定.解:3(2)=6⨯--,故该函数的图象经过点()3,2-;1(6)=6⨯--,故该函数的图象经过点()1,6-;16=6-⨯-,故该函数的图象经过点()1,6-;1(6)=6-⨯-,故该函数的图象经不过点()1,6--.故选:D .本题考查了反比例函数的定义,一般地,如果两个变量x 、y 之间的关系可以表示成k y x =(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.3.C【解析】将点()2,M a -代入函数6y x =求解即可.解:将点()2,M a -代入函数6y x=得,632a ==--,故选:C此题考查了反比例函数的有关性质,解题的关键是掌握反比例函数的有关性质.4.D【解析】根据反比例函数的图象和性质求解即可.解:双曲线2y x=的图象在一、三象限,且在每个象限内y 随x 的增大而减小,∵当x =2时,21y x==,∴当02x <<时,1y >;当0x <时,0y <,故选:D .本题考查了反比例函数的图象和性质,熟练掌握反比例函数图象与系数k 的关系是解题的关键.5.A【解析】根据题意和反比例函数的性质可以解答本题.解:函数3y x =,该函数图象在第一、三象限、在每个象限内y 随x 的增大而减小,∵()11,A x y 、()22,B x y 都在函数3y x =的图象上,且120x x <<,∴120y y <<,故选A .本题考查反比例函数的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.6.B【解析】设点A 的坐标为(,)A a b ,先根据反比例函数的解析式可得12ab =-,再利用三角形的面积公式即可得.解:设点A 的坐标为(,)A a b ,点A 在反比例函数12y x=-的图象上,12ab ∴=-,AB x ⊥ 轴于点B ,,OB a AB b ∴=-=,OAB ∴ 的面积是111(12)6222OB AB ab ⋅=-=-⨯-=,故选:B .本题考查了反比例函数的几何意义,熟练掌握反比例函数的几何意义及应用是解题关键.7.A【解析】直接根据反比例函数的图象性质进行判断即可.由k =-3<0,可知反比例函数的图象在二四象限,故A 正确.故选:A .主要考查了反比例函数的图象性质,要掌握它的性质才能灵活解题.反比例函数的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.8.A【解析】由反比例函数的关系式,可以判断出(-2,-1)在函数的图象上,图象位于一、三象限,在每个象限内y 随x 的增大而减小,进而作出判断,得到答案.解:由于k =2>0,根据反比例函数的增减性,在每个象限内,y 随x 的增大而减小,因此A 选项符合题意,而B 选项不符合题意,反比例函数y =2x,即xy =2,点(-2,-1)坐标满足关系式,因此C 选项不符合题意;由于k =2,因此图象位于一、三象限,因此D 不符合题意,故选:A .本题考查了反比例函数的图象和性质,熟练掌握反比例函数的增减性,在每个象限内,y 随x 的增大而减小是解题的关键.9.C【解析】由于近视眼镜的度数y (度)与镜片焦距x (米)成反比例,可设=k y x,由于点0.5200(,)在此函数解析式上,故可先求得k 的值.解:根据题意近视眼镜的度数y (度)与镜片焦距x (米)成反比例,设=k y x ,由于点0.5200(,)在此函数解析式上,∴0.5200100k =⨯=,∴100y x=,故选:C .本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.10.B【解析】根据A ,B 是反比例函数8y x=图象上的两点,可得12328,8S S S S +=+=,从而得到132216S S S ++=,即可求解.解:∵A ,B 是反比例函数8y x =图象上的两点,∴12328,8S S S S +=+=,∴132216S S S ++=,∵23S =,∴13162310S S +=-⨯=.故选:B 本题主要考查了反比例函数的几何意义,熟练掌握在反比例函数()0k y k x=≠图象上任取一点,过这个点分别向两坐标轴作垂线段,这两条垂线段与坐标轴围成的矩形的面积是定值k 是解题的关键.11.-3【解析】依据反比例函数定义即可得出答案.∵33y x x-=-=,∴反比例函数3y x=-的比例系数是-3,故答案为:-3.本题主要考查了反比例函数的定义,形如()0k y k x=≠的函数成为反比例函数.12.60p V =【解析】根据“气压×体积=常数”先求得常数的值,再表示出气体体积V 和气压p 的函数解析式.设k p V =,那么点()0.5,120在此函数解析式上,则0.512060k =⨯=,∴60p V=.故答案为:60p V =.本题考查反比例函数的实际应用,解题关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.13.(-1,-2)【解析】直接利用正比例函数和反比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.解:∵直线2y x =与反比例函数2y x=的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故答案为:(-1,-2).此题主要考查了反比例函数与正比例函数图象的性质,正确得出M ,N 两点位置关系是解题关键.14.321y y y <<【解析】根据()00a a >≠可知函数的图象在一、三象限,进而根据反比例函数图象的性质求解即可.解:∵()00a a >≠∴函数a y x=的图象在一、三象限,在每一个象限内,y 随x 的增大而减小, ()11,A x y ,()22,B x y ,()33,C x y 在图象上,且3120x x x <<<,∴30y <,120y y >>∴321y y y <<故答案为:321y y y <<本题考查了反比例函数图象的性质,判断出函数的增减性是解题的关键.15.6k >【解析】先根据题意判断出6k -的符号,进而可得出结论.∵反比例函数6k y x-=,()11,A x y ,()22,B x y 为其图象上两点,若120x x <<,则12y y >,∴6k -<0,解得6k >.故答案为:6k >.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的增减性是解答此题的关键.16.4【解析】根据平行四边形的性质和反比例函数系数k 的几何意义即可求得.解:如图,作BD ⊥x 轴于D ,延长BA 交y 轴于E ,四边形OABC 是平行四边形,∴AB OC ∥,OA =BC ,∴BE ⊥y 轴,∴OE =BD ,∴△≌△Rt AOE Rt CBD ,∴由反比例函数k 的几何意义,S 矩形BDOE =5,12AOE S =△,∴S 四边形OABC 115422=--=,故答案为:4.本题考查了反比例函数的比例系数k 的几何意义、平行四边形的性质等,熟练掌握反比例函数的比例系数k 的几何意义是解题的关键.17.-1【解析】根据反比例函数的定义即可求解.∵()2312m m y m x ++=+是关于x 的反比例函数,∴231120.m m m ⎧++=-⎨+≠⎩,解得122m m m =-=-⎧⎨≠-⎩或,∴1m =-,故答案为:-1.本题考查了反比例函数的定义,关键要注意x 的指数为-1,系数不等于0要同时成立.18.(1)4y x=,2(2)1x <-或02x <<【解析】(1)把()1,4N --代入k y x=中,待定系数法求得反比例函数解析式,进而求得点M 的坐标,即可求得m 的值;(2)根据双曲线与直线的交点即可求解.(1)解:把()1,4N --代入k y x=中,得41k -=-,∴4k =.反比例函数的解析式为4y x =.∵点()2,M m 在反比例函数的图象上,∴224m ==.(2)不等式k ax bx>+的解集为:1x<-或02x<<.本题考查了反比例函数与一次函数结合,待定系数法求解析式,根据交点求不等式的解集,数形结合是解题的关键.19.(1)点A的坐标为(4,4)(2)y=16 x【解析】(1)把点A(n,4)代入一次函数y=2x-4求出n的值即可得出A点的坐标;(2)再把点A的坐标代入反比例函数kyx=求出k的值即可.(1)解:将点A(n,4)代入y=2x﹣4得:2n﹣4=4,解得:n=4,∴点A的坐标为(4,4).(2)解:将点A(4,4)代入kyx=得:k=16,∴反比例函数解析式为y=16 x.本题主要考查的是一次函数及反比例函数图像上点的坐标特点,掌握函数图像的交点坐标即为函数解析式组成的方程组的解是解答本题的关键.20.(1)(-1,0)(2)二、四;四(3)①②④【解析】(1)根据抛物线的对称性求解即可;(2)根据抛物线的开口方向、与y轴的交点、对称轴的位置判断出a、b、c的符号,再根据反比例函数和一次函数的性质判断函数图象分布的象限即可;(3)根据抛物线的开口方向、与y轴的交点、对称轴的位置判断①;根据对称轴为直线122bxa==-可判断②;根据x=2时的函数值可判断③;根据抛物线的对称性可判断④,进而可作出选择.(1)解:∵该抛物线的对称轴为直线12x=,与x轴的一个交点为(2,0).∴抛物线与x轴的另一个交点坐标为(-1,0),故答案为:(-1,0);(2)解:∵该抛物线的开口向下,与y 轴的正半轴相交,对称轴为直线12x =在y 轴右侧,∴a <0,b >0,c >0,∴双曲线a y x =分居在第二、四象限,直线y bx c =+经过第一、二、三象限,不经过第四象限,故答案为:二、四;四;(3)解:①∵a <0,b >0,c >0,∴abc <0,故①正确;②∵对称轴为直线122b x a==-,∴a =-b ,即a+b =0,故②正确;③∵图象经过点(2,0),∴当x =2时,y =4a +2b +c =0,故③错误;④∵对称轴为直线12x =,∴(0,1y )关于直线12x =对称的点的坐标为(1,2y ),∴12y y =,故④正确,综上,正确的有①②④,故答案为:①②④.本题考查二次函数的图象与性质、一次函数的图象与性质、反比例函数的图象与性质,熟练掌握各函数的图象与对应系数的关系是解答的关键.21.(1)2(2)2,33B ⎛⎫-- ⎪⎝⎭【解析】(1)将点A 坐标代入一次函数即可;(2)先求出反比例函数解析式,再与一次函数联立解方程即可.(1)解:∵点()1,A m 在一次函数y =3x -1上,∴m =3×1-1=2,∴m 的值为2(2)解:由(1)可得:点()1,2A ,设反比例函数k y x=.又∵()1,2A 在反比例函数k y x =上,∴21k =,即:2k =,此反比例函数是2y x =.一次函数与反比例函数相交,则有:231x x-=,解之得:11x =,223x =-.经检验,11x =,223x =-都是上述方程的解.当1x =时,是交点A .当23x =-时,23133y ⎛⎫=⨯--=- ⎪⎝⎭,即:2,33B ⎛⎫-- ⎪⎝⎭,∴点B 坐标为233⎛-⎪-⎫ ⎝⎭,.本题考查了一次函数与反比例函数综合,掌握待定系数法求解析式是解题的关键.22.(1)12y x=;(2)点P 的坐标为()6,2.【解析】(1)由点(),4A a 在直线43y x =上求出3a =,然后利用点()3,4A 在双曲线k y x=上即可求出双曲线的表达式;(2)设12,P m m ⎛⎫ ⎪⎝⎭,其中3m >,由PAE BCE S S =△△得PAC ABC S S =△△,由PAC ABC S S =△△构建方程3626m m -=,解此方程从而求出点P 的坐标.(1)解:∵点(),4A a 在直线43y x =上,∴443a =,则3a =,∵点()3,4A 在双曲线k y x=上,∴3412k =⨯=,∴双曲线的表达式为12y x=.(2)解:如图,连接AC ,PAE BCE S S =△△,∴PAC ABC S S =△△,∵动点P 在双曲线12y x=上,且点P 在点A 的右侧,∴可设12,P m m ⎛⎫ ⎪⎝⎭,其中3m >,∵PC y ⊥轴于点C ,∴PC m =,12OC m=,∵点B 与点A 关于原点O 对称,∴点B 的坐标为()3,4--,又1124262PAC S m m m ⎛⎫=-=- ⎪⎝⎭△,()11236332ABC S m m=⨯⨯+=△,∴由3626m m -=,且3m >,解得:6m =,∴点P 的坐标为()6,2.本题考查了一次函数及反比例函数的交点,将点的坐标代入函数关系式求解函数关系的系数是解题的关键.23.(1)4y x=,22y x =-(2)3.【解析】(1)根据题意代入求值即可;(2)利用分割法将大三角形面积分割成3个小三角形面积即可得答案.(1)∵点M (2,2),点N (-1,m )在反比例函数图象上,∴k =2×2=4,m =-4,∵点M ,N 在一次函数的图象上,∴224a b a b +=⎧⎨-+=-⎩,解得a =2,b =-2,综上,一次函数为y =2x -2,反比例函数为4y x=;(2)设一次函数y =2x -2与x 轴、y 轴交点分别为A ,B∴A ,B 坐标分别为(1,0),(0,-2),∴1111212123222MON OAB OAM OBN S S S S =++=⨯⨯+⨯⨯+⨯⨯= .本题考查了反比例函数与一次函数的交点问题,属于基础题.24.(1)6y x=;(2)D (-3,-2);(3)8【解析】(1)利用一次函数解析式求得点C 的坐标,代入反比例函数解析式即可求解;(2)用一次函数和反比例函数解析式联立方程组,解方程组即可;(3)用COD CBO DBO S S S ∆∆∆=+求解即可.解(1)∵点C (n ,6)在一次函数y =2x +4的图象上,∴6=2n +4,解得,n =1,∴点C 坐标为(1,6).把点C 坐标(1,6)代入k y x=,得k =6,∴反比例函数的表达式为6y x =;(2)把两个函数解析式联立得,246y x y x =+⎧⎪⎨=⎪⎩,解得1x =-3,21x =(舍去)当x =-3时,y =2×(-3)+4=-2,∴点D 的坐标是(-3,-2)(3)一次函数y =2x +4的图象与y 轴交点坐标为(0,4)上,COD CBO DBOS S S ∆∆∆=+1122C D OB x OB x =⋅+⋅=11414322⨯⨯+⨯⨯=8COD 的面积为8.本题考查了一次函数与反比例函数综合,解题关键是根据一次函数解析式求出点的坐标,利用点的坐标解决问题.25.(1)y =14x;(2)半径为28米;(3)最多是0.4厘米.【解析】(1)设y 与x 之间的函数表达式为k y x=,解方程即可得到结论;(2)把x =0.5代入反比例函数的解析式即可得到结论;(3)根据题意列不等式即可得到结论.(1)设y 与x 之间的函数表达式为k y x =,∴7=2k ,∴k =14,∴y 与x 之间的函数表达式为y =14x ;(2)当x =0.5时,y =140.5=28米,∴当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28米;(3)当y ≥35时,即14x≥35,∴x ≤0.4,∴某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是0.4厘米.本题考查了反比例函数的应用,正确的理解题意是解题的关键.26.(1)100y x =(2)0.3m 【解析】(1)利用待定系数法得y 与x 之间的函数关系式为100y x=.(2)令y =300,代入100y x=即可求得近视眼镜镜片焦距x 为0.3m .(1)由已知设y 与x 的函数关系式为(0)k y k x =≠,把y =400,x =0.25代入,得4000.25=k ∴k =0.25×400=100,∴y 与x 之间的函数关系式为100y x=(2)由(1)知100y x =,∴当y =300时,有100300x=,解得x =0.3∴当近视眼镜的度数y =500时,近视眼镜片的焦距x 的值为0.3m本题考查了反比例函数的应用,和列方程解题的思路一样,找出等量关系,把变量联系起来就得到函数关系式计算即可.27.(1)20y x=;(2)403min 【解析】(1)求出货物质量,根据装完货物所需时间=货物质量装载速度的关系列出函数关系式即可;(2)利用函数关系式,当装载速度x =1.5t/min ,代入可求卸完货物时间y.(1)()/min x t 代表装载速度,()min y 代表装完货物所需时间,货物的质量m xy =,把()0.5,40代入得货物的质量0.54020m =⨯=;由20xy =得20y x=;(2)当 1.5x =时,2040min 3y x ==.本题主要考查反比例函数,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版 九年级数学 第26章 反比例函数 章末复习一、选择题1. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系是( )A. v =320tB. v =320tC. v =20tD. v =20t2. 已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =kx(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 2>y 1>y 3B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 3>y 1>y 23. 反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( )A. t <16B. t >16C. t ≤16D. t ≥164. (2020·烟台)如图,正比例函数y 1=mx ,一次函数y 2=ax +b 和反比例函数y 3的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <15. (2020·娄底)如图,平行于y 轴的直线分别交1k y x =与2ky x=的图像(部分)于点,A B ,点C 是y 轴上的动点,则ABC ∆的面积为( )A .12k k -B .121()2k k -C .21k k -D .211()2k k -6. (2020·淄博)如图,在直角坐标系中,以坐标原点O (0,0),A (0,4),B(3,0)为顶点的R t △AOB ,其两个锐角对应的外角角平分线相交于点P ,且点P 恰好在反比例函数y的图象上,则k 的值为( )A .36B .48C .49D .647. (2019·湖北咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数y =﹣1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为A .13B .3CD8. (2019•河北)如图,函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是( )A .点MB .点NC .点PD .点Q二、填空题9. 已知反比例函数y =kx (k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是________.10. 双曲线y =m -1x 在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是________.11. 如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C在反比例函数y =kx 的图象上,则k 的值为________.12. 如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1=1x ,则y 2与x 的函数表达式是________.13. 如图,点A 在函数y =4x (x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则⊥ABO 的周长为________.14. (2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x 上,点A 关于x 轴的对称点B 在双曲线y =2kx,则k 1+k 2的值为__________.三、解答题15. 如图,直线y 1=-x +4,y 2=34x +b 都与双曲线y =kx 交于点A (1,m ).这两条直线分别与x 轴交于B ,C 两点. (1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >kx 的解集;(3)若点P 在x 轴上,连接AP ,且AP 把⊥ABC 的面积分成1⊥3两部分,求此时点P 的坐标.16. (2019•广东)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S ⊥AOP :S ⊥BOP =1:2,求点P 的坐标.17. (2019·湖南常德)如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C . (1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.人教版 九年级数学 第26章 反比例函数 章末复习-答案一、选择题1. 【答案】B 【解析】⊥由题意可得路程s =80×4=320,∴v =320t .2. 【答案】A【解析】本题考查反比例函数的性质.由y =k x(k <0),得图象位于二、四象限,在各个象限内,随的增大而增大,故选A .3. 【答案】B【解析】将y =-x +2代入到反比例函数y =1-6tx 中,得:-x +2=1-6t x ,整理,得:x 2-2x +1-6t =0,∵反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,∴⎩⎨⎧(-2)2-4(1-6t )>01-6t <0,解得t >16.4. 【答案】【答案】由图象可知,当x <﹣1或0<x <1时,双曲线y 3落在直线y 1上方,且直线y 1落在直线y 2上方,即y 3>y 1>y 2,所以若y 3>y 1>y 2,则自变量x 的取值范围是x <﹣1或0<x <1.故选:D .5. 【答案】B【解析】本题考查了反比例函数和三角形的面积,设A 的坐标为(x ,1k x),B 的坐标为(x ,2k x),∴S △ABC =1212k k x x x ⎛⎫- ⎪⎝⎭=()1212k k -,因此本题选B .6. 【答案】过P 分别作AB 、x 轴、y 轴的垂线,垂足分别为C 、D 、E ,如图,∵A (0,4),B (3,0),∴OA =4,OB =3,∴AB 5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC ,∴PE =PC =PD , 设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴t ×(t ﹣4)5×tt ×(t ﹣3)3×4=t ×t ,解得t =6, ∴P (6,6), 把P (6,6)代入y 得k =6×6=36.故选:A .7. 【答案】D【解析】如图,过点A ,B 分别作AD ⊥x 轴,BE ⊥x 轴,垂足为D ,E ,∵点A 在反比例函数y =﹣1x (x <0)上,点B 在y =4x(x >0)上, ∴S △AOD =1,S △BOE =4,又∵∠AOB =90°∴∠AOD =∠OBE ,∴△AOD ∽△OBE ,∴(AO OB)2=14AOD OBES S =,∴12AO OB =. 设OA =m ,则OB =2m ,AB=, 在Rt △AOB 中,sin ∠ABO=OA AB ==,故选D .8. 【答案】A【解析】由已知可知函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩关于y 轴对称,所以点M 是原点;故选A.二、填空题9. 【答案】k>0【解析】∵反比例函数y =kx (k≠0),图象所在的每一个象限内,y的值随着x 的值增大而减小,∴k 的取值范围是:k >0.10. 【答案】m <1 【解析】⊥在每个象限内,函数值y 随x 的增大而增大,∴双曲线在二、四象限内,∴在函数y =m -1x 中,m -1<0,即m <1.11. 【答案】-6 【解析】如解图,连接AC 交y 轴于点D ,因为四边形ABCO 是菱形,且面积为12,则⊥OCD 的面积为3,利用反比例函数k 的几何意义可得k =-6.12. 【答案】y 2=4x 【解析】设y 2与x 的函数关系式为y 2=k x ,A 点坐标为(a ,b),则ab =1.又A 点为OB 的中点,因此,点B 的坐标为(2a ,2b),则k =2a·2b =4ab=4,所以y 2与x 的函数关系式为y 2=4x .13. 【答案】26+4 【解析】设点A 的坐标为(x ,y),根据反比例函数的性质得,xy =4,在Rt △ABO 中,由勾股定理得,OB 2+AB 2=OA 2,∴x 2+y 2=16,∵(x +y)2=x 2+y 2+2xy =16+8=24,又⊥x +y>0,∴x +y =26,∴△ABC 的周长=26+4.14. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ),∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0;故答案为:0.三、解答题15. 【答案】(1)⊥直线y 1=-x +4,y 2=34x +b 都与双曲线y =kx 交于点A (1,m ), ⊥将A (1,m )分别代入三个解析式,得⎩⎪⎨⎪⎧m =-1+4m =34+b m =k 1,解得⎩⎪⎨⎪⎧m =3b =94k =3,⊥y 2=34x +94,y =3x ;(2)当x >0时,不等式34x +b >kx 的解集为x >1;(3)将y =0代入y 1=-x +4,得x =4, ⊥点B 的坐标为(4,0),将y =0代入y 2=34x +94,得x =-3, ⊥点C 的坐标为(-3,0), ⊥BC =7,又⊥点P 在x 轴上,AP 把⊥ABC 的面积分成1⊥3两部分,且⊥ACP 和⊥ABP 等高,⊥当PC =14BC 时,S ⊥ACP S ⊥ABP =13,此时点P 的坐标为(-3+74,0), 即P (-54,0);当BP =14BC 时,ACPABP S S △△=13,此时点P 的坐标为(4-74,0),即P (94,0),综上所述,满足条件的点P 的坐标为(-54,0)或(94,0).16. 【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x;(3)P (23,73).【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x;(3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S ⊥AOC =12×3×1=32,∴S ⊥AOB =S ⊥AOC +S ⊥BOC =12×3×1+12×3×4=152,∵S ⊥AOP :S ⊥BOP =1:2,∴S ⊥AOP =152×13=52, ∴S ⊥COP =52–32=1,∴12×3x P =1,∴x P =23,∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).17. 【答案】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx,∴k =1×2=2; ∴反比例函数的表达式为y =2x;(2)∵一次函数y=-x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3-x|,∴S△APC=12|3-x|×2=5,∴x=-2或x=8,∴P的坐标为(-2,0)或(8,0).11。