中考数学试卷
2024浙江省中考数学真题试卷及答案
2024浙江省中考数学真题试卷一、选择题(每题3分)1.以下四个城市中某天中午12时气温最低的城市是( ).A.北京B.济南C.太原D.郑州2.5个相同正方体搭成的几何体主视图为()A. B.C. D.3.2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( ) A.920.13710⨯B.80.2013710⨯C.92.013710⨯D.82.013710⨯4.下列式子运算正确的是( ) A.325x x x +=B.326x x x ⋅=C.329()x x =D.624x x x ÷=5.有5位学生参加志愿者,服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( ) A.7B.8C.9D.106.如图,在平面直角坐标系中,△ABC 与'''A B C ∆是位似图形,位似中心为点O .若点(3,1)A -的对应点为'(6,2)A -,则点B (-2,4)的对应点'B 的坐标为( )A.(-4,8)B.(8,-4)C.(-8,4)D.(4,-8)7.不等式组2113(2)6x x -≥⎧⎨->-⎩的解集在数轴上表示为( )A.B.C. D.8.如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE=4,BE =3,则DE=( )A.5B.6 17 D.49.反比例函数4y x=的图象上有12(,),(4,)P t y Q t y +两点.下列正确的选项是( ) A.当4t <-时,210y y << B.当40t -<<时,210y y << C.当40t -<<时,120y y <<D.当0t >时,120y y <<10.如图,在▱ABCD 中,AC ,BD 相交于点,2,3O AC BD ==过点A 作AE BC ⊥的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A.x y +B.x y -C.xyD.22x y +二、填空题(每题3分)11.因式分解:27a a -=____________. 12.若211x =-,则x =____________. 13.如图,AB 是O 的直径,AC 与O 相切,A 为切点,连接BC .已知050ACB ∠=,则B ∠的度数为___________.14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是_________.15.如图,D ,E 分别是△ABC 边AB ,AC 的中点,连接BE ,DE .若,2AED BED DE ∠=∠=,则BE 的长为_______________.16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与''A B 关于过点O 的直线l 对称,点B 的对应点'B 在线段OC 上,''A B 交CD 于点E ,则△'B CE 与四边形'OB ED 的面积比为___________.三、解答题(17-21每题8分,22,23每题10分,24题12分)17.计算:11()54--18.解方程组:254310x y x y -=⎧⎨+=-⎩.19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan 1ACB ∠=. (1)求BC 的长 (2)求sin DAE ∠的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 21.尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦……我明白了!(1)证明AF∥CE(2)指出小丽作法中存在的问题.22.小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小明跑步时中间休息了两次.跑步机上C档比B档快40米/分,B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间 里程分段 速度档 跑步里程 小明16:00~16:50不分段 A 档 4000米 小丽 16:10~16:50 第一段B 档 1800米第一次休息第二段 B 档 1200米第二次休息第三段C 档 1600米(1)求A ,B ,C 各档速度(单位:米/分) (2)求小丽两次休息时间的总和(单位:分)(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.23.已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围. 24.如图,在圆内接四边形ABCD 中,AD<AC ,ADC BAD ∠<∠,延长AD 至点E ,使AE=AC ,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60O AFE ∠=,CD 为直径,求ABD ∠的度数.(2)求证:①EF ∥BC ②EF=BD .2024浙江省中考数学真题试卷答案一、选择题二、填空题 三、解答题. 17.【答案】718.【答案】124x y ⎧=⎪⎨⎪=-⎩19.【答案】(1)14 (2)3720.【答案】(1)32 (2)324 21.【答案】证明略22.【答案】(1)80米/分,120米/分,160米/分 (2)5分 (3)42.523.【答案】(1)23y x x =++ (2)4m = (3)112n -≤≤。
中考数学试卷真题及答案
中考数学试卷真题及答案1. 选择题1) 单选题:A. 若 a + b = 2,a×b = 1,则 a² + b² = ?A) 4 B) 3 C) 2 D) 1B. 如果 6x - 2y = 10 且 3x + 4y = 8,则 x 的值是多少?A) 4 B) 2 C) 1 D) -1C. 已知正方形 ABCD 的边长为 a,若 AB = 2a - 1,则 BC 的长度是多少?A) a + 1 B) a - 1 C) 2a + 1 D) 2a - 12) 多选题:A. 若 a、b、c 为实数,且a ≠ 0,那么下列命题中正确的有:A) 若 a × b = a × c,则 b = c;B) 若 a × b = a × c,则 b - c = 0;C) 若 a × b = a × c,则 b + c = 2a;D) 若 a × b = 0,则 a = 0 或 b = 0;B. 下列四个集合中,至少有一个集合是互斥事件的是:A) A:取到一张黑桃牌;B) B:取到一张红心牌;C) C:取到一张梅花牌;D) D:取到一张方块牌;C. 能同时整除3和7的两位数是:A) 14 B) 21 C) 42 D) 632. 解答题1) 简答题:请问任意一个正方形的对角线长度与边长的关系是什么?请给出你的计算过程。
解答:正方形的对角线可以通过勾股定理来计算。
设正方形的边长为a,则正方形的一个对角线可以看作是边长为 a 的直角三角形的斜边,所以对角线的长度 d 可以表示为d = √(a² + a²),即d = √(2a²)。
然后,我们可以继续化简这个式子:d = √(2a²) = a√2。
因此,任意一个正方形的对角线长度与边长的关系为:对角线长度等于边长乘以根号2。
2) 计算题:已知函数 f(x) = x² - 5x + 6,求 f(x) = 0 的解。
初三中考数学试卷高清版
考试时间:120分钟满分:150分一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 2/3D. √92. 若a、b是方程x²-2ax+1=0的两根,则a+b的值为()A. 2B. 1C. 0D. -23. 已知函数f(x)=2x-3,若f(x)的值域为[1,5],则x的取值范围是()A. [2,4]B. [1,3]C. [1,2]D. [2,5]4. 在平面直角坐标系中,点A(2,3),点B(-3,1),则线段AB的中点坐标为()A. (-1,2)B. (1,2)C. (-1,3)D. (1,3)5. 若x²+2x+1=0,则x的值为()A. 1B. -1C. 2D. -26. 在等腰三角形ABC中,AB=AC,∠B=40°,则∠C的度数是()A. 40°B. 50°C. 60°D. 70°7. 已知一次函数y=kx+b的图象经过点(1,2)和点(2,3),则k和b的值分别为()A. k=1, b=1B. k=1, b=2C. k=2, b=1D. k=2, b=28. 在△ABC中,∠A=45°,∠B=60°,则△ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形9. 若a、b、c是△ABC的三边,且a+b>c,b+c>a,c+a>b,则△ABC一定是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形10. 下列各数中,无理数是()A. √4B. √-1C. πD. 2/3二、填空题(每题3分,共30分)11. 若x²-5x+6=0,则x的值为______。
12. 若函数f(x)=x²-4x+4的值域为[0,4],则x的取值范围是______。
13. 在平面直角坐标系中,点P(3,4),点Q(-2,-1),则线段PQ的长度为______。
初中中考数学试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.5B. -2.3C. √2D. 1/3答案:C2. 若a=3,b=-1,则下列各式正确的是()A. a+b=2B. a-b=2C. ab=-3D. a/b=-1答案:A3. 在下列函数中,y与x成反比例关系的是()A. y=x+1B. y=2xC. y=3/xD. y=2x+1答案:C4. 已知等腰三角形底边长为6,腰长为8,则其周长为()A. 18B. 20C. 22D. 24答案:D5. 若等差数列的前三项分别为2,5,8,则该数列的公差为()A. 1B. 2C. 3D. 4答案:B6. 下列各数中,属于正数的是()A. -1B. 0C. 1/2D. -1/2答案:C7. 若x=3,则下列各式正确的是()A. x^2=9B. x^3=27C. x^4=81D. x^5=243答案:A8. 已知平行四边形ABCD,若∠A=60°,则∠B的度数为()A. 60°B. 120°C. 180°D. 240°答案:B9. 若等比数列的首项为2,公比为1/2,则该数列的第5项为()A. 1/16B. 1/8C. 1/4D. 1/2答案:A10. 在下列图形中,面积为圆的是()A. 正方形B. 长方形C. 等腰三角形D. 圆答案:D二、填空题(每题3分,共30分)11. 已知a=5,b=-3,则a+b=_________,ab=_________。
答案:2,-1512. 若等差数列的前三项分别为3,6,9,则该数列的公差为_________。
答案:313. 已知等比数列的首项为-2,公比为-1/2,则该数列的第4项为_________。
答案:-1/1614. 若平行四边形ABCD,若∠A=75°,则∠B的度数为_________。
答案:105°15. 若等腰三角形底边长为10,腰长为8,则其周长为_________。
中考数学试卷真题2023全国
中考数学试卷真题2023全国Ⅰ. 选择题1.(必做题)分解质因数,化简计算√6 + √6×√10 - √102.已知 a∶b = 2∶3,b∶c = 3∶4,c∶d = 1∶5,求 a∶c∶d3.如图,矩形 ABCD 的长边 AB = 8cm,短边 AD = 6cm,将矩形沿着其中一条副对角线剪下两个全等三角形 EAD 和 FAE,如图所示,割去部分回形纸制成的圆柱体立体图形如右图所示。
若副对角线 EF = 2.4cm,截得的圆柱体的高为多少?精确到百分位。
Ⅱ. 解答题1.某地日照时间的调查表如下:(表格略)(1)求每个城市日出到日落的时段(小时和分钟)。
(2)根据上述调查表得出的数据,计算该地一年中的日照总时长。
2.如图,平行四边形 ABCD 的边长分别为 AB = 8cm,BC = 6cm,点 E、F、G、H 分别为 CD 的中点、BC 的中点、AB 的中点、AD 的中点。
连接 EF、FG、GH,求证:三角形 EFG 的面积是平行四边形ABCD 面积的 1/5。
3.实数 a、b 满足条件:a + b = 15,a^2 + b^2 = 113,求 a、b 的值。
Ⅲ. 应用题1.某班学生的身高(cm)如下所示:135, 142, 137,140, 139, 138,139, 144, 136,141, 137, 138,144, 136, 136(1)计算学生身高的最大值和最小值。
(2)计算学生身高的中位数。
(3)将数据从小到大排列,计算学生身高的四分位数。
注意:计算四分位数时,如果一个数和小数部分之和正好等于整数部分,保留这个数,其余向下取整。
2.一个凹透镜的焦距为20cm,已知一束平行光线照射到该透镜上,经过折射后放大了 2 倍,求左右的移位量。
3.如图,已知下图中两圆心之间的距离为 8cm,点 P、Q 分别在两圆上。
若 PQ 的长为 4cm,求弧 PAB 的长。
【题目来源】2023年全国卷·中考数学真题【答案解析】上述为2023全国中考数学试卷真题。
2024年苏州市中考数学真题试卷及答案
2024年苏州市中考数学真题试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上.1. 用数轴上的点表示下列各数,其中与原点距离最近的是( )A. 3-B. 1C. 2D. 32. 下列图案中,是轴对称图形的是( )A. B. C. D. 3. 苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为( )A. 102.4710⨯B. 1024710⨯C. 122.4710⨯D. 1224710⨯ 4. 若1a b >-,则下列结论一定正确的是( )A. 1a b +<B. 1a b -<C. a b >D. 1a b +> 5. 如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A. 45︒B. 55︒C. 60︒D. 65︒ 6. 某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A. 甲、丁B. 乙、戊C. 丙、丁D. 丙、戊7. 如图,点A 为反比例函数()10y x x=-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B,则AO BO 的值为( )A. 12 B. 14 C.3 D. 138. 如图,矩形ABCD 中,AB =1BC =,动点E,F 分别从点A,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B,D 运动,过点E,F 作直线l,过点A 作直线l 的垂线,垂足为G,则AG 的最大值为( )A.B. 2C. 2D. 1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9. 计算:32x x ⋅=___________.10. 若2a b =+,则()2b a -=______.11. 如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.12. 如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.13. 直线1:1l y x =-与x 轴交于点A,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.14. 铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,AB 所在圆的圆心C 恰好是ABO的内心,若AB =则花窗的周长(图中实线部分的长度)=______.(结果保留π)15. 二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m,n 为常数,则m n的值为______.16. 如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D,E 分别在AC AB ,边上,AE =,连接DE ,将ADE 沿DE 翻折,得到FDE ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17. 计算:()042-+- 18. 解方程组:27233x y x y +=⎧⎨-=⎩. 19. 先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. 20. 如图,ABC 中,AB AC =,分别以B,C 为圆心,大于12BC 长为半径画弧,两弧交于点D,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△(2)若2BD =,120BDC ∠=︒,求BC 的长.21. 一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由) 22. 某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据)(2)图①中项目E 对应的圆心角的度数为______°(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B (乒乓球)的人数. 23. 图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图①,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号) (2)如图①,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).24. 如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m,k 的值(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D,E 之间运动,不与D,E 重合),过点P 作PM AB ∥,交y 轴于点M,过点P 作PN x ∥轴,交BC 于点N,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.25. 如图,ABC 中,AB =为AB 中点,BAC BCD ∠=∠,cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长(2)求O 的半径.26. 某条城际铁路线共有A,B,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表请根据表格中的信息,解答下列问题:(1)D1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟 (2)记D1001次列车的行驶速度为1v ,离A 站的路程为1d ;G1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______ ①从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27. 如图①,二次函数2y xbx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标(3)如图①,D,E 分别为二次函数图象1C ,2C 的顶点,连接AD,过点A 作AF AD .交图象2C 于点F,连接EF,当EF AD ∥时,求图象2C 对应的函数表达式.2024年苏州市中考数学真题试卷解析一、选择题.1. 【答案】B2. 【答案】A3. 【答案】C4. 【答案】D5.【答案】B6. 【答案】C7. 【答案】A【解析】解:过A 作AC x ⊥轴于C,过B 作BD x ⊥轴于D①11122ACO S =⨯-=,1422BDO S =⨯=,90ACO ODB ∠=∠=︒ ①OA OB ⊥①90AOC OBD BOD ∠=∠=︒-∠①AOC OBD △∽△ ①2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭,即2122OA OB ⎛⎫= ⎪⎝⎭ ①12OA OB =(负值舍去) 故选:A .8. 【答案】D【解析】解:连接AC ,BD交于点O ,取OA 中点H ,连接GH ,如图所示:①四边形ABCD 是矩形 ①90ABC ∠=︒,OA OC =,AB CD ①在Rt ABC △中,2AC === ①112OA OC AC === ①AB CDEAO FCO ∴∠=∠ 在AOE △与COF 中 AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△ AOE COF ∴∠=∠ E ∴,O ,F 共线 AG EF ⊥,H 是OB 中点 ①在Rt AGO △中,1122GH AO == G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.①AG 的最大值为AO 的长,即max 1AG AO ==. 故选:D .二、填空题. 9. 【答案】5x 10. 【答案】411. 【答案】3812. 【答案】62︒13.【答案】y =-14. 【答案】8π【解析】解:如图所示:过点C 作CE AB ⊥①六条弧所对应的弦构成一个正六边形①60,AOB OA OB ∠=︒=①AOB 为等边三角形①圆心C 恰好是ABO 的内心①30CAO CAE CBE ∠∠∠===︒①120ACB ∠=︒①AB =①AE BE ==①2cos30AE AC ==︒①AB 的长为:1202π4π1803⨯⨯= ①花窗的周长为:4π68π3⨯= 故答案为:8π.15. 【答案】35【解析】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩①22833y mx x m =-+ 把()2,C n 代入22833y mx mx m =-+ 得2282233n m m m =⨯-⨯+ ①53n m =- ①5533m m m n ==-- 故答案为:35. 16. 103【解析】解:①AE =①设AD x =,AE =①ADE 沿DE 翻折,得到FDE①DF AD x ==,ADE FDE ∠=∠过E 作EH AC ⊥于H,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠①AHE ACB ∽ ①EH AH AE BC AC AB==, ①5CB =,10CA =,AB ===①510EH AH ==①EH x =,2AH x ==,则DH AH AD x EH =-== ①Rt EHD 是等腰直角三角形①45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒①1354590FDM ∠=︒-︒=︒在FDM 和EHM 中90FDM EHM DMF HMEDF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩①()AAS FDM EHM ≌ ①12DM MH x ==,3102CM AC AD DM x =--=- 111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ 111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ①CEF △的面积是BEC 面积的2倍①()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+= 解得1103x =,210x =(舍去) 即103AD= 故答案为:103. 三、解答题.17. 218. 【答案】31x y =⎧⎨=⎩ 19. 【答案】2x x +,1320. 【答案】(1)见解析 (2)BC =【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,. ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒60BDA CDA ∴∠=∠=︒.又BD CD =DA BC ∴⊥,BE CE =.2BD =sin 2BE BD BDA ∴=⋅∠==2BC BE ∴==.21.【答案】(1)14(2)1622. 【答案】(1)见解析 (2)72(3)本校七年级800名学生中选择项目B (乒乓球)的人数约为240人【小问1详解】解:总人数为915%60÷=D 组人数为6061891215----=补图如下:【小问2详解】解:123607260︒⨯=︒ 故答案为:72【小问3详解】解:1880024060⨯=(人). 答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23. 【答案】(1)CD =(2)CD =24. 【答案】(1)2m =,8k(2)PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭ 【小问1详解】解: ()2,0A -,()6,0C8AC ∴=.又AC BC =8BC ∴=.90ACB ∠=︒∴点()6,8B .设直线AB 的函数表达式为y ax b =+将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩解得12a b =⎧⎨=⎩①直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入k y x=,得8k . 【小问2详解】解:延长NP 交y 轴于点Q,交AB 于点L .AC BC =,90BCA ∠=︒45BAC ∴∠=︒.PN x ∥轴45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥45MPL BLP ∴∠=∠=︒45QMP QPM ∴∠=∠=︒QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-. MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+. ∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭. 25. 【答案】(1)4BC =(2)O 【小问1详解】解:BAC BCD ∠=∠,B B ∠=∠BAC BCD ∴∽.BC BA BD BC∴=,即2BC AB BD =⋅ 4AB =为AB 中点12BD AD AB ∴===①216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E,连接CO,并延长交①O 于F,连接AF在Rt AED △中,cos 4DE CDA AD ∠==. 又2AD =1DE =∴.①在Rt AED △中,AE =BAC BCD △∽△AC AB CD BC∴==. 设CD x =,则AC =,1CE CD DE x =-=-. ①在Rt ACE 中,222AC CE AE =+)()2221x ∴=-+,即2280x x +-=解得12x =,24x =-(舍去).2CD ∴=,AC =①AC AC =AFC ADC ∴∠=∠.CF 为①O 的直径90CAF ∴∠=︒.sin sin 4AC AE AFC CDA CF AD ∴∠==∠==.7CF ∴=,即①O的半径为7. 26. 【答案】(1)90,60(2)①56;①75t =或125 【小问1详解】解:D1001次列车从A 站到B 站行驶了90分钟,从B 站到C 站行驶了60分钟 故答案为:90,60【小问2详解】解:①根据题意得:D1001次列车从A 站到C 站共需9060150+=分钟 G1002次列车从A 站到C 站共需356030125++=分钟①12150125v v = ①1256v v =故答案为:56①14v =(千米/分钟),1256v v = 2 4.8v ∴=(千米/分钟).490360⨯=∴A 与B 站之间的路程为360.360 4.875÷=∴当100t =时,G1002次列车经过B 站.由题意可如,当90110t ≤≤时,D1001次列车在B 站停车. ∴G1002次列车经过B 站时,D1001次列车正在B 站停车. ①.当2590t ≤<时,12d d >1212d d d d ∴-=-,()4 4.82560t t ∴--=,75t =(分钟) ①.当90100t ≤≤时,12d d ≥1212d d d d ∴-=-,()360 4.82560t ∴--=,87.5t =(分钟),不合题意,舍去 ①.当100110t <≤时,12d d <1221d d d d ∴-=-,()4.82536060t ∴--=,112.5t =(分钟),不合题意,舍去 ①.当110150t <≤时,12d d <1221d d d d ∴-=-,()()4.825360411060t t ∴--+-=⎡⎤⎣⎦,125t =(分钟). 综上所述,当75t =或125时,1260d d -=.27. 【答案】(1)2=23y x x --(2)点P的坐标为)1,4 (3)25515424y x x =-++ 【小问1详解】解:(1)将()1,0A -,()3,0B 代入2y x bx c =++,得10930b c b c -+=⎧⎨++=⎩解得:23b c =-⎧⎨=-⎩ 1C ∴对应的函数表达式为:223y x x =--【小问2详解】解:设2C 对应的函数表达式为()()()130y a x x a =+-<,将点()0,6C 代入 得:36a -=解得:2a =-.2C ∴对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1312x -+==. 又图象1C 的对称轴也为直线1x =作直线1x =,交直线l 于点H (如答图①)由二次函数的对称性得,QH PH =,NH MH = ①PM NQ =.又PQ MP QN =+,而PQ HP QH =+ PH PM ∴=.设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +.将1x t =+代入()()213y x x =-+-,得()()222P y t t =-+-将21x t =+代入()()13y x x =+-,得()()2222M y t t =+-.P M y y =,()()()()2222222t t t t ∴-+-=+-即2612t =,解得1t =2t =.∴点P 的坐标为)1,4 【小问3详解】解:连接DE,交x 轴于点G,过点F 作FI ED ⊥于点I,过点F 作FJ x ⊥轴于点J .(如答图①)FI ED ⊥,FJ x ⊥轴,ED x ⊥轴∴四边形IGJF 为矩形IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为()()()130y a x x a =+-<点D,E 分别为二次函数图象1C ,2C 的顶点将1x =分别代入223y x x =--,()()()130y a x x a =+-< 得4,4D E y y a =-=-①()1,4D -,()1,4E a -4DG ∴=,2AG =,4EG a =-.∴在Rt AGD 中,21tan 42AG ADG DG ∠===. AF AD ⊥90FAB DAB ∴∠+∠=︒.又90DAG ADG ∠+∠=︒ADG FAB ∴∠=∠.1tan tan 2FJ FAB ADG AJ ∴∠=∠==. 设()02GJ m m =<<,则FI m =,2AJ m =+. 22m FJ +∴= 21,2m F m +⎛⎫∴+ ⎪⎝⎭. EF AD ∥FEI ADG ∴∠=∠.1tan tan 2FI FEI ADG EI ∴∠=∠== 2EI m ∴=.又EG EI IG =+2242m m a +∴+=- 258m a +∴=-① 点F 在2C 上()()211132m a m m +∴+++-=即()()2222m a m m ++-=. 20m +≠()122a m ∴-=① 由①,①可得()251282m m +--=. 解得10m =(舍去),285m = 54a ∴=-. 2C ∴的函数表达式为()()255515134424y x x x x =-+-=-++.。
2024年云南省中考数学真题试卷附答案
2024年云南省中考数学真题试卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A.100米B.100-米C.200米D.200-米2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A.45.7810⨯ B.357.810⨯ C.257810⨯ D.578010⨯3.下列计算正确的是()A.33456x x x += B.635x x x ÷= C.()327a a = D.()333ab a b =4.在实数范围内有意义,则x 的取值范围是()A.0x > B.0x ≥ C.0x < D.0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.正方体B.圆柱C.圆锥D.长方体6.一个七边形的内角和等于()A.540︒B.900︒C.980︒D.1080︒7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示甲乙丙丁x 9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.已知AF 是等腰ABC ∆底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A.32B.2C.3D.729.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A.()280160x -= B.()280160x -=C.()80160x -= D.()801260x -=10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A.2nx B.()1nn x- C.1n nx + D.()1nn x+11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.爱B.国C.敬D.业12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A.45B.35C.43D.3413.如图,CD 是O 的直径,点A ,B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A.9B.18C.36oD.4514.分解因式:39a a -=()A.()()33a a a -+ B.()29a a + C.()()33a a -+ D.()29a a -15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.三、解答题(本大题共8小题,共62分)20.计算:120117sin3062-⎛⎫++--- ⎪⎝⎭.21.如图,在ABC ∆和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.22.某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a,植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a,植物园b,科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长.25.A ,B 两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A ,B 两种型号的吉祥物,有关信息见下表成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a ,b 的值(2)若某公司计划从该超市购买A ,B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值(2)比较M 与2的大小.27.如图,AB 是O 的直径,点D ,F 是O 上异于A ,B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数(2)求证:直线CM 与O 相切(3)看一看,想一想,证一证以下与线段CE ,线段EB ,线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.2024年云南省中考数学真题试卷解析一、选择题.1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】B【解析】解:一个七边形的内角和等于()72180900-⨯︒=︒故选:B .7.【答案】A【解析】由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲故选:A .8.【答案】C 【解析】解:如图∵AF 是等腰ABC 底边BC 上的高∴AF 平分BAC∠∴点F 到直线AB ,AC 的距离相等∵点F 到直线AB 的距离为3∴点F 到直线AC 的距离为3.故选:C .9.【答案】B 【解析】解: 甲种药品成本的年平均下降率为x 根据题意可得()280160x -=故选:B .10.【答案】D【解析】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ∴第n 个代数式是()1n n x +故选:D .11.【答案】D 12.【答案】C【解析】解:∵90B Ð=°,34AB BC ==,∴tan A =43BC AB =故选:C .13.【答案】B 【解析】解:连接OB∵ AC BC=∴36BOC AOC ∠=∠=︒∴1182D BOC ∠=∠=︒故选:B .14.【答案】A【解析】解:()()()329933a a a a a a a -=-=+-故选:A .15.【答案】C【解析】解:圆锥的底面圆周长为2π3060π⨯=厘米∴圆锥的侧面积为160π401200π2⨯⨯=平方厘米故选:C .二、填空题.16.【答案】1c >17.【答案】5【解析】解: 点()2,P n 在反比例函数10y x=的图象上1052n ∴==故答案为:5.18.【答案】12【解析】解: AC BD∥ACO BDO∴ ∽∴AC BD =12OA OC AC OB OD BD ++=++故答案为:12.19.【答案】120【解析】解:该校喜欢跳绳的学生大约有100012%120⨯=人故答案为:120.三、解答题.20.【答案】2【解析】解:120117sin3062-⎛⎫++--- ⎪⎝⎭1116522=++--2=.21.【解析】证明: BAE CAD∠=∠∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD∠=∠在ABC 和AED △中AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC AED ∆∆≌.22.【答案】D 型车的平均速度为100km /h【解析】解:设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /hx根据题意可得,30030023x x-=整理得,6600x=解得100x=经检验100x=是该方程的解答:D型车的平均速度为100km/h.23.【答案】(1)见解析(2)23【解析】【小问1详解】解:由题意可列表如下a ba(),a a(),b ab(),a b(),b bc(),a c(),b c由表格可知,(),x y所有可能出现的结果总数为以上6种【小问2详解】解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种∴P(七年级年级组、八年级年级组选择的研学基地互不相同)42 63 ==.24.【答案】(1)见解析(2【小问1详解】解:连接BD,ACAB CD ∥,AD BC∥∴四边形ABCD 是平行四边形四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点GF BD ∴∥,HG AC∥ 四边形EFGH 是矩形HG GF∴⊥∴BD AC⊥∴四边形ABCD 是菱形【小问2详解】解: 四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点12GF EH BD ∴==,12HG EF AC == 矩形EFGH 的周长为22∴22BD AC += 四边形ABCD 是菱形即111122BD AC OA OB +=+= 四边形ABCD 的面积为101102BD AC ∴⋅=,即210OA OB ⋅=()2222121OA OB OA OA OB OB +=+⋅+= ∴2212110111OA OB +=-=∴AB ==.25.【答案】(1)4050a b =⎧⎨=⎩(2)564【小问1详解】解:由题知,8767045410a b a b +=⎧⎨+=⎩解得4050a b =⎧⎨=⎩【小问2详解】解: 购买A 种型号吉祥物的数量x 个则购买B 种型号吉祥物的数量()90x -个 且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43∴()4903x x ≥-解得3607x ≥A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍.∴()290x x ≤-解得60x ≤即360607x ≤≤由题知,()()()4035504290y x x =-+--整理得3720y x =-+ y 随x 的增大而减小∴当52x =时,y 的最大值为352720564y =-⨯+=.26.【答案】(1)3b =-(2)当32M +=时,2M >;当32M =时,2M <.【小问1详解】解:∵抛物线21y x bx =+-的对称轴是直线32x =∴3212b -=⨯∴3b =-【小问2详解】解:∵m 是抛物线21y x bx =+-与x 轴交点的横坐标∴2310m m --=∴213m m-=∴422219m m m -+=∴42111m m =-而231m m =+代入得:()41131123310m m m =+-==+∴()()5423310331033311010933m m m m m m m m m m =⋅=+=+=++=+∴5331093333109109m m M m -+-===∵2310m m --=解得:32m ±=当3132M m +==时,1331313302222M +-=-=>∴2M >当32M m -==时,3302222M --=-=<∴2M <.27.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析【小问1详解】解:∵AB 是O 的直径,点F 是O 上异于A ,B 的点∴90AFB ∠=︒【小问2详解】证明:∵AM BM AB MN⋅=⋅∴AM MN AB BM=又∵AMN ABM∠∠=∴ABM AMN∽∴AMB N ∠=∠,MAN MAB ∠=∠∵180MAN MAB ∠+∠=︒∴90MAN MAB ∠=∠=︒∴OA CA ⊥∵OA 是半径∴直线CM 与O 相切【小问3详解】我认为:CE EB CB +=正确,理由如下连接,,OA OD BD ,连接OC 交AD 于点G ,如图,则:OA OD =∴点O 在线段AD 的中垂线上∵CA CD=∴点C 在线段AD 的中垂线上∴OC AD ⊥∴90OGA ∠=︒∵AB 是O 的直径∴90ADB ∠=︒∴OGA ADB ∠=∠∴OG BD ∥∴AOC ABD ∠=∠∵90AHD ∠=︒∴90DHB ∠=︒∴tan DH HBD BH ∠=,tan EH HBE BH ∠=∵E 为DH 的中点∴11tan tan 22EH DH HBE HBD BH BH ∠==⋅=∠∵tan ,tan AC AC AOC ABC AO AB ∠=∠=,且12AO AB =∴11tan tan 22AC ABC AOC OA ∠=⋅=∠∵AOC ABD ∠=∠∴tan tan HBE ABC ∠=∠∴HBE ABC ∠=∠∴,,B E C 三点共线∴CE EB CB +=.。
2024年河南省中考数学真题试卷及答案
2024年河南省中考数学真题试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410⨯B. 105.78410⨯C. 115.78410⨯D. 120.578410⨯ 3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B. C. D. 5. 下列不等式中,与1x ->组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x -D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12 B. 1 C. 43 D. 27. 计算3()a a a a a ⋅⋅⋅个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139. 如图,O 是边长为ABC 的外接圆,点D 是BC 的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分) 11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1)计算(01 (2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好. 18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.图1 图2(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据 1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A,B 两种食品各多少包? (2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品? 22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.∠写出图中相等的角,并说明理由∠若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B ,3AB =,4BC =,分别在边BC ,AC 上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南省中考数学真题试卷答案一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】A6. 【答案】B7. 【答案】D8. 【答案】D9. 【答案】C10. 【答案】C【解析】解∠根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意 根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意故选:C .二、填空题(每小题3分,共15分)11. 【答案】m (答案不唯一)12. 【答案】913. 【答案】1214. 【答案】()3,1015.【答案】 ∠. 1 ∠. 1【解析】解:∠90ACB ∠=︒,3CA CB == ∠190452BAC ABC ∠=∠=⨯︒=︒∠线段CD 绕点C 在平面内旋转,1CD =∠点D 在以点C 为圆心,1为半径的圆上∠BE AE ⊥∠90AEB ∠=︒∠点E 在以AB 为直径的圆上在Rt ABE △中,cos AE AB BAE =⋅∠∠AB 为定值∠当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小 ∠当AE 与C 相切于点D,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥∠90ADE CDE ∠=∠=︒∠AD ==∠AC AC =∠45CED ABC ==︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =+=+即AE 的最大值为1当AE 与C 相切于点D,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥∠90CDE ∠=︒∠AD ==∠四边形ABCE 为圆内接四边形 ∠180135CEA ABC =︒-=︒∠∠∠18045CED CEA =︒-=︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =-=-即AE 的最小值为1故答案为:1;1.三、解答题(本大题共8个小题,共75分) 16. 【答案】(1)9(2)2a +17. 【答案】(1)甲 29(2)甲 (3)乙队员表现更好 18. 【答案】(1)6y x= (2)见解析 (3)92【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ∠23k = ∠6k = ∠这个反比例函数的表达式为6y x =【小问2详解】解:当1x =时,6y =当2x =时,3y =当6x =时,1y =∠反比例函数6y x=的图象经过()1,6,()2,3,()6,1 画图如下:【小问3详解】解:∠()6,4E 向左平移后,E 在反比例函数的图象上∠平移后点E 对应点的纵坐标为4当4y =时,64x=解得32x = ∠平移距离为39622-=.故答案为:92.19. 【答案】(1)见解析(2)见解析【小问1详解】解:如图【小问2详解】证明:∠ECM A∠=∠∠CM AB∥∠∥BE DC∠四边形CDBF是平行四边形∠在Rt ABC△中,CD是斜边AB上的中线∠12 CD BD AB ==∠平行四边形CDBF是菱形.20. 【答案】(1)见解析(2)塑像AB的高约为6.9m 【小问1详解】证明:如图,连接BM.则AMB APB∠=∠.∠AMB ADB∠>∠∠APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =. ∠tan AH APH PH∠=∠tan 606AH PH =⋅︒==∠30APB ∠=︒∠603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=∠tan 306BH PH =⋅︒==∠()4 1.73 6.9m AB AH BH =-==≈⨯≈.答:塑像AB 的高约为6.9m .21. 【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【小问1详解】解:设选用A 种食品x 包,B 种食品y 包根据题意,得7009004600,101570.x y x y +=⎧⎨+=⎩解方程组,得4,2.x y =⎧⎨=⎩答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包根据题意,得()1015790a a +-≥.∠3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∠2000-<∠w 随a 的增大而减小.∠当3a =时,w 最小.∠7734a -=-=.答:选用A 种食品3包,B 种食品4包.22. 【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【小问1详解】解:205h t v t =-+220051020v v t ⎛⎫=--+ ⎪⎝⎭ ∠当010v t =时,h 最大 故答案为:010v 【小问2详解】解:根据题意,得 当010v t =时,20h = ∠20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭∠()020m /s v =(负值舍去)【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+当15h =时,215520t t =-+解方程,得11t =,23t =∠两次间隔的时间为312s -=∠小明的说法不正确.23. 【答案】(1)∠∠ (2)∠ACD ACB ∠=∠.理由见解析;∠2cos m n θ+(3)5或7 【小问1详解】解:观察图知,图∠和图∠中不存在对角互补,图2和图4中存在对角互补且邻边相等 故图∠和图∠中四边形是邻等对补四边形故答案为:∠∠【小问2详解】解:∠ACD ACB ∠=∠,理由:延长CB 至点E,使BE DC =,连接AE∠四边形ABCD 是邻等对补四边形∠180ABC D ∠+∠=︒∠180ABC ABE ∠+∠=︒∠ABE D ∠=∠∠AB AD =∠()SAS ABE ADC ≌∠E ACD ∠=∠,AE AC =∠E ACB ∠=∠∠ACD ACB ∠=∠∠过A 作AF EC ⊥于F∠AE AC = ∠()()1112222m n CF CE BC BE BC DC +==+=+= ∠2BCD θ∠=∠ACD ACB θ∠=∠=在Rt AFC △中,cos CF θAC= ∠cos 2cos CF m n AC θθ+== 【小问3详解】解:∠90B ,3AB =,4BC =∠5AC∠四边形ABMN 是邻等对补四边形 ∠180ANM B ∠+∠=︒∠90ANM =︒当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H∠22218AM AB BM =+=在Rt AMN 中222218MN AM AN AN =-=- 在Rt CMN 中()()22222435MN CM CN AN =-=--- ∠()()22218435AN AN -=--- 解得 4.2AN = ∠45CN = ∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠1225NH =,1625CH = ∠8425BH =∠BN ==当AN AB =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠BM NM =,故不符合题意,舍去 当AN MN =时,连接AM ,过N 作NH BC ⊥于H∠90MNC ABC ∠=∠=︒,C C ∠=∠ ∠CMN CAB ∽△△ ∠CN MN BC AB =,即543CN CN -= 解得207CN =∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠127NH =,167CH = ∠127BH =∠BN ==当BM MN =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠AN AB =,故不符合题意,舍去综上,BN 的长为5或7.。
2023湖北省仙桃市中考数学真题试卷和答案
潜江 天门 仙桃 江汉 油田2023年初中学业水平考试(中考)数学试卷(本卷共6页,满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2.选择题的答案选出后,必须使用2B 铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0,5mm 黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.3.考试结束后,请将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)1.32-的绝对值是( )A. 23-B. 32-C.23D.322. 2023年全国高考报名人数约12910000人,数12910000用科学记数法表示( )A. 80.129110⨯ B. 71.29110⨯ C. 81.29110⨯ D. 712.9110⨯3. 如图是一个立体图形的三视图,该立体图形是( )A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥4. 不等式组311442x x x x -≥+⎧⎨+>-⎩的解集是( )A 12x ≤< B. 1x ≤ C. 2x > D. 12x <≤5. 某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,为.7.这组数据的中位数和众数分别是( )A 5,4B. 5,6C. 6,5D. 6,66. 在反比例函数4ky x-=的图象上有两点()()1122,,,A x y B x y ,当120x x <<时,有12y y <,则k 的取值范围是( )A. 0k < B. 0k > C. 4k < D. 4k >7. 如图,在33⨯的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点ABC 外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )A.5724π- B.5722π- C.5744π- D.5742π-8. 如图,在ABC 中,9034ABC AB BC ∠=︒==,,,点D 在边AC 上,且BD 平分ABC 的周长,则BD 的长是( )A.B.C.D.9. 拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论:①0abc <;②240b ac ->;③320b c +=;④若点()()122P m y Q m y -,,,在抛物线上,且12y y <,则1m ≤-.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个10. 如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为1,t y (细实线)表示铁桶中水面高度,2y (粗实线)表示水池中水面高度(铁.桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则12,y y 随时间t 变化的函数图象大致为( )A. B. C.D.二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)11.计算(0143--+的结果是_________.12. 在平面直角坐标系xOy 中,若反比例函数()0ky k x=≠的图象经过点()1,2--A 和点()2,B m ,则AOB 的面积为_________.13. 如图,在ABC 中,70ACB ABC ∠=︒,△内切圆O 与AB BC ,分别相切于点D ,E ,连接DE AO ,的延长线交DE 于点F ,则AFD ∠=_________.14. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.15. 如图,,BAC DEB △△和AEF △都是等腰直角三角形,90BAC DEB AEF ∠=∠=∠=︒,点E 在ABC 内,BE AE >,连接DF 交AE 于点,G DE 交AB 于点H ,连接CF .给出下面四个结论:①DBA EBC ∠=∠;②BHE EGF ∠∠=;③AB DF =;④AD CF =.其中所有正确结论的序号是的三、解答题(本大题共9个题,满分75分)16. (1)计算:()()4221263(2)1x x x x x +÷--+;(2)解分式方程:22510x x x x-=+-.17. 为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A (很强),B (强),C (一般),D (弱),E (很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.等级人数A (很强)a B (强)b C (一般)20D (弱)19E (很弱)16(1)本次调查的学生共_________人;(2)已知:1:2a b =,请将条形统计图补充完整;(3)若将A ,B ,C 三个等级定为“防诈骗意识”合格,请估计该校2000名学生中"防诈骗意识”合格的学生18. 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)19. 已知正六边形ABCDEF ,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).(1)在图1中作出以BE 为对角线的一个菱形BMEN ;(2)在图2中作出以BE 为边的一个菱形BEPQ .20. 已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.21. 如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点,A D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点,E F ,连接BM .(1)求证:AMB BMP ∠=∠;(2)若1DP =,求MD 的长.22. 某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x (天)130x ≤≤3160x ≤≤日销售价(元/件)0.535x +50日销售量(件)1242x-(160x ≤≤,x 为整数)设该商品的日销售利润为w 元.(1)直接写出w 与x 的函数关系式__________________;(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?23. 如图,等腰ABC 内接于O ,AB AC =,BD 是边AC 上的中线,过点C 作AB 的平行线交BD 的延长线于点E ,BE 交O 于点F ,连接,AE FC .(1)求证:AE 为O 切线;(2)若O 的半径为5,6BC =,求FC 的长.24. 如图1,在平面直角坐标系xOy 中,已知抛物线()260y ax bx a =+-≠与x 轴交于点()()2,0,6,0A B -,与y 轴交于点C ,顶点为D ,连接BC .的(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB 的度数;(3)如图2,若动直线l 与抛物线交于,M N 两点(直线l 与BC 不重合),连接,CN BM ,直线CN 与BM 交于点P .当MN BC ∥时,点P 的横坐标是否为定值,请说明理由.潜江 天门 仙桃 江汉 油田2023年初中学业水平考试(中考)数学试卷(本卷共6页,满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2.选择题的答案选出后,必须使用2B 铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0,5mm 黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.3.考试结束后,请将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)1.32-的绝对值是( )A. 23-B. 32-C.23D.32【答案】D 【解析】【分析】根据绝对值的性质即可求出答案.【详解】解:3322-= .故选:D .【点睛】本题考查了绝对值,解题的关键在于熟练掌握绝对值的性质,负数的绝对值等于这个负数的相反数.2. 2023年全国高考报名人数约12910000人,数12910000用科学记数法表示为( )A. 80.129110⨯ B. 71.29110⨯ C. 81.29110⨯ D. 712.9110⨯【答案】B 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数,据此判断即可.【详解】解:数12910000用科学记数法表示为71.29110⨯.故选:B .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.3. 如图是一个立体图形的三视图,该立体图形是( )A 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】D 【解析】【分析】根据主视图和左视图确定是柱体、锥体、球体,再由俯视图确定具体形状.【详解】解:由主视图和左视图为三角形判断出是锥体,根据俯视图是圆可判断出这个几何体应该是圆锥.故选:D .【点睛】本题考查了由物体的三种视图确定几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.4. 不等式组311442x x x x -≥+⎧⎨+>-⎩的解集是( )A. 12x ≤<B. 1x ≤ C. 2x > D. 12x <≤【答案】A 【解析】【分析】先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:311442x x x x -≥+⎧⎨+>-⎩①②.解不等式①得:1x ≥,解不等式②得:2x <,∴不等式组的解集为12x ≤<,故选A .【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.5. 某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是( )A. 5,4 B. 5,6C. 6,5D. 6,6【答案】B 【解析】【分析】根据中位数和众数的定义即可求出答案.【详解】解: 这组数据3,6,4,6,4,3,6,5,7中出现次数最多的是6,∴众数是6.将这组数据3,6,4,6,4,3,6,5,7按从小到大顺序排列是3,3,4,4,5,6, 6, 6, 7,∴中位数为:5.故选:B【点睛】本题考查了中位数和众数,解题的关键在于熟练掌握中位数和众数的概念,中位数是指将一组数据按大小顺序排列,若一组数据为奇数个,处在最中间位置的一个数叫做这组数据的中位数;若一组数据是偶数,则处在最中间的两个数的平均数为这组数据的中位数;众数指的是在一组数据中出现次数最多的数叫做这组数据的众数.6. 在反比例函数4ky x-=的图象上有两点()()1122,,,A x y B x y ,当120x x <<时,有12y y <,则k 的取值范围是( )A. 0k < B. 0k > C. 4k < D. 4k >【答案】C 【解析】【分析】根据题意可得反比例函数4ky x-=图象在一三象限,进而可得40k ->,解不等式即可求解.【详解】解:∵当120x x <<时,有12y y <,.的∴反比例函数4k y x-=的图象在一三象限,∴40k ->解得:4k <,故选:C .【点睛】本题考查了反比例函数图象性质,根据题意得出反比例函数4k y x-=的图象在一三象限是解题的关键.7. 如图,在33⨯的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点ABC 外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )A. 5724π-B. 5722π-C. 5744π-D. 5742π-【答案】D【解析】【分析】根据网格的特点作AB 的垂直平分线MN ,作BC 的垂直平分线PQ ,设MN 与PQ 相交于点O ,连接OA OB OC ,,,则点O 是ABC 外接圆的圆心,先根据勾股定理的逆定理证明AOC 是直角三角形,从而可得=90AOC ∠︒,然后根据AOC ABC AOC S S S S =--阴影扇形△△,进行计算即可解答.【详解】解:如图:作AB 的垂直平分线MN ,作BC 的垂直平分线PQ ,设MN 与PQ 相交于点O ,连接OA OB OC ,,,则点O 是ABC 外接圆的圆心,的由题意得:222125OA =+=,222125OC =+=,2221310AC =+=,∴222OA OC AC +=,∴AOC 是直角三角形,∴=90AOC ∠︒,∵AO OC ==,∴AOC ABCAOC S S S S =--阴影扇形△△()29011136022OA OC AB π⨯=-⋅-⋅51121422π=-⨯⨯55142π=--5742π=-,故选:D .【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.8. 如图,在ABC 中,9034ABC AB BC ∠=︒==,,,点D 在边AC 上,且BD 平分ABC 的周长,则BD 的长是( )A. B. C. D. 【答案】C【解析】【分析】如图所示,过点B 作BE AC ⊥于E ,利用勾股定理求出5AC =,进而利用等面积法求出125BE =,则可求出95AE =,再由BD 平分ABC 的周长,求出32AD CD ==,,进而得到65DE =,则由勾股定理得BD ==.【详解】解:如图所示,过点B 作BE AC ⊥于E ,∵在ABC 中,9034ABC AB BC ∠=︒==,,,∴5AC ,∵1122ABC S AC BE BC AC =⋅=⋅△,∴125AB BC BE AC ⋅==,∴95AE ==,∵BD 平分ABC 的周长,∴AD AB BC CD +=+,即34AD CD +=+,又∵5AD CD AC +==,∴32AD CD ==,,∴65DE AD AE =-=,∴BD ==,故选C .【点睛】本题主要考查了勾股定理,正确作出辅助线构造直角三角形是解题的关键.9. 拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论:①0abc <;②240b ac ->;③320b c +=;④若点()()122P m y Q m y -,,,在抛物线上,且12y y <,则1m ≤-.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】二次函数整理得223y ax ax a =+-,推出00b c <>,,可判断①错误;根据二次函数的的图象与x 轴的交点个数可判断②正确;由23b a c a ==-,,代入32b c +可判断③正确;根据二次函数的性质及数形结合思想可判断④错误.【详解】解:①由题意得:()()223123y ax bx c a x x ax ax a =++=+-=+-,∴23b a c a ==-,,∵a<0,∴00b c <>,,∴0abc >,故①错误;②∵抛物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.∴20ax bx c ++=有两个不相等的实数根,∴240b ac ∆=->,故②正确;③∵23b a c a ==-,,∴32660b c a a +=-=,故③正确;④∵抛物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.∴抛物线的对称轴为:=1x -,当点()()122P m y Q m y -,,,在抛物线上,且12y y <,∴1m ≤-或()2112(1)m m m m -<-<⎧⎨--->--⎩,解得:0m <,故④错误,综上,②③正确,共2个,故选:B .【点睛】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.10. 如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为1,t y (细实线)表示铁桶中水面高度,2y (粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则12,y y 随时间t 变化的函数图象大致为( )A. B. C.D.【答案】C【解析】【分析】根据特殊点的实际意义即可求出答案.【详解】解:根据图象知,1=t t 时,铁桶注满了水,10t t ≤≤,1y 是一条斜线段,1t t >,1y 是一条水平线段,当1=t t 时,长方体水池开始注入水;当2=t t 时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当3t t =时,长方体水池满了水,∴2y 开始是一段陡线段,后变缓,最后是一条水平线段,观察函数图象,选项C 符合题意,故选:C .【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)11. 计算(0143--+的结果是_________.【答案】1【解析】【分析】先计算零指数幂,负整数指数幂和化简二次根式,然后计算加减法即可.【详解】解:(0143--+-11144=-+1=,故答案为:1.【点睛】本题主要考查了化简二次根式,零指数幂和负整数指数幂,正确计算是解题的关键.12. 在平面直角坐标系xOy 中,若反比例函数()0k y k x=≠的图象经过点()1,2--A 和点()2,B m ,则AOB 的面积为_________.【答案】32【解析】【分析】利用待定系数法求出反比例函数解析式,从而求出B 点坐标,画图,最后利用割补法即可求出AOB 的面积.【详解】解: 反比例函数()0k y k x=≠的图象经过点()1,2--A ,21k ∴-=-,2k ∴=.∴反比例函数为:2y x =. 反比例函数()0k y k x=≠的图象经过点()2,B m ,212m ∴==,()2,1B ∴.∴如图所示,过点A 作AE x ⊥于E ,过点B 作BD AE ⊥的延长线于D ,设BD 与y 轴的交点为C ,()2,1B ,()1,2--A ,213BD BC CD ∴=+=+=,213AD AE DE =+=+=,1OE OC DE ===,()13133213S S S S 2222AOB ABD AOE OEBD +⨯⨯⨯∴=--=--= 梯形.故答案为:32.【点睛】本题考查了反比例函数,涉及到待定系数求解析式,反比例函数与三角形面积问题,解题的关键需要画出图形以及利用割补法求出面积.13. 如图,在ABC 中,70ACB ABC ∠=︒,△的内切圆O 与AB BC ,分别相切于点D ,E ,连接DE AO ,的延长线交DE 于点F ,则AFD ∠=_________.【答案】35︒##35度【解析】【分析】如图所示,连接OE OD OB ,,,设OB DE 、交于H ,由内切圆的定义结合三角形内角和定理求出125AOB ∠=︒,再由切线长定理得到BD BE =,进而推出OB 是DE 的垂直平分线,即90OHF ∠=︒,则35AFD AOH OHF =-=︒∠∠∠.【详解】解:如图所示,连接OE OD OB ,,,设OB DE 、交于H ,∵O 是ABC 的内切圆,∴OA OB 、分别是CAB CBA ∠、∠的角平分线,∴1122OAB CAB OBA CBA ==∠∠,∠∠,∵70ACB ∠=︒,∴180110CAB CBA ACB +=︒-=︒∠∠∠,∴115522OAB OBA CBA CAB +=+=︒∠∠∠∠,∴180125AOB OAB OBA =︒--=︒∠∠∠,∵O 与AB BC ,分别相切于点D ,E ,∴BD BE =,又∵OD OE =,∴OB 是DE 的垂直平分线,∴OB DE ⊥,即90OHF ∠=︒,∴35AFD AOH OHF =-=︒∠∠∠,故答案为:35︒.【点睛】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.14. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.【答案】16【解析】【分析】用树状图表示所有情况的结果,然后找出抽取的两张卡片上的图形都是中心对称图形的情况,最后根据概率公式计算即可.【详解】解:分别用a ,b ,c ,d 表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:依题意和由图可知,共有12种等可能的结果数,其中两次抽出的图形都是中心对称图形的占2种,∴两次抽出的图形都是中心对称图形的概率为:21126=.故答案为16.【点睛】本题考查了树状图法,中心对称图形,解题的关键在于熟练掌握概率公式以及正确理解题意(拿出卡片不放回).15. 如图,,BAC DEB △△和AEF △都是等腰直角三角形,90BAC DEB AEF ∠=∠=∠=︒,点E 在ABC 内,BE AE >,连接DF 交AE 于点,G DE 交AB 于点H ,连接CF .给出下面四个结论:①DBA EBC ∠=∠;②BHE EGF ∠∠=;③AB DF =;④AD CF =.其中所有正确结论的序号是_________.【答案】①③④【解析】【分析】由题意易得,45AB AC ABC DBE =∠=︒=∠,AE EF =,DE BE =,90DEB AEF BAC ∠=∠=∠=︒,则可证()SAS AEB FED ≌,然后根据全等三角形的性质及平行四边形的性质与判定可进行求解.【详解】解:∵,BAC DEB △△和AEF △都是等腰直角三角形,∴,45AB AC ABC DBE =∠=︒=∠,AE EF =,DE BE =,90DEB AEF BAC ∠=∠=∠=︒,∵,DBA DBE ABE EBC ABC ABE ∠=∠-∠∠=∠-∠,,AEB AED DEB FED AEF AED ∠=∠+∠∠=∠+∠,∴,DBA EBC AEB FED ∠=∠∠=∠,故①正确;∴()SAS AEB FED ≌,∴,AB DF AC ABE FDE ==∠=∠,BAE DFE ∠=∠,故③正确;∵90,90ABE BHE EFD EGF ∠+∠=︒∠+∠=︒,90BAE EAC ∠+∠=︒,BE AE >,∴BHE EGF ∠≠∠,EGF EAC ∠=∠;故②错误;∴DF AC ∥,∵DF AC =,∴四边形ADFC 是平行四边形,∴AD CF =,故④正确;故答案为①③④.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.三、解答题(本大题共9个题,满分75分)16. (1)计算:()()4221263(2)1x xx x x +÷--+;(2)解分式方程:22510x x x x-=+-.【答案】(1)224-x x ;(2)32x =【解析】【分析】(1)根据多项式除以单项式及单项式乘以多项式可进行求解;(2)根据分式方程的解法可进行求解.【详解】(1)解:原式()324241x x x x =+-+3324244x x x x =+--224x x =-;(2)解:两边乘以()()11x x x -+,得()()5110x x --+=.解得:32x =.检验,将32x =代入()()110x x x -+≠.∴32x =是原分式方程的解.【点睛】本题主要考查多项式除以单项式、单项式乘以多项式及分式方程的解法,熟练掌握各个运算是解题的关键.17. 为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A (很强),B (强),C (一般),D (弱),E (很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.等级人数A (很强)aB (强)b C (一般)20D (弱)19E (很弱)16(1)本次调查的学生共_________人;(2)已知:1:2a b =,请将条形统计图补充完整;(3)若将A ,B ,C 三个等级定为“防诈骗意识”合格,请估计该校2000名学生中"防诈骗意识”合格的学生有多少人?【答案】(1)共100人(2)见解析(3)估计该校2000名学生中“防诈骗意识”合格的学生有1300人【解析】【分析】(1)根据统计图可进行求解;(2)由(1)及:1:2a b =可求出a 、b 的值,然后问题可求解;(3)根据统计图及题意可直接进行求解.【小问1详解】解:由统计图可知:2020100÷=%(人);故答案为100;【小问2详解】解:由(1)得:10020191645a b +=---=,∵:1:2a b =,∴124515,453033a b =⨯==⨯=,补全条形统计图如下:【小问3详解】解:由题意得:15302065200020001300100100++⨯=⨯=(人).∴估计该校2000名学生中“防诈骗意识”合格的学生有1300人.【点睛】本题主要考查条形统计图及扇形统计图,解题的关键是理清统计图中的各个数据.18. 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)【答案】斜坡AB 的长约为10米【解析】【分析】过点D 作DE BC ⊥于点E ,在Rt DEC △中,利用正弦函数求得 6.2DE =,在Rt ABF 中,利用勾股定理即可求解.【详解】解:过点D 作DE BC ⊥于点E ,则四边形ADEF 是矩形,在Rt DEC △中,2018CD C ︒=∠=,,sin 20sin18200.31 6.2DE CD C =⋅∠=⨯︒≈⨯=.∴ 6.2AF DE ==.∵34AF BF =,∴在Rt ABF 中,55 6.21033AB AF ===⨯≈(米).答:斜坡AB 的长约为10米.【点睛】此题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.19. 已知正六边形ABCDEF ,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).(1)在图1中作出以BE为对角线的一个菱形BMEN;(2)在图2中作出以BE为边的一个菱形BEPQ.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据菱形的性质对角线互相垂直平分即可作出图形.(2)根据菱形的性质四条边平行且相等即可作出图形.【小问1详解】解:如图,菱形BMEN即为所求(点M,N可以对调位置):【小问2详解】解:如图,菱形BEPQ 即为所求.BEPQ 是菱形,且要求BE 为边,∴①当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右下偏移,如图所示,②当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左下偏移如图所示,③当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左上偏移如图所示,④当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右上偏移如图所示,【点睛】本题考查了作图-复杂作图,复杂作图是结合了几何图形的性质和基本作图的方法,涉及到的知识点有菱形的性质和判定,解题的关键在于熟悉菱形的几何性质和正六边形的几何性质,将复杂作图拆解成基本作图.20. 已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.【答案】(1)证明见解析(2)m 的值为1或2-【解析】【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【小问1详解】证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.【小问2详解】解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.21. 如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点,A D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点,E F ,连接BM .(1)求证:AMB BMP ∠=∠;(2)若1DP =,求MD 的长.【答案】(1)证明见解析(2)125MD =【解析】【分析】(1)由折叠和正方形的性质得到90EMP EBC EM EB ∠=∠=︒=,,则EMB EBM ∠=∠,进而证明BMP MBC ∠=∠,再由平行线的性质证明AMB MBC ∠=∠即可证明AMB BMP ∠=∠;(2)如图,延长,MN BC 交于点Q .证明DMP CQP △∽△得到2QC MD =,2QP MP =,设MD x =,则2QC x =,32BQ x =+.由BMQ MBQ ∠=∠,得到32MQ BQ x ==+.则13233x MP MQ +==.由勾股定理建立方程2223213x x +⎛⎫+= ⎪⎝⎭,解方程即可得到125MD =.【小问1详解】证明:由翻折和正方形的性质可得,90EMP EBC EM EB ∠=∠=︒=,.∴EMB EBM ∠=∠.∴EMP EMB EBC EBM ∠-∠=∠-∠,即BMP MBC ∠=∠,∵四边形ABCD 是正方形,∴AD BC ∥.∴AMB MBC ∠=∠.∴AMB BMP ∠=∠.【小问2详解】解:如图,延长,MN BC 交于点Q .∵AD BC ∥,∴DMP CQP △∽△.又∵1DP =,正方形ABCD 边长为3,∴2CP =∴12MD MP DP QC QP CP ===,∴2QC MD =,2QP MP =,设MD x =,则2QC x =,∴32BQ x =+.∵BMP MBC ∠=∠,即BMQ MBQ ∠=∠,∴32MQ BQ x ==+.∴13233x MP MQ +==.在Rt DMP △中,222MD DP MP +=,∴2223213x x +⎛⎫+= ⎪⎝⎭.解得:10x =(舍),2125x =.∴125MD =.【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.22. 某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x (天)130x ≤≤3160x ≤≤日销售价(元/件)0.535x +50日销售量(件)1242x-(160x ≤≤,x 为整数)设该商品的日销售利润为w 元.(1)直接写出w 与x 的函数关系式__________________;(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?【答案】(1)252620,130,402480,3160x x x x w x x x ⎧-++≤≤=⎨-+≤≤⎩为整数,为整数(2)该商品在第26天的日销售利润最大,最大日销售利润是1296元【解析】【分析】(1)根据利润=单个利润×数量可进行求解;(2)由(1)分别求出两种情况下的最大利润,然后问题可求解.【小问1详解】解:由题意得:当130x ≤≤时,则()()20.53530124252620w x x x x =+--=-+-;当3160x ≤≤时,则()()50301242402480w x x =--=-+;∴252620,130,402480,3160x x x x w x x x ⎧-++≤≤=⎨-+≤≤⎩为整数,为整数;【小问2详解】解:当130x ≤≤时,252620w x x =-++;∵抛物线开口向下,对称轴为直线26x =,∴当26x =时,2max 2652266201296w =-+⨯+=(元).当3160x ≤≤时,402480w x =-+,w 随x 增大而减小,∴当31x =时,max 403124801240w =-⨯+=(元).∵12961240>,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握一次函数与二次函数的性质是解题的关键.23. 如图,等腰ABC 内接于O ,AB AC =,BD 是边AC 上的中线,过点C 作AB 的平行线交BD 的延长线于点E ,BE 交O 于点F ,连接,AE FC .(1)求证:AE 为O 的切线;(2)若O 的半径为5,6BC =,求FC 的长.【答案】(1)证明见解析(2)FC =【解析】【分析】(1)证明()AAS ABD CED ≌△△,得出AB CE =,则四边形ABCE 是平行四边形,AE BC ∥,作AH BC ⊥于H .得出AH 为BC 的垂直平分线.则OA AE ⊥.又点A 在O 上,即可得证;过点D 作DM BC ⊥于M ,连接OB .垂径定理得出132===BH HC BC ,勾股定理得4OH =,进而可得AH ,勾股定理求得AB ,证明DM AH ∥,可得CMD CHA ∽,根据相似三角形的性质得出MH ,DM ,然后求得BM ,勾股定理求得BD ,证明FCD ABD △∽△,根据相似三角形的性质即可求解.【小问1详解】证明,∵AB CE ∥,∴,ABD CED BAD ECD ∠=∠∠=∠.又AD CD =,∴()AAS ABD CED ≌△△.∴AB CE =.∴四边形ABCE 是平行四边形.∴AE BC ∥.作AH BC ⊥于H .又∵AB AC =,∴AH 为BC 的垂直平分线.∴点O 在AH 上.∴AH AE ⊥.即OA AE ⊥.又点A 在O 上,∴AE 为O 的切线;【小问2详解】解:过点D 作DM BC ⊥于M ,连接OB .∵AH 为BC 的垂直平分线,∴132===BH HC BC .∴4OH ===.∴549AH OA OH =+=+=.∴AB AC ====.∴12CD AC ==∵,AH BC DM BC ⊥⊥,∴DM AH∥∴CMD CHA ∽,又AD CD =,。
中考数学试题试卷及答案
中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。
答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。
答案:5或-513. 一个正数的平方根是2,那么这个数是_________。
答案:414. 一个数除以-1/2等于乘以_________。
初中中考数学试卷及解析
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C解析:绝对值是指一个数去掉符号的值,绝对值最小的数是0。
2. 下列函数中,y是x的一次函数的是()A. y = 2x^2 + 1B. y = 3x - 4C. y = x^3 + 1D. y = 2/x答案:B解析:一次函数是指函数的图像是一条直线,且自变量x的最高次数为1。
在选项中,只有B项满足这个条件。
3. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2答案:A解析:这是一个完全平方公式,根据公式展开,得到(a + b)^2 = a^2 + 2ab + b^2。
4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。
5. 已知直线l:y = 2x + 1,点P(1,2)到直线l的距离是()A. 1B. 2C. 3D. 4答案:A解析:点到直线的距离公式为:d = |Ax + By + C| / √(A^2 + B^2),将直线l 的方程代入,得到d = |21 + 12 + 1| / √(2^2 + 1^2) = 1。
6. 已知a、b、c是等差数列,且a + b + c = 12,b = 4,则a + c的值是()A. 6B. 8C. 10D. 12答案:B解析:由等差数列的性质可知,a + c = 2b,将b = 4代入,得到a + c = 24 = 8。
中考数学试卷真题带答案
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若方程2x-3=5的解为x,则x的值为()A. 2B. 4C. 7D. 8答案:B解析:将方程2x-3=5移项得2x=5+3,即2x=8,两边同时除以2得x=4。
2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 32cm²C. 36cm²D. 48cm²答案:C解析:等腰三角形的面积公式为S=1/2×底×高,由于是等腰三角形,底边上的高也是腰的中线,所以高为8cm的一半,即4cm。
代入公式得S=1/2×6×4=12cm²,再乘以2得36cm²。
3. 下列函数中,定义域为全体实数的是()A. y=√(x-1)B. y=1/xC. y=x²D. y=1/x²答案:C解析:A选项中,x-1≥0,即x≥1,所以定义域不是全体实数;B选项中,x≠0,所以定义域不是全体实数;D选项中,x≠0,所以定义域不是全体实数;C选项中,x²的定义域为全体实数。
4. 若a、b、c是等差数列,且a+c=10,b=5,则公差d为()A. 1B. 2C. 3D. 4答案:B解析:等差数列的性质是相邻两项之差相等,即d=a2-a1=b-a1。
由a+c=10,得c=a+9。
又因为b=5,所以d=5-a。
将a+c=10代入得5-a+a+9=10,解得a=2,所以d=5-2=3。
5. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 等边三角形的三个角都相等答案:B解析:A选项错误,平行四边形的对角线互相平分但不一定垂直;B选项正确,等腰三角形的两腰相等,所以底角也相等;C选项正确,直角三角形的斜边是直角边所对的边,所以斜边最长;D选项正确,等边三角形的定义就是三边都相等,所以三个角也都相等。
中考数学试卷含答案(精选4套真题)
中考数学试卷含答案(精选4套真题)中考数学试卷含答案(精选4套真题)试卷一一、选择题(共15小题,每小题1分,共15分)1. 某商品的原价为500元,现在打七五折出售,打折后的价格是多少元?A. 375B. 400C. 425D. 4502. 已知某数的4倍是32,求这个数。
A. 2B. 8C. 10D. 163. 在折线图中,若表示20的是80,那么表示40的点是A.70B. 90C. 100D. 1204. 已知一个圆的周长为18π cm,则该圆的半径长多少?A. 3 cmB. 6 cmC. 9 cmD. 12 cm5. 组成互为相反数的两个数之和为0,这两个数中,较大的数是A. -5B. -2C. 0D. 26. 若x的值满足2x-3 = 5x+8,则x的值为A. -3B. -5C. 5D. 87. 小美跑步前进了80米,又后退了30米,最后又跑了50米。
小美最后是在起点的A. 真上方B. 真下方C. 真东方D. 真西方8.小芳三年前的年龄是小华的7/3 ,小芳现在的年龄是小华现在年龄的5/3 ,则小芳现在的年龄是小华三年前年龄的A. 7/3B. 5/3C. 3/5D. 1/79. 若一个表面面积是36cm²的长方体的体积为54cm³,这个长方体的高是A. 1.5 cmB. 3 cmC. 3.5 cmD. 4 cm10. 在反比例函数y = 8/x 的图象上,点 (4, 2) 的纵坐标是A. 0.5B. 1C. 2D. 311. 若x+y=0 ,x-y=20 ,则x和y的值分别是A. ±10B. ±5C. ±2D. ±112. 一个多边形的内角和是1620°,则这个多边形的边数是A. 9B. 10C. 12D. 1513. 若正方形的边长为 a,那么它的周长是A. 2aB. 3aC. 4aD. 8a14. 一支蜡烛在燃烧12分钟后,燃烧的剩余部分的长度是原来的2/5,这支蜡烛一共可以燃烧多长时间?A. 25分钟B. 27分钟C. 30分钟D. 32分钟15. 下面哪个是 37 的因数?A. 5B. 6C. 7D. 8二、填空题(共10小题,每小题1分,共10分)1. 1/4 ÷ 1/5 = ___2. (3/5) × (5/4) = ___3. 31.5 ÷ 4 = ___4. 已知三角形ABC,角A=30°,角B=60°,则角C=___°。
中学中考数学试卷及答案
一、选择题(每题4分,共40分)1. 下列数中,是质数的是:A. 13B. 14C. 15D. 162. 下列图形中,是轴对称图形的是:A. 正方形B. 等腰三角形C. 矩形D. 梯形3. 如果a > b,那么下列不等式中正确的是:A. a - 3 > b - 3B. a + 3 > b + 3C. a - 3 < b - 3D. a + 3 < b + 34. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是:A. 50平方厘米B. 100平方厘米C. 200平方厘米D. 500平方厘米5. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 3x6. 已知等腰三角形的底边长为8厘米,腰长为10厘米,那么它的周长是:A. 24厘米B. 26厘米C. 28厘米D. 30厘米7. 下列数中,是偶数的是:A. 1B. 2C. 3D. 48. 下列方程中,解为x=3的是:A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 7D. 5x - 4 = 79. 一个圆的半径是5厘米,那么它的直径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米10. 下列数中,是立方数的是:A. 1B. 8C. 27D. 64二、填空题(每题4分,共20分)11. 计算:5 - 3 × 2 + 4 ÷ 212. 将分数2/3化简。
13. 已知等边三角形的边长为6厘米,那么它的面积是______平方厘米。
14. 一个数的3倍减去5等于7,求这个数。
15. 下列函数中,y随x增大而减小的是:______。
三、解答题(每题10分,共30分)16. 解下列方程:2x - 5 = 3x + 117. 解下列不等式:3x + 2 > 718. 一辆汽车从甲地开往乙地,每小时行驶60千米,行驶了3小时到达乙地。
2024年中考数学试卷(附答案)
2024年中考数学试卷(附答案)学校:___________班级:___________姓名:___________考号:___________数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、单项选择题(每小题2分,共12分) 1.若()3-⨯的运算结果为正数,则内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( ) A .()221x -=- B .()220x -= C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分. 7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 . 8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒则EFBC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .OA=1m ,OB=10m ,40AOD ∠=︒则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率. 17.如图,在ABCD 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE=BC .18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图②中,画出经过点E的O的切线.20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元? (2)直接写出20192023-年全国居民人均可支配收入的中位数. (3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒= cos370.80︒= tan370.75︒=)五、解答题(每小题8分,共16分) 23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题. 【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少? 24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB=BC ,BD AC ⊥垂足为点D .若CD=2,BD=1,则ABCS =______.(2)如图②,在菱形A B C D ''''中4''=A C ,2B D ''=则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,FH=3,则EFGH S =四边形______;若EG a =,FH=b ,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想. 【理解运用】(4)如图④,在MNK △中,MN=3,KN=4,MK=5,点P 为边MN 上一点. 小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ; (ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧; (ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ . 请你直接写出MPKQ S 四边形的值. 六、解答题(每小题10分,共20分)25.如图,在ABC 中,∠C=90°,∠B=30°,AC=3cm ,AD 是ABC 的角平分线.动点P 从点A 出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2). Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=- ()313-⨯=- ()300-⨯= ()()313-⨯-= 四个算式的运算结果中,只有3是正数 故选:D . 2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:92040000000 2.0410⨯= 故选B . 3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案. 【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段 故选:A . 4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<故该方程无实数解,故本选项不符合题意; B 、()220x -=解得:122x x ==,故本选项符合题意;C 、()221x -= 21x -=±解得123,1x x ==,故本选项不符合题意;D 、()222x -= 2x -=1222x x == 故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,90OA B ''∠=︒ 据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2 ∴42OA OC ==, ∵四边形OABC 是矩形 ∴290AB OC ABC ===︒,∠∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''' ∴42OA OA A B AB '''====, 90OA B ''∠=︒ ∴A B y ''⊥轴 ∴点B '的坐标为()2,4 故选:C . 6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解. 【详解】解:∵BE AD ∥ 50BEC ∠=︒ ∴50D BEC ∠=∠=︒ ∵四边形ABCD 内接于O ∴180ABC D ∠+∠=︒ ∴18050130ABC ∠=︒-︒=︒ 故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案. 【详解】解:∵分式11x +的值为正数 ∴10x +> ∴1x >-∴满足题意的x 的值可以为0 故答案为:0(答案不唯一).8.a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:2030x x ->⎧⎨-<⎩①② 解不等式①得:2x >解不等式②得:3x <∴原不等式组的解集为23x <<故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720° ∴正六边形的每个内角为:7201206︒=︒ 故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒ AD BC = 再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =. 【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O∴45OAD ∠=︒,AD=BC∵点E 是OA 的中点 ∴12OE OA = ∵45FEO ∠=︒∴EF AD ∥∴OEF OAD △∽△ ∴12EF OE AD OA ==,即12EF BC = 故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键. 设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+∵AB B C '⊥由勾股定理得:222AC B C AB ''+=∴()22220.5x x +=+故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.15.22a 6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =当a =原式22=⨯ 6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种 ∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==. 17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴OAE OBC OCB E ==∠∠,∠∠∵点O 是AB 的中点∴OA OB =∴()AAS AOE BOC △≌△∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =∴白色琴键:361652+=(个)答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R= (2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ∴这个反比例函数的解析式为36I R =; (2)解:在36I R =中,当3R =Ω时 3612A 3I == ∴此时的电流I 为12A .21.(1)8485元 (2)35128元 (3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △ tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG == 90DGA ∠=︒在Rt GAD 中45EAD ∠=︒ ∴873tan DG AG DG EAD===∠ 在Rt GAC △中37EAC ∠=︒∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=∴873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1)解:设函数解析式为:()0y kx b k =+≠∵当16.5,115.5x y == 23.1,148.5x y ==∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩ ∴函数解析式为:533y x =+经检验其余点均在直线533y x =+上∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=解得:36x =∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152 12EFGH ab S =四边形 证明见详解,(4)10 【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解; (4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB=BC BD AC ⊥ 2CD =∴2AD CD ==∴4AC = ∴122ABC S AC BD =⨯⨯= 故答案为:2;(2)∵在菱形A B C D ''''中4''=A C 2B D ''= ∴142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4;(3)∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵5EG = 3FH = ∴11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵EG a = FH b = ∴12EFGH ab S =四边形; (4)根据尺规作图可知:QPM MKN ∠=∠∵在MNK △中3MN = 4KN = 5MK =∴222MK KN MN =+∴MNK △是直角三角形,且90MNK ∠=︒∴90NMK MKN ∠+∠=︒∵QPM MKN ∠=∠∴90NMK QPM ∠+∠=︒∴MK PQ ⊥∵4PQ KN == 5MK =∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形AQ t = (2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =; (2)由PQE 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G 12PG AP == 则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 23CF CE E t =⋅∠-,因此)21232FCE SCE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △, 此时PD =-)1PC CD PD t =+- 解直角三角形得1tan PC QC t PQC ==-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒ 30B ∠=︒∴60BAC ∠=︒∵AD 平分BAC ∠∴30PAQ BAD ∠=∠=︒∵PQ AB ∥∴30APQ BAD ∠=∠=︒∴PAQ APQ =∠∠∴QA QP =∴APQ △为等腰三角形 ∵QH AP ⊥∴12HA AP == ∴在Rt AHQ △中cos AH AQ t PAQ==∠; (2)解:如图∵PQE 为等边三角形 ∴QE QP =由(1)得QA QP = ∴QE QA =即223AE AQ t === ∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G∵30PAQ ∠=︒∴12PG AP == ∵PQE 是等边三角形 ∴QE PQ AQ t ===∴212S QE PG =⋅= 由(2)知当点E 与点C 重合时32t =∴2302S t ⎛⎫<≤ ⎪⎝⎭; 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图∵PQE 是等边三角形∴60E ∠=︒而23CE AE AC t =-=-∴)tan 23CF CE E t =⋅∠-∴()))21123232322FCE S CE CF t t t =⋅=--=-∴)2223234PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中cos AC AD AP DAC ===∠ ∴2t =∴2322S t ⎫=+<<⎪⎭; 当点P 在DB 上,重合部分为PQC △,如图∵30DAC ∠=︒90DCA ∠=︒由上知DC =∴AD =∴此时PD =-∴)1PC CD PD t =+=-∵PQE 是等边三角形∴60PQE ∠=︒∴1tan PC QC t PQC ===-∠∴)2112S QC PC t =⋅=- ∵30B BAD ∠=∠=︒∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =∴)()2124S t t =-≤<综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩. 【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+,当0x >时223y x x =-+对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x ,10k =>故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解; Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值当0x =时3y =最大值 当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,y=3,x=-1时,y=2,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤. 【详解】(1)解:∵20x =-<∴将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =∵20,30x x =>=>∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩ 解得:12a b =⎧⎨=-⎩; (2)解:Ⅰ,∵1,1,2k a b ===-∴一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+当0x >时223y x x =-+,对称为直线1x =,开口向上∴1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x 10k =>∴0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=∴23ax bx t ++=,在04x <<时无解∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ∵对于223y x x =-+,当1x =时2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点; 当4x = 168311y =-+=∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 ∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解; Ⅲ:∵,1P Q x m x m ==-+∴()1122m m +-+= ∴点P 、Q 关于直线12x =对称 当1x =,1232y =-+=最小值当0x =时3y =最大值∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时3y =,=1x -时2y = ∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩∴12m ≤≤; ②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩ ∴10m -≤≤综上:10m -≤≤或12m ≤≤.。
中考数学试卷全套及答案
一、选择题(每小题3分,共30分)1. 若m和n是方程x^2 - (m+n)x + mn = 0的两个根,则m+n的值为:A. 2B. 1C. m+nD. m-n2. 下列数中,不是有理数的是:A. √4B. 0.5C. -3/4D. π3. 已知函数y = 2x - 1,当x=3时,y的值为:A. 5B. 6C. 7D. 84. 在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a=3,b=4,c=5,则△ABC是:A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形5. 下列各式中,正确的是:A. 2^3 = 8B. (-2)^2 = 4C. (-3)^3 = -27D. 3^2 = 96. 若a、b、c是等差数列,且a+b+c=9,则b的值为:A. 3B. 6C. 9D. 127. 下列命题中,正确的是:A. 若a>b,则a^2>b^2B. 若a>b,则a+c>b+cC. 若a>b,则a-b>0D. 若a>b,则ac>bc8. 下列函数中,是反比例函数的是:A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 2x^2 - 19. 已知函数y = -x^2 + 4x - 3,则该函数的顶点坐标为:A. (2, -1)B. (2, 3)C. (1, -1)D. (1, 3)10. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,则∠ADB的度数为:A. 45°B. 60°C. 90°D. 120°二、填空题(每小题4分,共40分)11. 若m、n是方程x^2 - 5x + 6 = 0的两个根,则m+n=______,mn=______。
12. 函数y = 3x - 2的图象与x轴交于点______。
13. 在△ABC中,∠A=45°,∠B=90°,∠C=______。
中考数学试题45套
中考数学模拟试卷一、选择题(每题1分,共5分)1.若一个三角形的两边分别为3cm和4cm,且这两边的夹角为90°,则这个三角形的周长为多少cm?A.7cmB.10cmC.12cmD.15cm2.下列函数中,哪一个不是正比例函数?A.y=2xB.y=x+1C.y=3x2D.y=4x3.一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的面积为多少平方厘米?A.12cm²B.24cm²C.36cm²D.48cm²4.若一个圆的半径为r,则这个圆的周长为多少?A.2πrB.πr²C.2rD.r²5.若一个梯形的上底为2cm,下底为6cm,高为4cm,则这个梯形的面积为多少平方厘米?A.14cm²B.18cm²C.22cm²D.26cm²二、判断题(每题1分,共5分)6.若一个数的平方是25,则这个数一定是5。
()7.两个等腰直角三角形一定全等。
()8.一条直线的斜率为0,则这条直线一定是水平线。
()9.若一个多边形的内角和为540°,则这个多边形一定是五边形。
()10.两个圆的半径分别为3cm和5cm,则这两个圆的面积之比为9:25。
()三、填空题(每题1分,共5分)11.若一个等差数列的首项为2,公差为3,则这个数列的第三项为______。
12.若一个正方形的边长为a,则这个正方形的对角线长为______。
13.若一个圆的直径为d,则这个圆的面积为______。
14.若一个直角三角形的两个直角边长分别为3cm和4cm,则这个三角形的斜边长为______。
15.若一个等边三角形的边长为6cm,则这个三角形的面积为______。
四、简答题(每题2分,共10分)16.简述等差数列和等比数列的定义。
17.简述勾股定理的内容。
18.简述平行线的性质。
19.简述圆的周长和面积的计算公式。
全国中考数学试卷真题
一、选择题(每小题4分,共40分)1. 已知一元二次方程x^2 - 5x + 6 = 0,其解为()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = 4,x2 = 1D. x1 = 1,x2 = 42. 在等差数列{an}中,a1 = 3,公差d = 2,则第10项an =()A. 19B. 21C. 23D. 253. 下列函数中,图象为抛物线的是()A. y = x^2 - 2x - 3B. y = 2x^2 + 3x + 1C. y = x^2 - 4x + 4D. y = x^2 + 4x + 44. 已知等腰三角形ABC中,AB = AC,∠B = 40°,则∠A的度数为()A. 50°B. 40°C. 80°D. 100°5. 在平面直角坐标系中,点A(2,3),点B(4,1),则线段AB的中点坐标为()A. (3,2)B. (3,1)C. (2,1)D. (1,2)6. 若等比数列{an}中,a1 = 2,公比q = 3,则第5项an =()A. 54B. 162C. 243D. 7297. 已知平行四边形ABCD中,∠A = 70°,∠B = 110°,则∠C的度数为()A. 70°B. 110°C. 40°D. 130°8. 在平面直角坐标系中,点A(1,2),点B(3,4),则线段AB的长度为()A. 2B. 3C. 4D. 59. 已知一元二次方程x^2 - 4x + 3 = 0,其解为()A. x1 = 1,x2 = 3B. x1 = 3,x2 = 1C. x1 = 2,x2 = 2D. x1 = -1,x2 = -310. 下列函数中,图象为双曲线的是()A. y = x^2 - 1B. y = x^2 + 1C. y = 1/xD. y = 1/x^2二、填空题(每小题4分,共20分)11. 若等差数列{an}中,a1 = 3,公差d = 2,则第5项an = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学试卷
卷Ⅰ(选择题,共42分)
一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列图形具有稳定性的是( )
A .
B .
C .
D . 2.一个整数8155500用科学记数法表示为108.155510⨯,则原数中“0”的个数为( )
A .4
B .6
C .7
D .10
3.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )
A .1l
B .2l
C .3l
D .4l
答案:C
4.将29.5变形正确的是( )
A .2229.590.5=+
B .2
9.5(100.5)(100.5)=+- C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+
5.图2中三视图对应的几何体是( )
A .
B . C. D .
6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.
图3是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A .①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ
B .①-Ⅳ,②-Ⅲ,③-Ⅱ,④-Ⅰ
C. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D .①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ
7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右
手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.
相等,则该组是( ) A . B . C. D .
8.已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.
在证明该结论时,需添加辅助线,则作法不.
正确的是( ) A .作APB ∠的平分线PC 交AB 于点C
B .过点P 作P
C AB ⊥于点C 且AC BC =
C.取AB 中点C ,连接PC
D .过点P 作PC AB ⊥,垂足为C
9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗
高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,
22 6.3s s ==乙丙.则麦苗又高又整齐的是( )
A .甲
B .乙 C.丙 D .丁
10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )
A .2个
B .3个 C. 4个 D .5个
11.如图6,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续
航行,此时的航行方向为( )
A .北偏东30︒
B .北偏东80︒
C.北偏西30︒ D .北偏西50︒
12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )
A .4cm
B .8cm C.(4)a cm + D .(8)a cm +
13.若22222n n n n +++=,则n =( )
D.14
14.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )
A.只有乙
B.甲和丁
C.乙和丙
D.乙和丁
15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )
16.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )
A.甲的结果正确
B.乙的结果正确
C.甲、乙的结果合在一起才正确
D.甲、乙的结果合在一起也不正确
二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)
17.= . 18.若a ,b 互为相反数,则22a b -= .
19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.
例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18
,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.
图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .
三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)
20. 嘉淇准备完成题目:化简:
2268)(652)x x x x ++-++发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“
”是几?
21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.
(1)求条形图中被掩盖的数,并写出册数的中位数;
(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.
22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
尝试(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x 是多少?
应用 求从下到上前31个台阶上数的和.
发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.
23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.
(1)求证:APM BPN △△≌;
(2)当2MN BN =时,求α的度数;
(3)若BPN △的外心在该三角形的内部,直.接.
写出α的取值范围. 24. 如图14,直角坐标系xOy 中,一次函数152
y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .
(1)求m 的值及2l 的解析式;
(2)求AOC BOC S S -△△的值;
(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..
写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3
AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .
(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;
(2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系;
(3)若线段PQ 的长为12.5,直接..
写出这时x 的值. 26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x
=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.
(1)求k ,并用表示h ;
(2)设5v =.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴米,且乙位于甲右侧超过米的位置时,直接..写出的值及v 乙的范围.。