分离变量法求解偏微分方程
偏微分方程的求解方法
偏微分方程的求解方法偏微分方程(Partial Differential Equation,简称PDE)是一类重要的数学问题,其应用范围遍及自然科学、工程技术以及金融等领域。
如何求解偏微分方程是一个具有挑战性的问题,通常需要采用多种方法结合起来进行求解。
本文将简要介绍几种常见的偏微分方程求解方法。
1. 分离变量法分离变量法是一种简单而重要的偏微分方程求解方法。
该方法基于以下假设:偏微分方程的一个解可以写成一系列单一变量的函数乘积的形式。
具体地说,对于一个偏微分方程u(x, y) = 0(其中x, y为自变量),假设其解可以表示为u(x, y) = X(x)Y(y),其中X(x)和Y(y)分别是关于x和y的单一变量函数。
将u(x, y)代入原方程,得到X(x)Y(y) = 0。
由于0的任何一侧都是0,因此可得到两个单一变量方程:X(x) = 0和Y(y) = 0。
这两个方程的部分解(即使其中一个变量为常数时的解)可以结合在一起,形成原偏微分方程的一般解。
2. 特征线法特征线法是另一种重要的偏微分方程求解方法。
该方法的基本思想是将原方程转化为常微分方程,进而求解。
具体地说,对于一个二阶线性偏微分方程:a(x, y)u_xx + 2b(x, y)u_xy + c(x, y)u_yy + d(x, y)u_x + e(x, y)u_y + f(x, y)u = g(x, y),通过变量的代换,可以将该方程化为一个与一次微分方程组相关的形式。
进一步地,可以选择沿着特定的方向(例如x或y方向)进行参数化,从而得到关于变量的一阶微分方程。
该微分方程的解通常可以通过传统的常微分方程求解技巧来获得。
3. 数值方法数值方法是目前应用最广泛的偏微分方程求解方法之一。
由于大多数偏微分方程的解析解很难获得,因此数值方法成为了一种有效的、可行的替代方法。
常见的数值方法包括有限差分法、有限元法和边界元法等。
这些方法通过将偏微分方程离散化为一个有限维的计算问题,然后使用数值方法求解这个问题的解。
数理方程第二章分离变量法
分离变量法得到的解可能不唯一,有时需要额外的条件或参数才能 确定唯一解。
数值稳定性
分离变量法在数值实现时可能存在数值稳定性问题,如数值误差的 累积和扩散等,需要采取适当的措施进行控制和校正。
06
CATALOGUE
分离变量法的改进与拓展
改进方向一:提高求解精度
数值稳定性
通过改进数值算法,提高求解过程中数值的稳定性, 减少误差的传播和累积。
原理推导
01
首先,将偏微分方程中的多个变量分离出来,使方程变为一个 关于各个变量的常微分方程。
02
然后,对每个常微分方程分别求解,得到各个变量的解。
最后,将各个变量的解代回原偏微分方程,得到整个问题的解
03 。
原理应用
在物理学中,分离变量法广泛应用于求解具有多个独立变量的偏微分方程 ,如波动方程、热传导方程等。
高阶近似方法
研究高阶近似方法,以更精确地逼近真实解,提高求 解精度。
自适应步长控制
引入自适应步长控制策略,根据解的精度要求动态调 整步长,提高求解精度。
改进方向二:拓展应用范围
复杂边界条件
研究如何处理更复杂的边界条件,使得分离变 量法能够应用于更广泛的数理方程问题。
多维问题
将分离变量法拓展到多维问题,以解决更复杂 的数学模型。
04
CATALOGUE
分离变量法的实例
实例一:一维波动方程的分离变量法
总结词
通过将一维波动方程转化为常微 分方程,分离变量法能够简化求 解过程。
详细描述
一维波动方程是描述一维波动现 象的基本方程,通过分离变量法 ,我们可以将该方程转化为多个 常微分方程,从而逐个求解,得 到波动问题的解。
数学表达式
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。
这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。
解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。
在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。
以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。
分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。
特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。
对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。
分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。
特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。
Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。
非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。
这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。
除了上述解析解法,数值方法也是解偏微分方程的重要手段。
常用的数值方法包括有限差分法、有限元法和谱方法等。
线性偏微分方程的解法-分离变量法
由 2.1.1 中 例 题 ( 1 ) 可 知 , 当 f (x,t ) ≡ 0 时 , 定 解 问 题 的 本 征 函 数 族 为
⎨⎧sin ⎩
nπx l
⎬⎫, ⎭
(n
=
1,2,3L)
。
因此,设
∑ u(x, t )
=
∞
Tn (t)sin
n =1
nπx l
将(12)带入(11)中的泛定方程,得
∑∞
⎡ ⎢Tn
(23)
上述定解问题和初始条件是非齐次的,但边界条件是齐次的,可以用上一小节的本征函数发 或者冲量定理法继续求解。
另一个函数 v(x,t ),可以用线性函数构造,令
v(x,t) = α (t) + β (t) − α (t) x
l
将(24)式带入(23)式,即可求得ω(x,t ),最终由(22)式可得
= 0,
= u1
0,
x=
l
=
0,
⎪ ⎪⎩u1
t=0
=
ϕ (x ),
u1t t=0 = ψ (x),
(16)
( ) ⎪⎪⎨⎧uu
2 tt
2 x
−
=0
a 2u 2 = 0,
xx = u2
f x,t , x=l = 0,
⎪
⎪⎩u2 t =0 = 0,
u
2 t
t=0 =
0,
(17)
齐次方程(16)可用上一小节分离变量法直接求得,方程(17)泛定方程为非齐次,但初始 条件已经转化为齐次。
nπa l
sin
nπx l
=ψ
(x),
(0 < x < l)
(9)式左边是傅里叶正弦级数展开,因此其系数
偏微分方程的分离变量法
偏微分方程的分离变量法偏微分方程是数学中的一个重要概念,它描述了多元函数的偏导数之间的关系。
在求解偏微分方程的过程中,分离变量法是一种常被使用的方法。
本文将介绍偏微分方程的分离变量法,并通过实例来说明其应用。
一、分离变量法的基本原理分离变量法是一种常见且常用的求解偏微分方程的方法。
它基于以下原理:假设待求解的偏微分方程为一个多项式函数,且可以分解为多个单独的函数之积,即可将其分离为多个个别的方程,通过解这些个别方程,再将它们组合起来得到原方程的解。
二、分离变量法的具体步骤分离变量法的具体步骤如下:1. 将待求解的偏微分方程中的各个变量分离,组成一个由单个变量及其对应的导数组成的方程。
2. 对单个变量的方程进行求解,得到每个变量的解函数。
3. 将各个变量的解函数组合起来,得到原方程的解。
三、应用实例:热传导方程问题考虑一个一维热传导方程问题:∂u/∂t = k * ∂^2u/∂x^2其中,u(x, t)为未知函数,k为常数。
按照分离变量法的步骤,我们将u(x, t)分离为两个函数u(x)和v(t)的乘积,即u(x, t) = X(x) * T(t)。
将上述分离变量代入原方程中,得到:X(x) * T'(t) = k * X''(x) * T(t)将等式两边分别除以k * X(x) * T(t),得到:T'(t) / (k * T(t)) = X''(x) / X(x)由于等式两边只包含单个变量及其对应的导数,因此可以将等式两边分别等于一个常数,记为-λ^2,得到:T'(t) / (k * T(t)) = -λ^2 = X''(x) / X(x)接下来,我们对T(t)和X(x)分别进行求解。
对T(t)的小节方程进行求解,得到:T'(t) / (k * T(t)) = -λ^2T'(t) / T(t) = -λ^2 * k对上述方程积分,得到:ln(T(t)) = -λ^2 * k * t + C1其中,C1为常数。
分离变量法
1.2
分离变量法的物理意义
令 Nn =
2 A2 n + Bn ,
αn = arctan 混合问题 (1) 的解的每一项可化为 un (x, t) = Nn sin
Bn , An
nπ anπ x sin t + αn . l l
un (x, t) 是振动元素。对于弦上任意一点 x , un (x, t) 描述了这一 anπ nπ , 频 率 ωn (x) = ,初 点 的 简 谐 振 动 , 其 振 幅 an (x) = Nn sin l l l n−1 相位为 αn 。于是 ,当 x = 0, , . . . , l, l 时,振幅 an (x) = 0 ;当 n n l 3l 2n − 1 x= , ,..., l 时,振幅 an (x) = ±Nn 达到最大。因此弦的振动 2n 2n 2n 可以看作一系列具有特定频率的驻波的叠加。 特别地,考虑定解问题 utt − a2 uxx = A (x) sin ωt, (x, t) ∈ (0, l) × (0, +∞) , u (x, 0) = ut (x, 0) = 0, x ∈ [0, l] , u (0, t) = u (l, t) = 0, t ∈ [0, +∞) . x 我们可得
4
将 u (x, t) , f (x, t) , ϕ (x) , ψ (x) 均按特征函数系展开:
∞
u (x, t) =
n=1 ∞
Tn (t) sin fn (t) sin
n=1 ∞
nπ x, l nπ x, l
f (x, t) = ϕ (x) =
n=1 ∞
ϕn sin ψn sin
n=1
nπ x, l nπ x, l
§2.1 分离变量法求解偏微分方程
1
⎧ x = r sin θ cos ϕ ⎪ 直角坐标系与球坐标系的关系: ⎨ y = r sin θ sin ϕ ⎪ z = r cos ϕ ⎩
利用微分计算,可以得到球坐标系下拉普拉斯方程
1 ∂ ⎛ 2 ∂u ⎞ 1 ∂ ⎛ ∂u ⎞ 1 ∂ 2u =0 ⎜r ⎟+ ⎜ sin θ ⎟+ ∂θ ⎠ r 2 sin 2 θ ∂ϕ 2 r 2 ∂r ⎝ ∂r ⎠ r 2 sin θ ∂θ ⎝
边界条件 确定本征值、 本征函数
初始条件 确定待定系数
§2.1 分离变量法求解偏微分方程
一、拉普拉斯(Laplace)方程: ∇ u = 0
2
1、球坐标系 (r , θ , ϕ ) 下拉普拉斯方程的分离变量解法 直角坐标系下拉普拉斯方程:
∂ 2u ∂ 2u ∂ 2u + + =0 ∂x 2 ∂y 2 ∂z 2
⇒
ρ d ⎛ dR ⎞ ρ 2 d 2 Z 1 d 2Φ ⎜ ⎟ + = − = m2 ρ ⎜ ⎟ 2 2 Φ dϕ R dρ ⎝ dρ ⎠ Z dz
⎧ d 2Φ 2 ⎪ 2 +m Φ =0 ⎪ dϕ ⎨ dR ⎞ ρ 2 d 2 Z 2 ⎪ρ d ⎛ ⎜ ⎟ ρ ⎟ + Z dz 2 − m = 0 ⎪ R dρ ⎜ d ρ ⎝ ⎠ ⎩ (17) (18)
Φ (ϕ ) 应满足自然边界条件 Φ (ϕ ) = Φ (ϕ + 2π )
所以, m 必须为整数,即 m = 0,1,2, L 综上
Φ(ϕ ) = Am cos mϕ + Bm sin mϕ
3 、方程(8)的求解 ○ 令 x = cos θ ,
(m = 0,1,2,L)
(13)
分离变量法求解偏微分方程
分离变量法求解偏微分方程分离变量法求解偏微分方程,听起来有点复杂对吧?但别担心,让我们用轻松愉快的方式来聊聊这个话题。
想象一下你在厨房里做菜,手上有一堆食材。
这些食材各有各的特性,有些需要煮,有些需要炒,而你的任务就是把它们分开,然后再根据需要组合起来。
这个过程就像是在处理偏微分方程。
偏微分方程嘛,就是那种同时涉及多个变量的方程,听起来就像是那些小朋友的玩具,满地都是,得一一捡起来,才能搞定。
分离变量法其实就是一种策略,帮助我们把这些复杂的变量一分为二。
想象一下,有个大大的方程,把它从中间一劈,两边的变量分别放到各自的“碗”里。
你会发现,问题一下子简单多了。
比如说,假设我们有一个方程,涉及时间和空间的变量。
我们可以把时间的部分和空间的部分给隔开,就像把米饭和菜分开,不同的地方,不同的调味。
只要我们做到这一点,接下来就能轻松求解了。
在这个过程中,最重要的就是找到合适的“切口”。
每个方程都有自己的特点,找到合适的方法,就像找到了正确的刀,轻轻一划,问题就迎刃而解。
举个例子,如果我们遇到的方程可以写成这样的形式:一个函数乘以一个关于另一个变量的函数。
这就是一个好机会!这时候我们可以放心地分开,把每一部分独立处理。
就像把炒菜和煮汤分开,最后再合在一起,味道更鲜美。
解决这些方程的过程也不全是顺风顺水。
尽管我们把变量分开了,结果也可能让人抓狂。
这就像煮了一锅粥,却发现没有盐,味道不够。
这时候,我们得重新审视我们的步骤,看看哪里出了问题。
搞清楚这些细节,才能确保最终的结果是我们想要的。
分离变量法的最终目的是求出我们需要的函数,通常我们得到的是一个积分方程。
这里面可能会涉及到一些技巧,比如换元或者分部积分,这些都是我们厨房里的“秘密调料”。
掌握了这些,你就能把原本复杂的方程变成简单可解的形式。
不过,别以为解决偏微分方程就能万事大吉。
生活中还有很多其他的方程等着我们去挑战。
每一种方程都有它的故事,有它的背景。
这就像每道菜都有自己的配方。
分离变量法总结——从理论到实践的偏微分方程定解方法
(7)
a
则称 f (x) 是归一化的. 而若对于函数集合 {fi}, 恒有
b
(fi, fj) ≡ fi∗(x)fj(x)dx = δij,
(8)
a
则称此函数集合是正交归一的. √
Example 18.6 函数集合 einx/ 2π, n = 0, ±1, ±2, · · · 在 [−π, π] 上是正交归一的
b
cα = fα∗(x)f (x)dx = (fα, f ).
(11)
a
6
4. 因为
b
n
2
f (x) − cαi fαi (x) dx
a
i=1
n
=(f, f ) − c∗αi (fαi , f )
i=1
n
n
− cαi (f, fαi ) + |cαi |2
i=1
i=1
n
=(f, f ) − |cαi |2,
存在. Proof 由于
b
f1∗(x)f2(x)dx
a
|f1(x)|2 + |f2(x)|2 − 2|f1(x)| · |f2(x)| = |f1(x)| − |f2(x)| 2 ≥ 0
3
因此 所以, 积分 存在. 于是 也存在.
|f1∗(x)f2(x)| = |f1(x)| · |f2(x)| ≤
正交归一 若对于所有的 i 和 j,
(xi, xj ) = δij
则称矢量组 {x1, x2, · · · } 是正交归一的.
正交归一的矢量一定线性无关. 任何一组线性无关的矢量都可以正交归一化.
Schmidt 正交化 任何一组线性无关的矢量 y1, y2, y3, ...
数学物理方程-第二章分离变量法
第二章 分离变量法分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论.§21 特征值问题⋅2.1.1 矩阵特征值问题在线性代数中,我们已学过线性变换的特征值问题. 设为一阶实矩阵,A n 可视为到自身的线性变换。
该变换的特征值问题(eigenvalue problem )A n R 即是求方程:,,n Ax x x R λ=∈(1.1)的非零解,其中为待定常数. 如果对某个,问题(1.1)有非零解C λ∈λ,则就称为矩阵的特征值(eigenvalue),相应的称为矩阵n x R λ∈λA n x R λ∈的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于个相A n 异的特征值和线性无关的特征向量. 但可证明: 任一阶矩阵都有个线性无n n 关的广义特征向量,以此个线性无关的广义特征向量作为的一组新基,矩n n R 阵就能够化为标准型.Jordan 若为一阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正A n 交矩阵使得T , 1T AT D -=(1.2)其中diag 为实对角阵. 设,为矩阵的第列D =12(,,...,)n λλλ12[ ... ]n T T T T =i T T i 向量,则式(1.2)可写为如下形式(1)i n ≤≤ ,1212 [ ... ][ ... ]n n A T T T T T T D =或, 1.i i i A T T i n λ=≤≤(1.3)上式说明,正交矩阵的每一列都是实对称矩阵的特征向量,并且这T A 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定n 理的形式给出.定理1.1 设为一阶实对称矩阵,考虑以下特征值问题A n ,,n Ax x x R λ=∈则的所有特征值为实数,且存在个特征向量,它们是相互正交的A n ,1i T i n ≤≤(正交性orthogonality ),可做为的一组基(完备性completeness ).n R 特征值问题在线性问题求解中具有重要的意义,下面举例说明之.为简单起见,在下面两个例子中取为阶非奇异实矩阵,故的所有特A n A 征值非零,并且假设有个线性无关的特征向量 相应的特征值为A n ,i T ., 1i i n λ≤≤例1.1 设,求解线性方程组 .n b R ∈Ax b =解 由于向量组线性无关,故可做为的一组基. 将按此{1}i T i n ≤≤n R ,x b 组基分别展开为,则等价于11 ,nni i i i i i x x T b bT ====∑∑Ax b =,11nni ii ii i x AT bT ===∑∑或,11nni i ii ii i x T bT λ===∑∑比较上式两边的系数可得i T ,1, 1i i i x b i n λ-=≤≤便是原问题的解.12( ... )n x x x x T =例1.2 设,. 求解非齐次常微0n x R ∈12()((),(),...,()), 0n n f t x t x t x t R t T =∈>分方程组, 0(), (0)dxAx f t x x dt=+=(1.4)其中 . '''12((),(),...,()),0n dx x t x t x t t dtT =>解 类似于上例,将按基分别展开为0,,()x x f t {1}i T i n ≤≤ .0111, , ()()nn n i i i ii i i i i x x T x x T f t f t T ======∑∑∑则(1.4)等价于,0111()() +(), (0), 1n n ni i i i i i i i i i i dx t T x t AT f t T x x i n dt =====≤≤∑∑∑或,011()(()()), (0),1nni i i i i i i i i i dx t T x t f t T x x i n dt λ===+=≤≤∑∑比较上式两边的系数可得i T . 0()()(), (0), 1i i i i i i dx t x t f t x x i n dtλ=+=≤≤(1.5)(1.5)是个一阶线性方程的初始值问题,很容易求出其解.请同学们给出解n 的具体表达式.(),1i x t i n ≤≤2.1.2 一个二阶线性微分算子的特征值问题在这一小节,我们讨论在本章常用的一些特征值问题. 代替上节的有限维线性空间和阶实对称矩阵,在这儿要用到线性空间的某个子空间n R n A [0,]C l 和该子空间上的二阶线性微分算子. 一般地取H A在满足齐次边界条件.2{()[0,]()H X x C l X x =∈0,x l =}(1.6)下面我们讨论二阶线性微分算子的特征值问题. 先取边界条件为22d A dx=-,设是的特征函数,即且满足(0)0,()0X X l ==()X x H ∈A ()0X x ≠.()()AX x X x λ=此问题等价于是下面问题的非零解()X x "()()0, 0(0)()0 .X x X x x l X X l λ⎧+=<<⎨==⎩(1.7)(1.7)便是二阶线性微分算子的特征值问题,即要找出所有使22d A dx=-得该问题有非零解的. 下面求解特征值问题(1.7).λ首先证明要使(1.7)具有非零解,必须非负.λ设是相应于的一个非零解,用乘(1.7)中的方程,并在)(x X λ)(x X 上积分得[]l ,0,0)()()()("=+x X x X x X x X λ,0)()()( 0 2 0 "=+⎰⎰dx x X dx x X x X llλ.0)())(()()( 0 2 0 2'0'=+-⎰⎰dx x X dx x X x X x X lll λ由于,故有0)()0(==l X X ,2'2 0()(())llX x dx X x dx λ=⎰⎰.'22 0(())()0llX x dxX x dx λ=≥⎰⎰(1.8)当时,方程的通解为. 利用边界条件0λ=0)()("=+x X x X λ12()X x c c x =+可得,即. 因此,不是特征值.0)()0(==l X X 120c c ==()0X x =0λ=当时,方程的通解为0λ>0)()("=+x X x X λ. (1.9x C x C x X λλsin cos )(21+=)利用边界条件确定常数如下0)()0(==l X X 21,C C , ,10C =l C l C λλsin cos 021+=或.0sin 2=l C λ由于要求(1.7)中齐次微分方程的非零解,故不能为零. 故有2C .0sin =l λ,从而有0> , ,πλn l =1n ≥, .2)(ln n πλ=1n ≥将代入到(1.8)中,并略去任意非零常数得n C C λ,,212C , .x ln x X n πsin)(=1n ≥故特征值问题(1.7)的解为, , 2(l n n πλ=x ln x X n πsin )(=1n ≥(1.10)注1 特征值问题是分离变量法的理论基础. 上面已求出特征值问题(1.7)的解为. 在高等数学中知道,在一定条件下区间{ sin 1 }n x n lπ≥的任一函数可按特征函数系展开为Fourier 级数. 换言[0 , ]l { sin 1 }n x n lπ≥之,特征函数系是区间上满足一定条件的函数所成无穷维空间的一组基,{ sin 1 }n x n lπ≥[0 , ]l 而且还是该空间上的一组正交基,即有. 特征函0sinsin 0 , ln m x n m l lππ=≠⎰数系的这两个根本性质:正交性和完备性(基),和定理1.1{ sin1 }n x n lπ≥有限维空间中相应结论很相似,只是现在的特征值和特征函数是无穷个. 另n R 外,若改变(1.7)中的边界条件,其相应的特征值和特征函数也会有所变化.如将边界条件变为,则特征值和特征函数分别为(0)0,'()0X X l ==. 2(21)(21)(),()sin ,022n n n n X x x n l lππλ++==≥该特征函数系也具有和特征函数系类似(21){ sin1 }2n x n l π+≥{ sin 1 }n x n lπ≥的性质,既正交性和完备性.此类问题的一般结果便是著名的Sturm—Liouville定理,有兴趣的同学可参阅参考文献.[1][4]-将以上的结果以定理的形式给出.定理1.2 考虑二阶线性微分算子的特征值问题[1],[4]22d A dx=- "()()()()0 , 0 ,(0)0,()0 .k m X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩(1.11)其中. 则该问题的特征值非负,且满足0,1k m ≤≤.120......n λλλ≤<<<<→∞相应的特征函数系在上是相互正交的. 且对于任一在区间上1{()}n n X x ≥[0,]l [0,]l 分段光滑的函数,可按特征函数系展开为如下的级数()f x 1{()}n n X x ≥Fourier ,1()()n n n f x f X x ∞==∑其中系数为Fourier .20()(), 1()l nn lnf x Xx dxf n Xx dx =≥⎰⎰为后面需要,下面再求解二阶线性微分算子带有周期边界条件的22d A dx=-特征值问题. 在偏微分方程教材中,习惯上用表示周期函数,即考虑下面()θΦ二阶线性微分算子的周期边值问题22d A dx=- "()()0, () (2), .θλθθθπθθ⎧Φ+Φ=-∞<<+∞⎨Φ=Φ+-∞<<+∞⎩(1.12)可证(1.12)和以下问题等价"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩(1.13)和(1.8)的证明相似易得(1.13)中的特征值.当时,0≥λ0λ=, 由周期边界条件可得. 所以为特征函数.12()c c θθΦ=+20c =0()1θΦ=当时,方程通解为0λ>,θλθλθsin cos )(21c c +=Φ求导得.'()c c θΦ=-+由周期边界条件可得112cos(2sin(2c c c c c c ππ⎧=+⎪⎨=-+⎪⎩或1212[1cos(2sin(20sin(2[1cos(20.c c c c ππ⎧--=⎪⎨+-=⎪⎩(1.14)由于要求非零解,故不能同时为零. 因此,齐次方程组(1.14)的系数矩12,c c 阵行列式必为零,即 .解之可得1cos(20-=,2n n =λ()cos sin .n n n c n d n θθθΦ=+此时对每个正特征值,特征函数有二个,既,. 总结所得2n n =λθn cos θn sin 结果为如下定理.定理1.3 考虑二阶线性微分算子带有周期边界条件的特征值问22d A d θ=-题"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩则该问题的特征值和特征函数分别为,.00,λ=0()1;θΦ=2n n =λ(){cos ,sin }, 1n n n n θθθΦ=≥§22 分离变量法⋅本节结合具体定解问题的求解来介绍分离变量法(method of separation of variables ). 所举例子仅限于一维弦振动方程,一维热传导方程混合问题以及平面上一些特殊区域上的位势方程边值问题. 对高维问题的处理放在其它章节中介绍.以下多数例子均假定定解问题带有齐次边界条件. 否则,可利用边界条件齐次化方法转化之. 我们以弦振动方程的一个定解问题为例介绍分离变量法.2.2.1 弦振动方程定解问题例2.1求解两端固定弦振动方程的混合问题2(,), 0, 0 (2.1)(0,)0, (,)0, 0 (2.2)(,0)(), (,0)(),0. tt xx t u a u f x t x l t u t u l t t u x x u x x x l ϕψ-=<<>==≥==≤≤ (2.3)⎧⎪⎨⎪⎩解 分四步求解.第一步 导出并求解特征值问题. 即由齐次方程和齐次边界条件,利用变量分离法导出该定解问题的特征值问题并求解.令,并代入到齐次方程中得)()(),(t T x X t x u =,0)()()()(''2''=-t T x X a x X t T 或.''''2()()()()X x T t X x a T t =上式左端是的函数而右端是的函数,要二者相等,只能等于同一常数.x t 令此常数为-,则有λ , ,λ-=)()("x X x X "2()()T t a T t λ=-上面的第一个方程为.0)()("=+x X x X λ利用齐次边界条件(2.2),并结合得0)(≠t T .0)()0(==l X X 由此便得该定解问题的特征值问题为"()()0, 0(0)()0.X x X x x l X X l λ⎧+=<<⎨==⎩其解为特征值:特征函数: 2() , 1 ;n n n lπλ=≥()sin, 1 .n n X x x n lπ=≥第二步 正交分解过程. 即将初值和自由项按特征函数系展成{}1()n n X x ≥Fourier 级数,并将也用特征函数表出.),(t x u {}1()n n X x ≥ ,11()()sinn n n n n n x X x x lπϕϕϕ∞∞====∑∑(2.4), 11()()sinn n n n n n x X x x lπψψψ∞∞====∑∑(2.5), 11(,)()()()sinn n n n n n f x t f t X x f t x lπ∞∞====∑∑(2.6)(2.711(,)()()()sinn n n n n n u x t T t X x T t x lπ∞∞====∑∑)这里,和分别为,和的Fourier 系数,具体表示如n ϕn ψ)(t f n )(x ϕ)(x ψ),(t x f 下,02()sin l n n d l l πϕϕααα=⎰,02()sin l n n d l l πψψααα=⎰,02()(,)sin l n n f t f t d l lπααα=⎰而为待定函数.)(t T n 第三步 待定系数法. 即先将和的Fourier 级数代入到(2.1)),(t x f ),(t x u 中,导出关于满足的常微分方程. 再利用初值条件(2.3)得出满足)(t T n )(t T n 的初始条件.假设(2.7)中的级数可逐项求导,并将(2.6)和(2.7)代入到(2.1)中得,"2"111()()()()()()nnnnn n n n n T t Xx aT t Xx f t X x ∞∞∞===-=∑∑∑,"2111()()()(())()()nnn nnn n n n n T t Xx aT t Xx f t X x λ∞∞∞===--=∑∑∑ . (2.8"211(()())()()()nn n n n n n n T t a T t X x f t X x λ∞∞==+=∑∑)由于Fourier 展式是唯一的,比较(2.8)两端系数得)(x X n(2.9"2()()(), 1.n n n n T t a T t f t n λ+=≥)在(2.7)中令并结合(2.4)得0=t (2.10()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑)比较(2.10)两端系数得)(x X n(0), 1.n n T n ϕ=≥(2.11)类似地可得'(0), 1.n n T n ψ=≥(2.12)结合(2.9),(2.11)和(2.12)便得出关于满足的二阶常系数非齐)(t T n (1)n ≥次方程初始值问题"2'()()(), 0(0), (0).n n n n n n n n T t a T t f t t T T λϕψ⎧+=>⎪⎨==⎪⎩(2.13)第四步 求解关于的定解问题(2.13),并将其结果代入到(2.7)中)(t T n 即可.为简单起见,我们设. 将代入到(2.13)中可得方程的通()0,1n f t n =≥n λ解为, t lan d t l a n c t T n n n ππsin cos)(+=利用初始条件确定常数如下,n n c d.'(0), (0)n n n n nn aT c T d lπϕψ====故有. ()cossin n n n l n a n a T t t t l n a lψππϕπ=+最后将上式代入到(2.7)中便得定解问题(2.1)—(2.3)的解为12(,)()sin cos sin l n n n a n u x t d t xlll lπππϕααα∞==∑⎰ (2.14)012()sin sin sin l n n n a n d t x n a l l l πππψαααπ∞=+∑⎰注1 利用分离变量法求解(2.1)—(2.3),需要假设在(2.7)中可通过无穷求和号逐项求导. 而通过号求导要对无穷级数加某些条件,在这里就∑∑不做专门讨论了. 今后遇到此类问题,我们均假设一切运算是可行的,即对求解过程只作形式上的推导而不考虑对问题应加什么条件. 通常称这样得出的解为形式解. 验证形式解是否为真解的问题,属于偏微分方程正则性理论的范围. 一般地讲,偏微分方程定解问题的解大多数是以无穷级数或含参变量积分形式给出的. 对这两类函数可微性的研究需要较深的数学知识,也有一定的难度,有兴趣的同学可查阅参考文献和. 我们约定:本书只求定解问题的形式解.[1][2]注2 当时,由(2.14)可以看出:两端固定弦振动的解是许多(,)0f x t =简单振动的叠加,当时,对任意的(,)()sinn n n u x t T t x l π=(11)k klx x k n n==≤≤-时刻,,即在振动的过程中有个点永远保持不动,所t (,)0n k u x t =(,)n u x t (1)n +以称这样的振动为驻波,而称为该驻波的节点.显然当k x 时,在这些点上振幅最大,称这些点为驻波的21(11)2k x l k n n+=≤≤-sin 1x =腹点. 因此,求特征函数实际上就是求由偏微分方程及边界条件所构定的系统所固有的一切驻波. 利用由系统本身所确定的简单振动来表示一些复杂的振动,便是分类变量法求解波动问题的物理解释.注3 例2.1的求解方法也叫特征函数法(eigenfunction method ),现已成为固定模式,也具有普适性. 初学者似乎会感到有些繁琐,但随着进一步的学习,同学们就会熟练掌握这一方法. 特征函数法的关键之处是求解偏微分方程定解问题相应的特征值问题,而基本思想就是笛卡尔(Descartes )坐标系的思想.如在三维空间中,每个向量可由基的线性组合表出,两个向量3R {,,}i j k 111222 , a i b j c k a i b j c kαβ=++=++相等当且仅当在基下两个向量的坐标相等. 既.{,,}i j k121212 , , a a b b c c ===与此相类似,在例2.1求解中也是比较方程或初始条件两边的系数而得()n X x 到(2.13). 与三维空间相比较,例2.1中特征函数系相当3R { sin1 }n x n lπ≥于3R 中的基,而也就相当于上面的,即定解问题的解{,,}i j k{ T () 1 }n t n ≥111{,,}a b c 关于基函数的坐标. 因此,在具有可数基的无穷维空间中,特{ sin1 }n x n lπ≥征函数法也称为待定系数法.例2.2 设有一均匀细弦,其线密度为. 若端为自由端,端固ρ0x =x l =定.初始速度和初始位移分别为零,并受到垂直于弦线的外力作用,其单位长度所受外力为. 求此弦的振动. sin t ω 解 所求定解问题为(2.1521 sin , 0, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x t u a u t x l t u t u l t t u x u x x l ρω-⎧-=<<>⎪==≥⎨⎪==≤≤⎩)利用特征函数法求解该问题.情形1 非共振问题,即.22, 0n a n ωλ≠≥ 该定解问题的特征值问题为(2.16)"'()()0, 0(0)0, ()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩其解为, , 2(21)()2n n l πλ+=(21)()cos 2n n X x x lπ+=0n ≥将按特征函数展开成Fourier 级数得1sin t ρω-{}0)(≥n n x X , (2.17)11sin ()()n n n t f t X x ωρ∞==∑.021214()sin sin sin sin 2(21)l n n n f t t d t f t l l n ωπααωωρπρ+===+⎰令(,)()()n n n u x t T t X x ∞==∑(2.18)完全类似例2.1的求解过程可得,对于任意满足下面问题0, ()n n T t ≥(2.19"2'()()sin , 0(0)0, (0)0.n n n n n n T t a T t f t t T T λω⎧+=>⎪⎨==⎪⎩)初值问题(2.19)中齐次方程的通解为,12()cos sin n T t c c =+而非齐次方程的一个特解为.22()sin nn n f T t t a ωλω=-因此,(2.19)的通解为. 1222()cos sin sin nn n f T t c c t a ωλω=++-(2.20)由初始条件可确定出120, c c ==最后将所得到的代入到(2.18)中便得(2.15)的解.()n T t 情形2 共振问题,即存在某个 使得.0,n ≥22n a ωλ=不妨假设.此时,在情形1中求解所得到的不变.220a ωλ={ T () 1 }n t n ≥当时,要求解以下问题0n = "2000'00()()sin , 0(0)0, (0)0.T t T t f t t T T ωω⎧+=>⎪⎨==⎪⎩(2.21)(2.21)中齐次方程通解为.012()cos sin T t c t c t ωω=+为求得非齐次方程的一个特解,要将(2.21)中方程的自由項换为,而求0i t f e ω以下问题的一个特解"2000()().i t T t T t f e ωω+=令并代入到上面非齐次方程中可得 ,故有()i t T t Ate ω=02f iA ω=-,00()sin cos 22f t f tT t t i t ωωωω=-取其虚部便得(2.21)中方程的一个特解为. 00()Im(())cos 2f tT t T t t ωω==-结合以上所得结果便可得到(2.21)中方程的通解为,0012()cos sin cos 2f tT t c t c t t ωωωω=+-由初始条件确定出 ,由此可得01220, 2fc c ω==.0002()sin cos 22f f tT t t t ωωωω=-将代入到(2.18)中便得在共振条件下(2.15)的解为()n T t 000102112(,)()()()()()()(sin cos )cos ()()222 (,)(,) .n n n n n n n n n u x t T t X x T t X x T t X x f f t t t x T t X x l u x t u x t πωωωω∞=∞=∞===+=-+=+∑∑∑可以证明: 是有界的. 而在的表达式中取 ,则2(,)u x t 1(,)u x t 2k k t πω=中的基本波函数的振幅当逐渐变大时将趋于无穷大,最1(,)u x t cos2x lπ0()k T t k 终要导致弦线在某一时刻断裂,这种现象在物理上称为共振. 注意到在上面求解过程中我们取周期外力的频率等于系统的第一固有频率ω波函数分量上发生共振. 一般地讲,当周期外力的频率很接近或等于系统的ω某个固有频率时,系统都会有共振现象发生,即弦线上一些点的振幅将随着时间的增大而不断变大,导致弦线在某一时刻断裂.2.2.2 热传导方程定解问题例2.3 求解下面热方程定解问题(2.2220, 0, 0 (0,), (,)sin , 0(,0)0, 0.t xx x u a u x l t u t u u l t t t u x x l ω⎧=<<>⎪==≥⎨⎪=≤≤⎩)解 利用特征函数法求解(2.22).首先将边界条件齐次化,取,并令,则0(,)sin w x t u x t ω=+w u v -=(2.22)转化为(2.2320cos , 0, 0 (0,)0, (,)0, 0(,0), 0.t xx x v a v x t x l t v t v l t t v x u x l ωω⎧-=-<<>⎪==≥⎨⎪=-≤≤⎩)利用分离变量法可得(2.23)的特征值问题为"()()0, 0(0)0, '()0.X x X x x l X X l λ⎧+=<<⎨==⎩特征值和特征函数分别为,2(21)()2n n lπλ+=0≥n .(21)()sin 2n n X x x lπ+=0≥n 将,按特征函数展成Fourier 级数(,)cos f x t x t ωω=-0)(u x -=ϕ{}0)(≥n n x X 得, (2.24)cos ()()n n n x t f t X x ωω∞=-=∑,02(21)()(1)cos sin cos 2l n n n f t t d f t l lπωαωααω+=-=⎰其中. 1228(1)(12)n n l f n ωπ+-=+ , (2.25)00n n n u X ϕ∞=-=∑其中.00042(21)()sin 2(12)l n u n u d l l n πϕααπ-+=-=+⎰令(2.26)(,)()(), n n n v x t T x X x ∞==∑并将(2.26)代入到(2.23)中的方程得,'2"()()()()cos ()nnnnn n n n n T t Xx aT t Xx f tX x ω∞∞∞===-=∑∑∑.'2(()())()cos ()nn nnn n n n T t a T t Xx f tX x λω∞∞==+=∑∑在(2.26)中令并结合(2.25)得0=t .()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑比较上面两式中特征函数的系数便得()n X x(2.27'2()()cos , 0(0).n n n n n n T t a T t f t t T λωϕ⎧+=>⎪⎨=⎪⎩)(2.27)是一阶常系数常微分方程初值问题.齐次方程通解为.t a n n Ce t T λ2)(-=令,并利用待定系数法求特解可得()cos sin n T t A t B t ωω=+ ,2242242()cos sin n n nn n na f f T t t t a a λωωωωλωλ=+++故有(2.2822242242()cos sin n a tn n nn n na f f T t Cet t a a λλωωωωλωλ-=++++)在上式中代得0t =,2242n nn na f C a λϕωλ=++ . 2242n nn na f C a λϕωλ=-+最后将(2.28)代入到(2.26)中便得(2.23)的解为.0(21)(,)()sin2n n n v x t T t x lπ∞=+=∑故(2.21)的解为),(),(),(t x w t x v t x u +=0 (,)sin v x t u x t ω=++其中由(2.28)给出. )(t T n2.2.3 平面上位势方程边值问题考虑矩形域上Poisson 方程边值问题1212(,), , (,)(), (,)(), (,)(), (,)(), .xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2.29)我们假设或. 否则,利用边界条件齐次化方法0)()(21==x f x f 0)()(21==y g y g 化非齐次边界条件为齐次边界条件. 当然,也可以利用叠加原理将(2.29)分解为二个问题,其中一个关于具有齐次边界条件,而另一个关于具有齐次边x y 界条件.例2.4 求解Dirichlet 问题(2.300, 02, 0 1 (0,)0, (2,)0, 01(,0)1, (,1)(1), 0 2.xx yy u u x y u y u y y u x u x x x x +=<<<<⎧⎪==≤≤⎨⎪==-≤≤⎩)解 令并将其代入到(2.29)中齐次方程得)()(),(y Y x X y x u =,0)()()()(""=+y Y x X y Y x X ,λ-=-=)()()()(""y Y y Y x X x X (2.31"()()0, 0 2(0)0, (2)0.X x X x x X X λ⎧+=<<⎨==⎩)0)()("=-y Y y Y λ(2.32)(2.31)便是(2.30)的特征值问题,其解为, , .2)2(πλn n =x n x X n 2sin)(π=1≥n 将代入到(2.32)中得n λ ,0)()("=-y Y y Y n λ(2.33)该方程有两个线性无关解,. 由于,也是(2.33)的y n e2πy n e2π-2n shy π2n ch y π解且线性无关,故(2.33)通解为.y n ch d y n shc y Y n n n 22)(ππ+=令(2.34)11(,)()()()sin 222n n n n n n n n n u x y X x Y y c shy d ch y x πππ∞∞====+∑∑则满足(2.30)中方程和关于的齐次边界条件. 利用关于的边界条),(y x u x y 件可如下确定,,n c n d ,∑∞==12sin1n n x n d π . (2.35))1(1(22sin12220n n n d n d --=⨯=⎰πααπ),x n n ch d n shc x x n n n ∑∞=+=-12sin )22()1(πππ . 22))1(1(22)1(416)1(163322ππππππn sh n chn n sh n n c n nnn -------=(2.36)故(2.30)解为(2.371(,)()sin ,222n n n n n n u x y c shy d ch y x πππ∞==+∑)其中,由(2.36)和(2.35)确定.n c n d 对于圆域,扇形域和圆环域上的Poisson 方程边值问题,求解方法和矩形域上的定解问题无本质区别,只是在此时要利用极坐标.同学们自己可验证:令,作自变量变换,则有θρcos =x θρsin =y .θθρρρρρu u u u u yy xx 211++=+令,将其代入到极坐标下的Laplace 方程中得)()(),(θρθρΦ=R u 222330216(1)164(1)(1)sin ,2222n nn n n n n n c sh d ch d n ππππααααπ----+=-=⎰,"'"211()()()()()()0R R R ρθρθρθρρΦ+Φ+Φ=,"'"211(()())()()()0R R R ρρθρθρρ+Φ+Φ=,"'"21()()()1()()R R R ρρθρλθρρ+Φ=-=-Φ故有, (2.380)()("=Φ+Φθλθ). (2.390)()()('"2=-+ρλρρρρR R R )方程(2.38)结合一定的边界条件便得相应定解问题的特征值问题,而(2.39)是欧拉(Euler )方程. 对(2.39)作自变量变换可得s e =ρ , ,s e =ρρln =s ,'1s dR dR ds R d ds d ρρρ==.2222'''2222211()ss s d R d R ds dR d s R R d ds d ds d ρρρρρ=+=-将以上各式代入到(2.39)得. (2.40''0ss R R λ-=)例2.5 求下面扇形域上Dirichlet 问题(2.4122220, 0, 0, 4(,0)0, 0 2(0,)0, 0 2 (,), 4. xx yy u u x y x y u x x u y y u x y xy x y ⎧+=>>+<⎪=≤≤⎪⎨=≤≤⎪⎪=+=⎩)的有界解.解 令,作自变量变换,(2.41)转化为θρcos =x θρsin =y(2.42)2110, 0, 0 2 2(,0)0, (,0, 022(2,)2sin 2, 0.2u u u u u u ρρρθθπθρρρπρρρπθθθ⎧++=<<<<⎪⎪⎪==≤≤⎨⎪⎪=≤≤⎪⎩令代入到(2.42)中的方程,并结合边界条件可得)()(),(θρθρΦ=R u"()()0, 0<</2(0)0, (/2)0.θλθθππ⎧Φ+Φ=⎨Φ=Φ=⎩(2.43). (2.440)()()('"2=-+ρλρρρρR R R )(2.43)便是(2.42)的特征值问题.求解特征值问题(2.43)可得, , .224)2/(n n n ==ππλθθn n 2sin )(=Φ1≥n 将代入到(2.44)中,并令作自变量变换可得n λs e =ρ,"240ss R n R -=.2222()ns ns n n n n n n n R c e d e c d ρρρ--=+=+由于是求(2.42)的有界解,故有,即. 从而有∞<)0(R 0=n d .n n n c R 2)(ρρ= 上面求出的对每个都满足(2.42)中的方程和齐(,)()()n n n u R ρθρθ=Φ1n ≥次边界条件,由叠加原理得, (2.45∑∑∞=∞==Φ=1212sin )()(),(n n n n n n n c R u θρθρθρ)也满足(2.42)中的方程和齐次边界条件.为使(2.42)中的非齐次边界条件得以满足,在(2.45)中令得(2,)2sin u θθ=2ρ= ,212sin 22sin 2n n n c n θθ∞==∑(2.46)比较上式两边特征函数的系数得θθn n 2sin )(=Φ , .112c =1)( 0≠=n c n 将,代入到(2.45)中便得(2.42)的解为1c 1)(≠n c n . θρθρ2sin 21),(2=u 例2.6 求解圆域上Dirichlet 问题2110, 0, 02(,)(), 02.u u u a u a ρρρθθρθπρρθϕθθπ⎧++=<<≤<⎪⎨⎪=≤≤⎩(2.47)解 圆域上的函数相当于关于变量具有周期. 令(,)u ρθθ2π并代入到(2.46)中的方程可得)()(),(θρθρΦ=R u(2.48"()()0() (2).θλθθπθ⎧Φ+Φ=⎨Φ=Φ+⎩). (2.490)()()('"2=-+ρλρρρρR R R )(2.48)是定解问题(2.47)的特征值问题. 由定理1.3知(2.48)的解为.2, ()cos sin , 0n n n n n c n d n n λθθθ=Φ=+≥将代入到(2.49)中可得(要利用自然边界条件)n λ(0,)u θ<∞,,00)(c R =ρn n n c R ρρ=)(1≥n 利用叠加原理可得(2.47)的如下形式解.∑∞=++=10)sin cos (),(n n n n n d n c c u θθρθρ(2.50)根据边界条件得)(),(θϕθ=a u ,01()(cos sin )n n n n c a c n d n ϕθθθ∞==++∑其中,2001()2c d πϕττπ=⎰,⎰=πτττϕπ20cos )(1d n a c n n .⎰=πτττϕπ20sin )(1d n a d n n 将以上各式代入到(2.50)中便得(2.47)的解为2 2 0 0111(,)()()(()cos cos 2n n u d n d n a ππρρθϕττϕτττθππ∞==+∑⎰⎰ .)sin sin )(12 0 ⎰+πθτττϕπn d n (2.51)注4 利用等式可将(2.51)化为如下形)Re()(cos 1)(1∑∑∞=-∞==-n in n n n e c n c τθτθ式(2.522222201()()(,),22cos()a u d a a πρϕτρθτπρρθτ-=+--⎰)式(2.52)称为圆域上调和函数的Poisson 公式. 在后面学习中还将用其它方法导出它. 注5 在例2.5和例2.6中,如果方程中自由项不为零,若),(θρf 特殊,可用函数代换将自由项化为零而转化齐次方程. 对于一般的),(θρf ,要利用特征函数方法求解.),(θρf 注6 上面例2.3—例2.6几个定解问题的求解思想和主要过程,是伟大的数学家和物理学家Fourier 给出的,详细内容见参考文献. 在这部著名论著[5]中,Fourier 首次利用偏微分方程来研究热问题,并系统地介绍了分离变量法的基本思想和主要步骤. 结合本节所举例子,请同学们小结一下在本章所学过的特征值问题,二阶常系数非齐次常微分方程和欧拉方程的求解方法. 习 题 二1. 设有如下定解问题2(,), 0, 0 (0,)0, (,)0, 0(,0)(), (,0)(), 0.tt xx x t u a u f x t x l t u t u l t t u x x u x x x l ϕψ⎧-=<<>⎪==≥⎨⎪==≤≤⎩利用分离变量法导出该定解问题的特征值问题并求解.2.求解下列特征值问题 (1) "''()()0, 0 (0)()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩ (2) "()()0, 1 1 (1)0,(1)0X x X x x X X λ⎧+=-<<⎨-==⎩ (3) "()()0, 0 '(0)0, ()0.X x X x x l X X l λ⎧+=<<⎨==⎩ (4) "()()0, 02 (0)(2), '(0)'(2).X x X x x l X X l X X l λ⎧+=<<⎨==⎩3 考虑下面特征值问题*"()()0, 0 (0)0, '()()0.X x X x x l X X l X l λ⎧+=<<⎨=+=⎩(1)证明一切特征值0.λ>(2)证明不同的特征值对应的特征函数是正交的.(3)求出所有的特征值和相应的特征函数.4. 设在区间一阶连续可导且 考虑如下特(),()p x q x [0,]l ()0,()0.p x q x >≥征值问题[()()]()()(), 0 (0)0, ()0.d d p x X x q x X x X x x l dx dx X X l λ⎧-+=<<⎪⎨⎪==⎩(1)证明一切特征值0.λ≥(2)证明不同的特征值对应的特征函数是正交的.5.求解下列弦振动方程的定解问题(1)20, 0<, 0(0,)0, (,)0, 0(,0), (,0)0, 0.tt xx x x t u a u x l t u t u l t t u x x u x x l ⎧-=<>⎪==≥⎨⎪==≤≤⎩ (2) 20, 0<, 0(0,)0, (,)0, 035(,0)sin , (,0)sin , 0.22tt xx x t u a u x l t u t u l t t u x x u x x x l l l ππ⎧⎪-=<>⎪==≥⎨⎪⎪==≤≤⎩(3) 240, 0<1, 0(0,)0, (1,)0, 0(,0), (,0)0, 0 1.tt xx t u u u x t u t u t t u x x x u x x ⎧-+=<>⎪==≥⎨⎪=-=≤≤⎩(4) 242sin , 0<, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x x t u u u x x t u t u t t u x u x x πππ⎧--=<>⎪==≥⎨⎪==≤≤⎩(5) 22, 0, 0 (0,) (,)0, 0(,0)0, (,0), 0.tt xx x t u a u x l t u t u l t t u x u x A x l ⎧-=<<>⎪==≥⎨⎪==≤≤⎩6.求解下列热传导方程的定解问题(1) 2cos , 0<, 02(0,)1, (,), 0(,0)0, 0<.t xx x x u a u x t u t u t t u x x ππππ⎧-=<>⎪⎪==≥⎨⎪=<⎪⎩(2) 22, 0<1, 0(0,)0, (1,)0, 0(,0)sin , 0< 1.t xx x u a u u x t u t u t t u x x x π⎧-=<>⎪==≥⎨⎪=<⎩(3) 220, 0<, 0(0,)0, (,)0, 0(,0)(), 0.t xx u a u b u x l t u t u l t t u x x x l ϕ⎧-+=<>⎪==≥⎨⎪=≤≤⎩(4) 2, 0, 0 (0,)0, (,)0, 0(,0)1, 0.t xx x x u a u xt x l t u t u l t t u x x l ⎧-=<<>⎪==≥⎨⎪=≤≤⎩7. 求解下面位势方程定解问题(1) , 0, 0 (,0)0, (,)0, 0(0,)0, (,), 0.xx yy y y u u x x a y b u x u x b x a u y u a y Ay y b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2)22220, 0, , 4 (,0)0, 02, (,)0, 0(,), 4.xx yy u u y x y x y u x x u x x x u x y x y x y ⎧+=>>+<⎪⎪=≤≤=≤≤⎨⎪=++=⎪⎩(3) 22220, 4 (,)1, 4.xx yy u u x y u x y x x y ⎧+=+<⎪⎨=++=⎪⎩(4) 222222, 1< 4 (,)0, 1 (,), 4.xx yy u u xy x y u x y x y u x y x y x y ⎧+=+<⎪⎪=+=⎨⎪=++=⎪⎩8 设在区间的Fourier 展开式为 *()x ϕ[0,]l 1()sin ,k k k x x c l πϕ∞==∑(6.1)其部分和为 求解或证明以下结果.1()sin ,n n k k k x S x c l π==∑(1)设,求.()[0,]x C l ϕ∈20[()()]l n x S x dx ϕ-⎰(2)证明下面贝塞尔(Bessel )不等式 22012().l k k c x dx l ϕ∞=≤∑⎰(6.2)(3)设,的二阶导数的Fourier 展开式为2()[0,]x C l ϕ∈()x ϕ1''()sin ,n n n x x d l πϕ∞==∑如果 ,利用分部积分法证明(0)()0l ϕϕ==2, 1,n n d An c n =≥(6.3)其中为正常数.A (4)利用(6.2)和(6.3)证明(6.1)中的三角级数在区间上一致[0,]l 收敛,并且可以逐項求导.9 考虑如下定解问题* 2, 0, 0 (0,)0, (,)0, 0(,0)(), 0.t xx x x u a u x l t u t u l t t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)当经过充分长的时间后,导热杆上的温度分布如何?(,)u x t (3)求极限.lim (,)t u x t →+∞10 考虑如下定解问题*2, 0, 0 (0,), (,), 0(,0)(), 0.t xx x u a u x l t u t A u l t B t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)求极限.lim (,)t u x t →+∞11 考虑下面定解问题 *20, 0<, 0(0,)(,)0, 0(,0), (,0)0, 0.tt xx t t u u u u x t u t u t t u x x u x x πππ-++=<>⎧⎪==≥⎨⎪==≤≤⎩(1)解释该定解问题方程中各项的物理意义.(2)推导出问题的特征值问题并求解.(3)写出该问题解的待定表示式并求出表达式中第一特征函数的系数.12 考虑下面定解问题 * (,), 0<, 0(0,)(,)0, 0(,0)(), (,0)(), 0.tt xx x x t u u f x t x t u t u t t u x x u x x x ππϕψπ-=<>⎧⎪==≥⎨⎪==≤≤⎩(12.1)(1)写出该定解问题的特征值和特征函数 ,(),0.n n X x n λ≥(2)如果,而,求解该定解问题.()0,()0x x ϕψ==(,)f x t t =(3)如果,证明 ,下面等式(,)0f x t =0τ∀>,222200[(,)(,)][()()]l l t x x u x u x dx x x dx ττψϕ+=+⎰⎰(12.2)成立,解释该等式的物理意义.(4)证明(12.1)的解是唯一的.。
《偏微分方程》(精)
(4.9)的特征值,与这些特征值 k 对应的函数 就是特征值 k 所对应的特征函数. 对于k 方程(4.7)的通解可写成
k x X k ( x) ck sin k 1 2 l
(4.11)
k a k a Tk (t ) ak cos t bk sin t k 1 2 l l 其中 ak 和 bk 都是任意常数, 于是对任意的 Ak ck ak 和 Bk ck bk
的解, 其中 (0) (l ) 0 (0) (l ) 0 是相容性条件. 下面我们用分离变量法来求解混合问题(4.1)-(4.3). 首先,我们设法找到所有具有变量分离形式的满足方程(4.1)和
边界条件(4.3) 的非零特解.所谓函数 u ( x t ) 具有变量分离形式,
sin l 0
,பைடு நூலகம்
其中 k 是一个任意的正整数. 所以, 只有当 取值为
k l
2
k k k 1 2 l
§4 分离变量法
(4.10)
8
《偏微分方程教程》 第四章 双曲型方程
时, 特征值问题(4.9)才有非平凡解.这些离散的 k 就是特征值问题
X ( x) c e
c e
c1 c2 0, l c e c e 1 2
l
0.
6
§4 分离变量法
《偏微分方程教程》 第四章 双曲型方程
由于系数行列式
1 e
l
1 e
l
0
因此 c1 c2必须同时为零,从而 X ( x )恒等于零.此时特征值问题(4.9)
X ( x ) 应满足附加条件
题:
为此,我们需要解如下含参数 的二阶线性常微分方程边值问
固有函数法和分离变量法_解释说明
固有函数法和分离变量法解释说明引言1.1 概述在科学和工程领域中,解决不同类型的数学方程是非常重要的。
其中,固有函数法和分离变量法是两种常见的求解数学方程的方法。
这两种方法在特定情况下都能够提供有效的解决方案,并且在不同领域都有广泛应用。
1.2 文章结构本文将首先介绍固有函数法,包括其理论基础、应用领域以及优缺点。
接着,我们将详细探讨分离变量法,包括其原理解释、实际应用和算法步骤。
然后,我们将比较这两种方法的共同点和不同之处,并提出适用于不同场景的推荐应用。
最后,我们将总结固有函数法和分离变量法的特点和应用价值,并展望未来研究方向与发展趋势。
1.3 目的本文旨在全面深入地介绍固有函数法和分离变量法这两种求解数学方程的方法。
通过对其理论基础、实际应用和优缺点的分析,我们希望读者能够了解到这些方法各自适用于哪些情境,并能够根据具体需求进行选择。
此外,我们也将对这两种方法的研究方向和未来发展进行展望,以期为相关领域的进一步探索提供参考和启示。
2. 固有函数法2.1 理论基础固有函数法是一种数学方法,用于求解偏微分方程(PDE)中的边值问题。
它的核心思想是将待求解的函数表示为问题域内各个位置上的局部特征函数的线性组合形式。
根据泛函分析理论,我们知道一个完备希尔伯特空间中的任何一个元素,都可以用这个空间中的一组正交归一基作展开。
在固有函数法中,将问题域划分成有限或无限多个小区域,并在每个小区域内寻找满足特定边界条件和内部微分方程条件的局部特征函数。
这些局部特征函数通常由常微分方程组成。
固有函数法通过对不同特征函数进行线性叠加来逼近真实解,其中每个特征函数都含有未知系数。
通过确定这些系数,我们可以构造出满足整个问题条件的唯一解。
2.2 应用领域固有函数法广泛应用于物理学和工程学领域中独立变量是时间、空间或它们的某种组合的偏微分方程求解。
例如,在传热学、振动力学和电磁学中,固有函数法被用于求解热传导方程、波动方程和泊松方程等问题。
分离变量法解偏微分方程
分离变量法解偏微分方程分离变量法是解偏微分方程的一种常用方法,可以将偏微分方程化简为一系列普通微分方程,从而更容易求解。
下面我们将通过一个具体例子来介绍分离变量法的步骤和应用。
考虑一个常见的一维热传导方程,即热方程:$$\frac{\partial u}{\partial t} = k\frac{\partial^2 u}{\partial x^2}$$其中,$u(x,t)$是温度分布关于时间和空间的函数,$k$为热传导系数。
为了使用分离变量法解决这个方程,我们首先假设温度分布$u(x,t)$可以表示为两个只与单独的变量$x$和$t$有关的函数的乘积,即$u(x,t) = X(x)T(t)$。
将这个假设代入热方程中,我们可以得到:$$\frac{T'(t)}{kT(t)} = \frac{X''(x)}{X(x)} = -\lambda$$其中,$\lambda$为常数。
我们把方程分离成两个普通微分方程,并引入常数$-\lambda$来方便求解。
我们考虑时间部分的方程:$$\frac{T'(t)}{kT(t)} = -\lambda$$这是一个一阶常微分方程,可以通过分离变量法求解。
将方程重新整理,得到:$$\frac{T'(t)}{T(t)} = -\lambda k$$对上式两边同时积分,得到:$$\ln |T(t)| = -\lambda kt + C_1$$其中,$C_1$为常数。
再通过对数函数的性质,我们可以进一步得到:$$T(t) = C_2e^{-\lambda kt}$$这里,$C_2 = e^{C_1}$为常数。
接下来,我们考虑空间部分的方程:$$\frac{X''(x)}{X(x)} = -\lambda$$这是一个二阶常微分方程,同样可以通过分离变量法求解。
将方程重新整理,得到:$$X''(x) + \lambda X(x) = 0$$这是一个常系数齐次线性微分方程,可以通过假设解为指数函数$X(x) = e^{rx}$,代入方程中解得特征方程:$$r^2 + \lambda = 0$$解特征方程得到$r = \pm \sqrt{-\lambda}$。
基于求解偏微分方程变量分离方法多种应用
Science &Technology Vision科技视界0引言客观世界事物之间存在相互制约关系,而这种制约关系因包含很多的变量,通常用偏微分方程来描述,客观世界的复杂性及其关系的多样性,致使这些偏微分方程形式也各不相同,故其求解相当复杂。
对于有界区域上的线性偏微分方程,分离变量法就是一种最有效最重要求解方法。
这种方法的基本思想就是把求解偏微分方程的混合问题,经过分离变量,转化为求解常微分方程的初值问题,使原问题得到简化,使之容易求解。
实施变量分离方法最关键条件就是:(1)混合问题是线性的;(2)泛定方程和边界条件是齐次的[1-3]。
对于其它形式可先转化再利用变量分离方法。
本文将以一实例通过运用叠加原理、特征函数法、Duhamel 原理法[4]、函数变换法求解。
这些方法联合应用涵盖了求解偏微分方程引用变量分离法的多种形式,加深理解和应用这些方法进而拓展应用到求解其它类型的线性偏微分方程混合问题。
变量分离法还是核证偏微分方程数值解的有效工具,特别是在物理学和工程技术中这种实例异常繁多,因而变量分离法有重要的理论价值和重要的实践意义[5-7]。
1实例u t =a 2u xx -b 2u ,0<x<l ,t >0u x |x =0;u |x =l =u 1,t >0u |t =0=u 1l2x 2,0≤x ≤l⎧⎩⏐⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐⏐其中b,u 1是常数,解1:将定解问题的边界条件齐次化,令v (x,t )=u (x,t )-u 1得定解问题转化为:(I)v t =a 2v xx -b 2v-b 2u 1,0<x<l ,t >0v x |x =0=v x=l =0,t >0v|t =0=u 1l2x 2-u 1,0≤x ≤l ⎧⎩⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐∵定解问题(I)是线性非齐次方程、齐次边界条件,∴由叠加原理得:(II)v t (1)=a 2v xx (1)-b 2v (1)v x (1)|x =0=v (1)|x=l =0,v (1)|t =0=u 1l2x 2-u 1,⎧⎩⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐(III)v t (2)=a 2v xx (2)-b 2v (2)-b 2u 1v x (2)|x =0=v (2)|x=l =0,v (2)|t =0=0⎧⎩⏐⏐⏐⏐⎨⏐⏐⏐⏐其中v (x,t )=v (1)(x,t )+v (2)(x,t )由于定解问题(II)是齐次方程齐次边界问题,故可直接利用变量分离法求解,而定解问题(III)是非齐次方程齐次边界问题,可用本征函数法,又由于(III)除泛定方程外其定解条件均为齐次的,故定解问题(III)可由Duhamel 齐次化原理方法求解。
偏微分方程的几种经典解法
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n = . 求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+= 将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14)解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n = . 设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n =(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-.故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n tT t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n = . 故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n = . 因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n = . 容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n =特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n = ,01x ≤≤. 所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n =注意到{}1()n n X x ∞=是一个直交系统,即10,,()(),,2m n m n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n = ,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n = , 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,)2}x y R ∂∈上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+,故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤= .其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤= ,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n = ,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n = .解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n = , ()0n B ρ=, 12ρ≤≤,1,2,3,n = .故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞, 是cauchy 问题22222u u-a=0t x ∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t -⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx att x a t x a t u x t x at x at d a f d d x R t a ττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx at t x a t x a t u x t x at x at d af d d aττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x at at x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x ∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup limk knn x Ru x u x →∞∈-= 则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()s u p k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F F Fb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1, 4.2的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg e e d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>⎰特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t xu x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将()()i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR R t t i x t t R t tx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x tx tu x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t ∙∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.tu t g eR t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u u x t R t x u x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t ∙在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→∙=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t ex R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(2lim ,,lim 2y Rt t u x t x e dyϕϕ++-→→=(()200,yRedy ϕϕϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r -=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r -+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.。
偏微分方程求解中的分离变量法
偏微分方程求解中的分离变量法偏微分方程在物理学、工程学、数学等领域中有着重要的应用。
然而,对于大多数偏微分方程,没有通用的解析解。
寻找一种适用广泛、有效的求解方法成为了很多学者的目标。
分离变量法作为一种常用的求解方法,被广泛应用于偏微分方程求解中。
什么是偏微分方程偏微分方程(Partial Differential Equation, PDE)是一种描述自然现象中连续平衡状态的数学工具,在物理学、工程学、经济学、金融学等领域中得到了广泛应用。
它是由描述变量的偏导数组成的一类方程,反映了空间、时间及其它物理量之间的关系。
经典力学中的波动方程、热传导方程、电磁场方程等均为偏微分方程。
偏微分方程的求解对于一些简单的偏微分方程,可以找到通用的解析解。
例如,一阶偏微分方程的解法类似于求解一阶常微分方程,可以利用变量分离、变量代换等方法求解。
但是,对于大多数偏微分方程而言,没有通用的解析解,只能通过数值计算、反演等方法求解。
分离变量法分离变量法是一种适用于线性偏微分方程求解的解法。
该方法的基本思想是,将多变量的偏微分方程在一定条件下分离为一些简单的,只涉及一个自变量的常微分方程,通过求解这些常微分方程,再将其组成原偏微分方程的解。
对于二维的线性齐次偏微分方程,可以通过分离变量法求解:$$\begin{cases}\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 \\u(x,0)=0, u(x,1)=0 \\u(0,y)=0, u(1,y)=sin(\pi y)\end{cases}$$假设解可以表示为 $u(x,y)=X(x)Y(y)$ 的形式,则有:$$X''(x)Y(y)+X(x)Y''(y)=0$$两边同时除以 $X(x)Y(y)$,可以得到:$$\frac{X''(x)}{X(x)}=-\frac{Y''(y)}{Y(y)}$$由于这两个式子的自变量不同,其值必须相等,即:$$\frac{X''(x)}{X(x)}=-\lambda \\\frac{Y''(y)}{Y(y)}=\lambda$$其中 $\lambda$ 为常数。
偏微分方程的分离变量法求解
偏微分方程的分离变量法求解偏微分方程是数学中的一门重要分支,广泛应用于物理学、工程学和经济学等领域。
其中,分离变量法是一种常用的求解偏微分方程的方法。
本文将介绍偏微分方程的分离变量法,并以一个具体的例子来说明其应用。
偏微分方程可以分为线性和非线性两种类型。
线性偏微分方程的求解相对较为简单,其中的分离变量法是最常用的求解方法之一。
分离变量法的基本思想是将多元函数分解为各个变量的乘积形式,然后通过求解各个变量的常微分方程来得到最终的解。
考虑一个简单的线性偏微分方程,如热传导方程:$$\frac{\partial u}{\partial t} = k\frac{\partial^2 u}{\partial x^2}$$其中,$u(x, t)$是待求解的函数,$k$是常数。
为了使用分离变量法求解该方程,我们假设$u(x, t)$可以表示为两个变量$x$和$t$的乘积形式,即$u(x, t) = X(x)T(t)$。
将上述假设代入热传导方程,得到:$$X(x)T'(t) = kX''(x)T(t)$$将上式两边同时除以$X(x)T(t)$,得到:$$\frac{T'(t)}{T(t)} = k\frac{X''(x)}{X(x)}$$由于等式两边只依赖于不同的变量,所以它们必须等于一个常数,记为$-\lambda$。
这样,我们就得到了两个常微分方程:$$\frac{T'(t)}{T(t)} = -\lambda$$$$k\frac{X''(x)}{X(x)} = -\lambda$$第一个方程的解为$T(t) = Ce^{-\lambda t}$,其中$C$为常数。
第二个方程可以通过常微分方程的求解方法得到一系列解$X_n(x)$,其中$n$为整数。
将上述解代回原方程,得到:$$X_n(x)Ce^{-\lambda t} = kX_n''(x)Ce^{-\lambda t}$$化简后可得:$$\frac{X_n''(x)}{X_n(x)} = -\frac{\lambda}{k}$$这是一个常微分方程,可以通过求解得到一系列解$X_n(x)$。
分离变量法在求解偏微分方程中的应用
分离变量法在求解偏微分方程中的应用
分离变量法是一种常用的偏微分方程求解方法,它能有效地将复杂的偏微分方程分解为较为简单的一阶线性方程组,从而使求解问题变得容易。
分离变量法的基本原理是:将一般的n阶偏微分方程转化为n个不同的一元微分方程,并将这些方程中的多个变量分离开来,然后逐一求解。
一般情况下,分离变量法可以用来求解常系数非齐次偏微分方程,其求解步骤如下:
1. 将偏微分方程化为标准型:交换变量,分离变量,解出独立变量;
2. 解出所有的独立变量,将其代入原偏微分方程,解出依赖变量;
3. 再把所有变量带入原偏微分方程,得出解析解;
4. 为解的可靠性和准确性,最好对结果进行检查:代入原偏微分方程,检查右侧项是否为零。
由于分离变量法具有计算方便、解析形式简单等优点,它已被广泛应用于偏微分方程的求解领域,比如求解波动方程、哈勃方程和热传导方程等。
总之,分离变量法是偏微分方程的一种很有效的求解方法,能够有效地将复杂的偏微分方程分解成较为简单的一阶线性方程组,使求解问题变得容易,可以应用于许多偏微分方程的求解中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T(t): T (t) a2T (t) 0
本征值问 题
第二步:求本征值 和本征函数 X(x), 以及 T(t)的表达式
本征值和 本征函数
n
n
l
2
,
Xn (x)
sin
n
l
x
,
n 1, 2,3,L
Tn (t)
An
cos
an
l
t
Bn
sin
an
l
t
n 1, 2,3,L
u(0,t) ux (l,t) 0,
x (0,l),t 0
x [0,l] t0
物理解释:
一根长为 l 的均匀细杆,其右端保持绝热, 左端保持零度,给定杆内的初始的温度分 布,在没有热源的情况下杆在任意时刻的 温度分布
求解的基本步骤
第一步:求满足齐次方程和齐次边界条件的 变量分离形式的解
)
x
当 u0=1 时,杆内温度随时间的变化
第三节 特殊区域上的位势方程
矩形域上的边值问题
t0
u( x, t )
2l 2
2d (l d )
n1
1 n2
sin
n d
l
cos
an
l
t
sin
n
l
x
对不同的 d ,有界弦的自由振动
当 d=0.5l 时,有界弦的自由振动
当 d=0.3l 时,有界弦的自由振动
第二节 有限长杆上的热传导
u(utx,0a) 2x2u(2x,),
第十章 分离变量法
第一节 有界弦的自由振动 第二节 有限长杆上的热传导 第三节 特殊区域上的位势方程 第四节 高维定解问题的分离变量法 第五节 对非齐次边界条件和非齐次方程
的处理
第一节 有界弦的自由振动
2u u(tx2 ,
a2 0)
2u x2 ,
( x),
ut
(
x,
0)
(
x),
u(x,t) X (x)T (t)
X(x):
X X
(x) X (x)
(0) X (l)
0
0
本征值问题
T(t): T (t) a2T (t) 0
第二步:求本征值 和本征函数 X(x), 以及 T(t)的表达式
本征值和 本征函数
n
n
1 2
l
2
,
Xn (x)
sin
n
l
1 2
( x),
ut
(
x,
0)
(
x),
ux (0,t) u(l,t) 0,
x (0,l),t 0
x [0,l] t0
左端点自由、右端点固定的边界条件
X (x) X (x) 0
X
(0)
X
(l)
0
n
n
1 2
l
2
,
Xn (x)
cos
n
l
1 2
x,
n 0,1, 2,3,L
2u u(tx2 ,
l tan l
举例-弦的敲击
2u u(tx2 ,
a2 0)
2u x2 0, ut
, (
x,
0)
(
x
c),
u(0,t) u(l,t) 0,
x (0,l),t 0
x [0,l], 0 c l t0
u(x,t)
2
a
n1
1 n
sin
n
l
c
sin
an
l
t
sin
Bn
sin
an
l
t
sin
n
l
x
Nn
sin
n
l
x
sin
an
l
t
n
其中
Nn An2 Bn2 ,
振
幅
an
N
n
sin
n
l
x
频
率
n
an
l
初相位 n
n
arctan
An Bn
振动元素,本征振动
驻波
其它边界条件的混合问题
2u u(tx2 ,
a2 0)
2u , x2
( x),
ut
a2 0)
2u x2 ,
( x),
ut
(
x,
0)
(
x),
u(0,t) ux (l,t) 0,
x (0,l),t 0
x [0,l] t0
左端点固定、右端点自有的边界条件
X (x) X (x) 0
X
(0)
X
(l)
0
n
n
1 2
l
2
,
Xn (x)
sin
n
l
1 2
x,
n 0,1, 2,3,L
T(t)的表达 式
第三步:利用初始条件求得定解问题的解
u( x, t )
n1
An
cos
an
l
t
Bn
sin
an
l
t
sin
n
l
x
利用初始条件得
An
2 l
l
(
0
) sin
n
l
d
Bn
2
an
l
0
(
) sin
n
l
d
驻波 o
n=4 l
un (x,t)
An
cos
an
l
t
n
l
x
对不同的 c ,有界弦的自由振动
当 c=0.2l 时,有界弦的自由振动
当 c=0.5l 时,有界弦的自由振动
再例-弦的拨动
2u
t
2
a2
2u x2
,
u
(
x,
0)
1 d
x
1 ld
(l
x)
,
ut
(
x,
0)
0,
x (0,l),t 0 x [0, l], 0 d l
u(0,t) u(l,t) 0,
第三类边界条件的混合问题的求解中遇到的困难
2u u(tx2 ,
a2 0)
2u , x2
( x),
ut
(
x,
0)
(
x),
ux (0,t) u(0,t) u(l,t) 0,
x (0,l),t 0
x [0,l] t0
X (x) X (x) 0
X (0) X (0) X (l) 0
) sin
(n
l
1 2
)
d
举例
u
t
a2
2u x2
,
u(x, 0)
u0 l
x,
u(0,t) ux (l,t) 0,
x (0,l),t 0 x [0,l] t0
u( x, t )
2u0
2
n0
(1)n
(n
1 2
)2
exp
a2
(n
1 2
)2
2
l2
t
sin
(n
l
1 2
x,
n 0,1, 2,3,L
Tn
(t)
An
exp
a2
(n
1 2
l2
)2
2
t
n 0,1, 2,3,L
T(t)的表达 式
第三步:利用初始条件求得定解问题的解
u( x, t )
n0
An
exp
a2
(n
1 2
)2
2
l2
t
sin
(n
l
1 2
)
x
利用初始条件得
2
An l
l 0
(
u(0,t) u(l,t) 0,
x (0,l),t 0
x [0,l] t0
物理解释:
一根长为 l 的弦,两端固定,给定初始位 移和速度,在没有强迫外力作用下的振动
求解的基本步骤
第一步:求满足齐次方程和齐次边界条件的 变量分离形式的解
u(x,t) X (x)T (t)
X(x):
X (x) X (x) 0
(
x,
0)
(
x),
ux (0,t) ux (l,t) 0,
x (0,l),t 0
x [0,l] t0
两端自由的边界条件
X (x) X (x) 0
X
(0)
X
(l)
0
n
n
l
2
,
Xn (x)
cos
n
l
x
,
n 0,1, 2,3,L
2u u(tx2 ,
a2 0)
2u x2 ,