保险精算习题答案

合集下载

保险精算第二版习题及答案0001

保险精算第二版习题及答案0001

4 •已知某笔投资在3年后的积累值为1000元, 第1年的利率为认10%,第2年的利率为12 8%,第3年的利率为i3 6%,求该笔投资的原始金额。

A (3) 1000 A(0) (1 ii) (1 i 2) (1 is)A(0)794. 15 .确定10000元在第3年年末的积累值:(1) 名义利率为每季度计息一次的年名义利率6%保险精算(第二版)第一章:利息的基本概念已知a t at 2 b,如果在0时投资100元,能在时刻 5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

a(0 )25a b 1.8竺b 125300*100 乍、 ------------ a (5)180 型叫绝) 180300300*迴(64a b) 5081802. ⑴假设 A(t)=100+10t,试确定ii, 13, iso■ 110. 0833,口5)-理)0. 0714A(4)(2)假设 An 1001. 1■ 111•已知投资500元,3年后得到年后的积累值。

500a (3) 500(1 3〃 80嚴) 800(1 5iJ120元的利息, h 0. 081120500a (3) 500(1) 2)彳 8006如)h 0.0743363 800(1 is)51144.970. 1, is A(5j 0. 1A (4)试分别确定以相同的单利利率、复利利率投资800元在5(2)名义贴现率为每4年计息一次的年名义贴现率6%7 •如果t 0. Olt,求10 000元在第12年年末的积累值。

、1210000a (12) innnno : tdt lOOOOe 0 7220544.33&已知第1年的实际利率为10%,第2年的实际贴现率为8%第3年的每季度计息的年名义利率为 第4年的每半年计息的年名义贴现率为5%求一常数实际利率,使它等价于这4年的投资利率。

1(4)i(2)(1 i)4 (1 11)(1 d2) 71 -)4(1 云尸1.1*1.086956522*1.061363551*1.050625 1.333265858i 0. 745563369.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度t基金存入的款项相同,试确定两基金金额相等的下一时刻。

寿险精算习题及答案

寿险精算习题及答案

寿险精算习题及答案习题第一章人寿保险一、n 年定期寿险【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。

I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。

解:I表4–1 死亡赔付现值计算表年份年内死亡人数赔付支出折现因子赔付支出现值(1)(2)(3)=1000*(2) (4)(5)=(3)*(4)1 1 1000 103.1- 970.872 2 2000 203.1- 1885.193 3 3000 303.1- 2745.434 4 4000 403.1- 3553.95 5 5 5000 503.1-4313.04 合计 ---15000---13468.48根据上表可知100张保单未来赔付支出现值为:48.13468)03.1503.1403.1303.1203.11(100054321=?+?+?+? +??-----(元)则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。

解:II表4–2 死亡赔付现值计算表年份年内死亡人数赔付支出折现因子赔付支出现值(1)(2)(3)=1000*(2) (4)(5)=(3)*(4) 1 1000*40q =1.650 1650 103.1- 1601.94 2 1000*40|1q =1.809 1809 203.1- 1705.16 3 1000*40|2q =1.986 1986 303.1- 1817.47 41000*40|3q =2.1812181403.1-1937.795 1000*40|4q =2.3912391 503.1-2062.50 合计 ---10017---9124.86根据上表可知100张保单未来赔付支出现值为:86.9124)03.103.103.103.103.1(1000540|4440|3340|2240|11402 =?+?+?+?+??-----q q q q q (元)则每张保单未来赔付的精算现值为91.25元,同时也是投保人应缴的趸缴纯保费。

保险精算李秀芳章习题答案

保险精算李秀芳章习题答案

保险精算李秀芳章习题答案保险精算李秀芳章习题答案The document was prepared on January 2, 2021第⼀章⽣命表1.给出⽣存函数()2 2500 xs x e-=,求:(1)⼈在50岁~60岁之间死亡的概率。

(2)50岁的⼈在60岁以前死亡的概率。

(3)⼈能活到70岁的概率。

(4)50岁的⼈能活到70岁的概率。

2.已知⽣存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)FT (t)(4)fT(f)(5)E(x)3. 已知Pr[5<T(60)≤6]=,Pr[T(60)>5]=,求q65。

4.已知Pr[T(30)>40]=,Pr[T(30)≤30]=,求10p60Pr[T(30)>40]=40P30=S(70)/S(30)= S(70)=×S(30)Pr[T(30)≤30]=S(30)-S(60)/S(30)= S(60)=×S(30)∴10p60= S(70)/S(60)==5.给出45岁⼈的取整余命分布如下表:求:1)45岁的⼈在5年内死亡的概率;2)48岁的⼈在3年内死亡的概率;3)50岁的⼈在52岁⾄55岁之间死亡的概率。

(1)5q45=(++++)=6.这题so easy就⾃⼰算吧7.设⼀个⼈数为1000的现年36岁的群体,根据本章中的⽣命表计算(取整)(1)3年后群体中的预期⽣存⼈数(2)在40岁以前死亡的⼈数(3)在45-50之间挂的⼈(1)l39=l36×3P36=l36(1-3q36)=1500×()≈1492(2)4d36=l36×4q36=1500×(+)≈11(3)l36×9|5q36=l36×9P35×5q45=1500××=1500×≈338. 已知800.07q =,803129d =,求81l 。

保险精算试题与答案

保险精算试题与答案

保险精算试题与答案[注意:本文按照试题格式进行回答]试题一:保险精算的定义和作用是什么?保险精算是指运用数学、统计学和金融学等方法,对保险业务进行量化分析和评估的过程。

其作用主要体现在以下几个方面:1. 风险评估:通过对历史数据和概率模型的分析,保险精算师可以评估保险产品的风险水平,确定保费率和赔付准备金水平,为保险公司提供决策依据。

2. 产品开发与定价:保险精算师可以根据市场需求和风险情况,设计和开发新的保险产品,并确定合理的保费定价策略,以提高保险公司的竞争力和盈利能力。

3. 保险风险管理:保险精算师可以利用精算模型和方法,对保险风险进行全面的管理和控制,降低保险公司的不确定性和风险敞口。

4. 偿付能力评估:通过运用精算方法,保险精算师可以对保险公司的偿付能力进行评估和监测,保证公司能够按时履行合同中对被保险人的赔偿责任。

5. 盈余分配决策:精算师根据保险公司的盈利能力和风险状况,制定合理的盈余分配策略,确保公司的可持续经营和股东利益最大化。

试题二:简述保险精算的核心内容和方法保险精算的核心内容主要包括风险评估、损失模型、资本管理和盈余分配等方面。

1. 风险评估:通过风险测度和量化方法,评估保险产品的风险水平,并制定相应的风险管理策略,保证公司的偿付能力。

2. 损失模型:利用数理统计的方法,分析历史数据和风险模型,构建损失模型,预测未来潜在的赔偿风险,并根据模型结果进行资本分配和准备金计提。

3. 资本管理:通过资本分配和配置,保险精算师可以根据公司的风险状况和盈利能力,确定合理的资本水平和使用策略,提高公司的偿付能力和综合运营效益。

4. 盈余分配:保险精算师基于公司的盈利水平、资本状况和风险状况,制定合理的盈余分配政策,确保公司能够平衡盈利和风险、实现可持续发展。

保险精算的核心方法包括:1. 预测模型:利用历史数据和概率理论,建立预测模型,对未来保险损失进行预测和量化评估。

2. 风险度量方法:通过运用不同的风险测度方法,比如价值-at-Risk、条件VaR等,对保险风险进行度量和分析。

保险精算师招聘笔试题及解答(某大型央企)2024年

保险精算师招聘笔试题及解答(某大型央企)2024年

2024年招聘保险精算师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、关于保险精算师的工作职责,以下哪项描述最不准确?A. 对保险产品进行精算定价和费用分析B. 专注于新产品的开发和风险评估C. 主要是对公司经营风险进行分析,无需了解客户的财务状况和风险承受能力D. 对市场状况和客户投保情况进行深入研究和分析2、在保险业务中,关于风险评估的重要性,以下哪项说法最恰当?A. 风险越高的业务项目盈利越大,因此不需要过度关注风险评估。

B. 风险评估是保险业务的核心环节之一,有助于保险公司合理定价和风险管理。

C. 风险评估只是保险产品设计的一个环节,并不直接影响公司的盈利状况。

D. 保险行业的市场竞争激烈,保险公司应将更多的精力放在业务拓展上,而不需要过于重视风险评估。

3、在精算师的工作中,以下哪些因素对保险产品的定价有重大影响?A. 经济周期B. 利率变动C. 人口增长率D. 政治稳定性4、在精算师的工作中,以下哪项不属于风险评估的内容?A. 分析未来市场趋势B. 计算投资组合的期望收益C. 预测自然灾害发生的概率D. 确定保险费率5、关于保险精算中的风险评估,以下哪项描述最为准确?A. 风险评估只涉及计算概率和统计分布。

B. 风险评估不包括预测未来可能出现的损失。

C. 风险评估主要涉及量化保险产品的风险和确定风险暴露度。

D. 以上各项均有涉及,但不仅限于这些方面。

6、关于保险合同的现金价值,以下说法正确的是?A. 保险合同的现金价值等同于所交保费的总和。

B. 保险合同的现金价值在任何情况下都不会发生变化。

C. 保险合同的现金价值是指投保人解除合同时可获得的金额,考虑了保险公司的费用和利润等因素。

D. 保险合同不存在现金价值这一说法。

7、关于保险精算中的风险评估,以下哪项描述是错误的?A. 风险评估是保险精算的核心内容之一B. 风险评估主要关注保险标的的风险概率和损失程度C. 风险评估的结果直接决定了保险产品的定价D. 风险评估过程中不需要考虑投保人的个人因素8、在保险精算中,关于生存年金与即期年金的区别,以下哪项描述是不正确的?A. 生存年金只在被保人存活期间给付B. 即期年金通常一次性支付一笔较大金额C. 生存年金通常采用固定利率计算给付金额D. 即期年金会在保险合同生效后立即开始给付9、在保险精算中,以下哪个模型常用于评估寿险公司的偿付能力?A. 万能保险模型B. 投资连结保险模型C. 损失分布模型D. 保险成本模型 10、在精算实践中,以下哪个步骤不是风险评估过程的一部分?A. 数据收集B. 风险识别C. 风险量化D. 风险监控二、多项选择题(本大题有10小题,每小题4分,共40分)1、关于保险的负债业务,以下哪些描述是正确的?A. 保险公司的负债主要来自已生效的保险合同产生的未来赔付义务。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练习题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=∵2.(1)假设A(t)=100+10t,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A −−−======(2)假设()()100 1.1nA n =×,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A −−−======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎞⎜⎟=+=⎜⎟⎜⎟⎝⎠6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

第四章:人寿保险的精算现值练 习 题1. 设生存函数为()1100xs x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10Ā的值。

(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t tt t x x t tt t x x t x s x t s x p s x xA v p dt dt Var Z A A v p dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。

(3)(1)与(2)的结果为何不同?为什么? (1)法一:4113536373839234535:53511000()1.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:4113536373839234535:53511000() 5.7471.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++=∑ 法二:1354035:53510001000M M A D -=查换算表1354035:53513590.2212857.61100010001000 5.747127469.03M M A D --===(2)1353535:1351363636:1361373737:1371383838:138143.581000100010001000 1.126127469.03144.471000100010001000 1.203120110.22145.941000100010001000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D ===============1393939:1393536373839148.050 1.389106615.43150.551000100010001000 1.499100432.541000() 6.457C p AD p p p p p =====++++=(3)1112131413523533543535:535:136:137:138:139:11353637383935:5A A vp A v p A v p A v p A Ap p p p p =++++∴<++++3. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算: (1) 1:20x A 。

寿险精算模拟试题及答案

寿险精算模拟试题及答案

寿险精算模拟试题及答案一、选择题1. 寿险精算中,以下哪项是评估保险合同财务影响的基本工具?A. 利率B. 死亡率C. 精算现值D. 保险金额2. 寿险合同的现金价值是指什么?A. 投保人所支付的保费总额B. 保险合同到期时投保人可得到的金额C. 保险合同在某一特定时间点的净值D. 保险公司为保险合同设立的准备金3. 在寿险精算中,以下哪项不是风险评估的基本要素?A. 风险识别B. 风险量化C. 风险规避D. 风险评估二、填空题4. 寿险精算中,_________是指在保险期间内,保险公司为履行保险责任而设立的基金。

5. 寿险精算中,_________是指根据保险合同的条款,计算出的保险金的预期支付额。

三、简答题6. 简述寿险精算中净保费和毛保费的区别。

四、计算题7. 假设某寿险公司销售了一份10年期的寿险合同,年保费为1000元,预定利率为5%,死亡率为0.5%,请计算该合同第一年的净保费。

五、论述题8. 论述寿险精算在保险产品定价中的作用及其重要性。

答案:一、选择题1. C2. C3. C二、填空题4. 准备金5. 预期保险金三、简答题6. 净保费是指在扣除保险公司运营成本和利润后,用于保险风险保障的保费部分。

毛保费则包括了净保费和保险公司的运营成本及利润。

四、计算题7. 净保费计算公式为:净保费 = 毛保费 / (1 + 预定利率) - 死亡率 * 保险金额 / (1 + 预定利率)。

根据题目数据,净保费 = 1000 / (1 + 0.05) - 0.005 * 1000 / (1 + 0.05) = 952.38元。

五、论述题8. 寿险精算在保险产品定价中的作用是确保保险产品的价格既能覆盖风险成本,又能为保险公司带来合理的利润。

精算师通过评估死亡率、利率、费用率等因素,计算出保险产品的净保费,从而确定毛保费。

这一过程对于保险公司的财务稳定和市场竞争力至关重要。

保险精算导论习题及答案

保险精算导论习题及答案

保险精算导论复习题一、简答题1.生存保险:答:被保险人生存至约定期满时,保险人在年末支付保险金的保险。

2.寿命:答:一个人从出生到死亡的时间长度,记为X,是一个连续型随机变量。

3.趸缴纯保险:答:未来保险金给付在鉴单时的精算现值,即一次缴清的纯保费。

4.两全保险:答:在保险期内被保险人发生保险责任范围内的死亡,保险人给付死亡保险金,被保险人生存至保险期满,保险人在期末给付生存保险金。

5.生存年金:答:在年金受领人生存的条件下,按预先约定金额以连续方式或以一定的周期进行一系列的给付的保险。

6.责任准备金:答:在保险契约生效后的时期,保险人对被保险人的一种负债平衡项。

7.精算等价原理:答:保险金给付现值随机变量与保费现值随机变量之差的期望为0。

二、解释下列各符号的含义1.)(:n x A P :x 岁的人投保的期限h 年的半连续型n 年定期两全保险的年缴均衡纯保险。

2.x u t q /:x 岁的人活过x+t 岁,在随后的u 年内死亡的概率。

3.n x h k v ::x 岁的人投保的限期h 年缴费的全离散型两全保险的未来k年的责任保险金。

4.1:n x m A :x 岁的人投保的延期m 年的、n 年期死亡即付的寿险的趸缴纯保费。

三、计算题1.购买延期5年的25年定期生存年金,每年末领取500元,设年利率为6%,求其趸缴纯保费。

已知:1223.14116M 35=,1948.13305M 41=,1262.7481M 66=,78.126513D 35=,19.88479D 41=,55.17168D 66= 解:25:3551a d A A 11255:2515:35-++-=, 7058.0M M 354141356:36=+-=D D A 1881.0D D M M 3566663531:35=+-=A 故:d a 31:356:3525:355A A 500500-⨯==4573.3(元)2.购买一份保额为30000元的全离散型终身寿险。

保险精算课后习题答案

保险精算课后习题答案

保险精算课后习题答案保险精算学是一门应用数学和统计学原理来评估风险和确定保险费率的学科。

它通常包括概率论、统计学、金融数学和经济学的相关知识。

以下是一些保险精算课后习题的答案示例:1. 问题:某保险公司提供一种寿险产品,保险期限为20年。

假设年利率为4%,保险公司需要为每位投保人准备的总金额为100,000元。

请计算每年需要缴纳的保费。

答案:使用等额年金的公式,我们可以计算出每年需要缴纳的保费。

首先计算现值因子PVIFA,公式为:\[ PVIFA = \frac{1 - (1 + r)^{-n}}{r} \]其中,\( r \) 是年利率,\( n \) 是保险期限。

将给定的数值代入:\[ PVIFA = \frac{1 - (1 + 0.04)^{-20}}{0.04} \]计算得到PVIFA后,用总金额除以PVIFA得到每年需要缴纳的保费:\[ \text{年保费} = \frac{100,000}{PVIFA} \]2. 问题:某保险公司希望评估一个30岁男性的寿险风险。

假设该男性的死亡率为0.0015,保险公司希望在10年内每年支付1,000元的保险金。

请计算保险公司需要收取的保费。

答案:首先,我们需要计算10年内该男性死亡的期望值。

这可以通过以下公式计算:\[ \text{期望死亡次数} = 1 \times (1 - (1 - 0.0015)^{10}) \]然后,将期望死亡次数乘以每次死亡的保险金,得到保险公司需要准备的总金额:\[ \text{总保险金} = 1,000 \times \text{期望死亡次数} \]最后,将总保险金除以生存概率的现值因子,得到每年需要收取的保费:\[ \text{年保费} = \frac{\text{总保险金}}{PVIF} \]3. 问题:考虑一个保险公司提供的年金产品,客户在退休后每年领取10,000元,直到去世。

如果客户现在50岁,预期寿命为85岁,年利率为5%,计算客户需要一次性缴纳的保费。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算师招聘笔试题与参考答案(某世界500强集团)2025年

保险精算师招聘笔试题与参考答案(某世界500强集团)2025年

2025年招聘保险精算师笔试题与参考答案(某世界500强集团)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在保险精算中,以下哪个公式用于计算纯保费?A.(e −δt )B.(c 1−e −rt )C.(c re −rt )D.(c 1−r δe −rt )2、以下哪个选项不是影响保险费率的因素?A. 风险发生的概率B. 赔偿成本C. 投资收益D. 法定准备金要求3、某保险公司开发了一款新型寿险产品,该产品的年缴费为10000元,缴费期限为20年,保险期限为30年。

假设该产品的预定利率为3%,死亡率表显示在第10年结束时,死亡率从0.5%上升至0.8%。

请计算该保险产品在第10年结束时,保险公司需要提取多少风险准备金?(假定保险产品无分红)A. 5000元B. 8000元C. 10000元D. 12000元4、某保险公司计划推出一款定期寿险产品,产品期限为10年,保险金额为100万元。

根据死亡率表,第一年的死亡率估计为1%,第二年为1.2%,以此类推,直到第十年估计死亡率为2%。

假设该产品的预定利率为3%,年缴费为10000元,请计算该保险产品在第一年结束时,保险公司需要提取多少风险准备金?(假定保险产品无分红)A. 10000元B. 8000元C. 5000元D. 2000元5、在保险精算中,用于评估长期寿险保单未来现金流的贴现率通常基于:A. 银行的储蓄利率B. 无风险利率加上一定的风险溢价C. 股票市场的平均回报率D. 消费者物价指数(CPI)的增长率6、以下哪项是衡量保险公司偿付能力的重要指标?A. 净利润率B. 资产负债率C. 综合偿付能力充足率D. 市场份额7、以下哪个选项不属于保险精算师在工作中需要考虑的风险因素?A. 投资风险B. 利率风险C. 流动性风险D. 税收风险8、以下哪个公式描述了纯保费的计算?A. 纯保费 = 风险保费 + 预期利润B. 纯保费 = 风险保费 + 费用保费C. 纯保费 = 风险保费 / 预期赔付率D. 纯保费 = 风险保费 * 预期赔付率9、在保险精算中,用于评估长期寿险保单未来现金流现值的常用方法是:A、净现值法B、内部收益率法C、等价现值法D、现值贴现法 10、以下哪项不属于保险精算师在进行风险评估时需要考虑的因素?A、投保人的年龄和性别B、保险产品的类型与期限C、当前市场的股票价格D、被保险人的健康状况与职业二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些是保险精算师在制定保险费率时需要考虑的因素?()A、历史赔付数据B、市场利率C、预期通货膨胀率D、公司成本E、政策法规2、以下关于生命表的说法,正确的是哪些?()A、生命表是记录特定年龄人群生存概率的工具B、生命表可以用来计算保险产品的保费和责任准备金C、生命表的数据通常是基于特定地区和特定时间点的统计数据D、生命表的数据是静态的,不会随时间变化E、生命表可以用来评估保险公司的财务状况3、以下哪些因素通常会影响保险产品的定价?A. 死亡率或发病率B. 投资收益率C. 市场竞争情况D. 政策法规变化4、在保险精算中,关于准备金评估,以下哪些说法是正确的?A. 准备金是用于支付未来保险责任的资金储备B. 准备金评估仅依赖于过去的经验数据C. 准备金评估需要考虑未来可能的赔付情况D. 准备金水平的高低直接影响保险公司的偿付能力5、以下哪些因素会影响保险精算师在评估风险时对保费率的设定?A. 预期赔付成本B. 预期死亡率C. 利率水平D. 投保人年龄E. 通货膨胀率6、在制定保险产品定价策略时,以下哪些方法是保险精算师常用的?A. 成本法B. 市场比较法C. 经验法D. 投资收益法E. 需求估计法7、以下哪些因素通常会影响保险产品的定价?A、死亡率或发病率B、保险公司的运营成本C、市场供需关系D、投保人的年龄和性别8、在保险精算中,以下哪些方法或工具常用于评估风险?A、生存模型B、损失分布分析C、蒙特卡洛模拟D、敏感性分析9、以下哪些是保险精算师在评估风险时需要考虑的因素?()A. 保险公司的资本充足率B. 投保人的年龄和健康状况C. 市场利率的变化D. 法规和政策的变化E. 自然灾害的发生频率 10、以下哪些方法可以用于评估保险公司的偿付能力?()A. 标准化比率测试B. 风险资本模型C. 现金流量测试D. 精算假设敏感性分析E. 市场风险价值(VaR)三、判断题(本大题有10小题,每小题2分,共20分)1、保险精算师在评估保险产品定价时,应仅考虑历史赔付数据,而不需考虑市场利率的变化。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t a tb =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814ia ia =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d dii δ<<<<。

保险精算教学大纲丶习题及答案

保险精算教学大纲丶习题及答案

保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:学习的目的和要求要求了解利息的各种度量掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率利息的定义实际利率单利和复利实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求要求了解年金的定义、类别掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求理解常用生命表函数的概率意义及彼此之间的函数关系了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求掌握寿险趸缴纯保费的厘定原理理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算理解趸缴纯保费的现实意义主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求理解生存年金的概念掌握各种场合计算生存年金现时值的原理和技巧。

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+;如果在0时投资100元;能在时刻5积累到180元;试确定在时刻5投资300元;在时刻8的积累值..(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.1假设At=100+10t; 试确定135,,i i i ..135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======2假设()()100 1.1nA n =⨯;试确定 135,,i i i ..135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元;3年后得到120元的利息;试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值..11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元;第1年的利率为 110%i =;第2年的利率为28%i =;第3年的利率为 36%i =;求该笔投资的原始金额..123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:1名义利率为每季度计息一次的年名义利率6%..2名义贴现率为每4年计息一次的年名义贴现率6%..(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1;按从大到小的次序排列()()m m d di i δ<<<<..7.如果0.01t t δ=;求10 000元在第12年年末的积累值..、120.7210000(12)100001000020544.33t dt a e e δ⎰===8.已知第1年的实际利率为10%;第2年的实际贴现率为8%;第3年的每季度计息的年名义利率为6%;第4年的每半年计息的年名义贴现率为5%;求一常数实际利率;使它等价于这4年的投资利率..(4)(2)414212(1)(1)(1)(1)(1)421.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336i i i i d i -+=+-++==⇒= 9.基金A 以每月计息一次的年名义利率12%积累;基金B 以利息强度6t tδ=积累;在时刻t t=0;两笔基金存入的款项相同;试确定两基金金额相等的下一时刻..()()2021211221212() 1.01()1.01, 1.432847643tt tt dtt ta t a t e ee t δ=⎰==⇒==10. 基金X 中的投资以利息强度0.010.1t t δ=+0≤t ≤20; 基金Y 中的投资以年实际利率i 积累;现分别投资1元;则基金X 和基金Y 在第20年年末的积累值相等;求第3年年末基金Y 的积累值..()()()2210.010.1220.01*200.1*2020423()1()11 1.8221tt tt t dta t i a t e ei ee i δ++=+⎰==⇒+==+=11. 某人1999年初借款3万元;按每年计息3次的年名义利率6%投资;到2004年末的积累值为 万元.. A. 7.19 B. 4.04 C. 3.31 D. 5.21(3)3*5153(1)3*1.02 4.03763i +==12.甲向银行借款1万元;每年计息两次的名义利率为6%;甲第2年末还款4000元;则此次还款后所余本金部分为 元..A.7 225B.7 213C.7 136D.6 987(2)2*24(1) 1.03 1.12552i +==第二章:年金练习题1.证明()n m m n v v i a a -=-..()11()m nn m m n v v i a a i v v i i---=-=-2.某人购买一处住宅;价值16万元;首期付款额为A;余下的部分自下月起每月月初付1000元;共付10年..年计息12次的年名义利率为8.7% ..计算购房首期付款额A..12012011000100079962.96(8.7%/12)16000079962.9680037.04v a i i-===∴-= 3. 已知7 5.153a = ; 117.036a =; 189.180a =; 计算 i ..718711110.08299a a a i i ⎛⎫=+ ⎪+⎝⎭∴=4.某人从50岁时起;每年年初在银行存入5000元;共存10年;自60岁起;每年年初从银行提出一笔款作为生活费用;拟提取10年..年利率为10%;计算其每年生活费用..10101015000112968.7123a x a i x ⎛⎫= ⎪+⎝⎭∴=5.年金A 的给付情况是:1~10年;每年年末给付1000元;11~20年;每年年末给付2000元;21~30年;每年年末给付1000元..年金B 在1~10年;每年给付额为K 元;11~20年给付额为0;21~30年;每年年末给付K 元;若A 与B 的现值相等;已知1012v=;计算K.. 10201010102010101110002000100011111800A a a a i iB Ka K a i A B K ⎛⎫⎛⎫=++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫=+ ⎪+⎝⎭=∴=6. 化简()1020101a v v++ ;并解释该式意义..()102010301a v v a ++=7. 某人计划在第5年年末从银行取出17 000元;这5年中他每半年末在银行存入一笔款项;前5次存款每次为1000元;后5次存款每次为2000元;计算每年计息2次的年名义利率..51055111000200017000113.355%a a i i i ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭⇒=8. 某期初付年金每次付款额为1元;共付20次;第k 年的实际利率为18k+;计算V2.. 112119111(2)11(1)(1)(1)(1)9991101128V i i i i i =+++++++++=+++9. 某人寿保险的死亡给付受益人为三个子女;给付形式为永续年金;前两个孩子第1到n 年每年末平分所领取的年金;n 年后所有的年金只支付给第三个孩子;若三个孩子所领取的年金现值相等;那么v=A. 113n⎛⎫⎪⎝⎭B. 13n C.13n⎛⎫ ⎪⎝⎭D.3n1211213n n n n n a v a v v i i v ∞=-==11. 延期5年连续变化的年金共付款6年;在时刻t 时的年付款率为()21t +;t 时刻的利息强度为1/1+t;该年金的现值为A.52B.54C.56D.5801125|651125|65()(1)111()()11(1)541t t dt a v t t dt v t a t t e a t dt t δ=+===+⎰⇒=+=+⎰⎰第三章:生命表基础练习题1.给出生存函数()22500x s x e-=;求:1人在50岁~60岁之间死亡的概率.. 250岁的人在60岁以前死亡的概率.. 3人能活到70岁的概率..450岁的人能活到70岁的概率..()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s s s s q s P X s s p s <<=--=>==2. 已知Pr5<T60≤6=0.1895;PrT60>5=0.92094;求60q ..()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s s q p s s s s q s -====-∴==3. 已知800.07q =;803129d =;求81l ..8080818080800.07d l l q l l -=== 4. 设某群体的初始人数为3 000人;20年内的预期死亡人数为240人;第21年和第22年的死亡人数分别为15人和18人..求生存函数sx 在20岁、21岁和22岁的值..120121122(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l ++++++======5. 如果221100x x xμ=++-;0≤x ≤100; 求0l =10 000时;在该生命表中1岁到4岁之间的死亡人数为 .. A.2073.92 B.2081.61 C.2356.74 D.2107.5622211000100()1((1)(4))2081.61xxx dx dxx xx s x e e x l s s μ-+-+--⎛⎫⎰⎰=== ⎪+⎝⎭-=6. 已知20岁的生存人数为1 000人;21岁的生存人数为998人;22岁的生存人数为992人;则|201q 为 ..A. 0.008B. 0.007C. 0.006D. 0.00522211|20200.006l l q l -== 第四章:人寿保险的精算现值练 习 题1. 设生存函数为()1100xs x =- 0≤x ≤100;年利率i =0.10;计算保险金额为1元: 1趸缴纯保费130:10Ā的值..2这一保险给付额在签单时的现值随机变量Z 的方差VarZ..1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t tt t x x t tt t x x t x s x t s x p s x xA v p dt dt Var Z A A v p dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2. 设年龄为35岁的人;购买一张保险金额为1 000元的5年定期寿险保单;保险金于被保险人死亡的保单年度末给付;年利率i=0.06;试计算: 1该保单的趸缴纯保费..2该保单自35岁~39岁各年龄的自然保费之总额.. 31与2的结果为何不同 为什么 1法一:4113536373839234535:53511000()1.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:4113536373839234535:53511000() 5.7471.06 1.06 1.06 1.06 1.06k k x x k k d d d d d Av p q l ++===++++=∑ 法二:1354035:53510001000M M A D -=查换算表1354035:53513590.2212857.61100010001000 5.747127469.03M M A D --===21353535:1351363636:1361373737:1371383838:138143.581000100010001000 1.126127469.03144.471000100010001000 1.203120110.22145.941000100010001000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D ===============1393939:1393536373839148.050 1.389106615.43150.551000100010001000 1.499100432.541000() 6.457C p AD p p p p p =====++++= 31112131413523533543535:535:136:137:138:139:11353637383935:5A A vp A v p A v p A v p A Ap p p p p =++++∴<++++3. 设0.25x =A ; 200.40x +=A ; :200.55x =A ; 试计算: 1 1:20x A ..2 1:10x A ..改为求1:20x A 1 120:20:201 1:20:20:201 1:20:201 1:20:201:20 1:200.250.40.550.050.5x x x x x x x x x x x x x A A A A A A A A A A A A A +⎧=+⎪⎨=+⎪⎩⎧=+⎪⇒⎨=+⎪⎩⎧=⎪⇒⎨=⎪⎩ 4. 试证在UDD 假设条件下: 1 11::x n x n iδ=A A ..2 11:::x x n n x niδ=+ĀA A .. 5. x 购买了一份2年定期寿险保险单;据保单规定;若x 在保险期限内发生保险责任范围内的死亡;则在死亡年末可得保险金1元;()0.5,0,0.1771x q i Var z === ;试求1x q +.. 6.已知;767677770.8,400,360,0.03,D D i ====求A A ..7. 现年30岁的人;付趸缴纯保费5 000元;购买一张20年定期寿险保单;保险金于被保险人死亡时所处保单年度末支付;试求该保单的保险金额.. 解:1130:2030:2050005000RA R A =⇒= 其中191111303030303030:2030303030313249232030305030111111()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld Avp q vv d l l l d d d d l M M D ∞∞+++++++===+====++++-=∑∑∑查2000-2003男性或者女性非养老金业务生命表中数据3030313249,,,l d d d d 带入计算即可;或者i=0.06以及2000-2003男性或者女性非养老金业务生命表换算表305030,,M M D 带入计算即可.. 例查2000-2003男性非养老金业务生命表中数据1232030:2011111(8679179773144)9846351.06(1.06)(1.06)(1.06)0.017785596281126.3727A R =++++==8. 考虑在被保险人死亡时的那个1m年时段末给付1个单位的终身寿险;设k 是自保单生效起存活的完整年数;j 是死亡那年存活的完整1m年的时段数.. 1 求该保险的趸缴纯保费 ()m x A ..2 设每一年龄内的死亡服从均匀分布;证明()()m xx m i i =A A ..9. 现年35岁的人购买了一份终身寿险保单;保单规定:被保险人在10年内死亡;给付金额为15 000元;10年后死亡;给付金额为20 000元..试求趸缴纯保费.. 趸交纯保费为1110|3535:101500020000A A + 其中991111353535353535:1035353535363744231035354535111111()1.06(1.06)(1.06)(1.06)13590.2212077.310.01187127469.03k k k kk kk kk k k k ld Avp q vv d l l l d d d d l M M D ∞+++++++===+====++++--===∑∑∑7070701111353510|3535353510101035353545464710511121371354535111111()(1.06)(1.06)(1.06)(1.06)12077.310.09475127469.03k k k kk k k k k k k k ld A vp q vvd l l l d d d d l M D +++++++===+====++++===∑∑∑所以趸交纯保费为1110|3535:101500020000178.0518952073.05A A +=+=10.年龄为40岁的人;以现金10 000元购买一份寿险保单..保单规定:被保险人在5年内死亡;则在其死亡的年末给付金额30 00元;如在5年后死亡;则在其死亡的年末给付数额R 元..试求R 值..11. 设年龄为50岁的人购买一份寿险保单;保单规定:被保险人在70岁以前死亡;给付数额为3 000元;如至70岁时仍生存;给付金额为1 500元..试求该寿险保单的趸缴纯保费.. 该趸交纯保费为:1150:2050:2030001500A A + 其中1919191111505050505050:20505050505152692320050507050111111()1.06(1.06)(1.06)(1.06)k k k kk kk kk k k k ld Avp q vvd l l l d d d d l M M D +++++++===+====++++-=∑∑∑1707070705050:20507050l A v p v l D D ===查生命表或者相应的换算表带入计算即可..12. 设某30岁的人购买一份寿险保单;该保单规定:若30在第一个保单年计划内死亡;则在其死亡的保单年度末给付5000元;此后保额每年增加1000元..求此递增终身寿险的趸缴纯保费..该趸交纯保费为:30303030303040001000()40001000M RA IA D D +=+ 其中75757511130303030303003030303031321052376303030111111()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld A vp q vv d l l l d d d d l M D +++++++===+====++++=∑∑∑7575751113030303030300030303030313210523763030301()(1)(1)(1)112376()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld IA k vp q k vk v d l l l d d d d l R D +++++++===+=+=+=+=++++=∑∑∑查生命表或者相应的换算表带入计算即可..13. 某一年龄支付下列保费将获得一个n 年期储蓄寿险保单:11 000元储蓄寿险且死亡时返还趸缴纯保费;这个保险的趸缴纯保费为750元..21 000元储蓄寿险;被保险人生存n 年时给付保险金额的2倍;死亡时返还趸缴纯保费;这个保险的趸缴纯保费为800元..若现有1 700元储蓄寿险;无保费返还且死亡时无双倍保障;死亡给付均发生在死亡年末;求这个保险的趸缴纯保费..解:保单1精算式为111::::100075017501000750x n x n x n x n A A A A +=+= 保单2精算式为1111:::::1000800100018002000800x n x n x n x n x n A A A A A ++=+=求解得1 1::7/17,1/34x n x n A A ==;即1 1:::170017001700750x n x n x nA A A =+= 14. 设年龄为30岁者购买一死亡年末给付的终身寿险保单;依保单规定:被保险人在第一个保单年度内死亡;则给付10 000元;在第二个保单年度内死亡;则给付9700元;在第三个保单年度内死亡;则给付9400元;每年递减300元;直至减到4000元为止;以后即维持此定额..试求其趸缴纯保费..15. 某人在40岁投保的终身死亡险;在死亡后立即给付1元保险金..其中;给定110x l x =-;0≤x ≤110..利息力δ=0.05..Z 表示保险人给付额的现值;则密度()0.8x f 等于 A. 0.24 B. 0.27 C. 0.33 D. 0.36ln ln TZZ v t v=⇒=()1()70()11/12()(())()70ln 707(0.8)0.36x t T t x x t xZ T Z l S x t f t p S x l z f z f g z g z v z zf μδ++'--+===='==-===16. 已知在每一年龄年UDD 假设成立;表示式()()xxI A I A A-=A.2i δδ- B.()21i δ+C. 11d δ- D. 1i i δδ⎛⎫- ⎪⎝⎭解:[]11(1)()()()((1))()()()(1)((1))11 ()T TK S x x T K Sx s SSs E T v E Tv IA IA E S v T K S A E v E v s v dsE S v E v d v dsδ+++---===+--===-⎰⎰17. 在x 岁投保的一年期两全保险;在个体x 死亡的保单年度末给付b 元;生存保险金为e 元..保险人给付额现值记为Z; 则VarZ= A. ()22x x p q v b e + B. ()22x x p q vb e -C. ()222x x p q vbe - D. ()222x x v b q e p +()()22222222222222222222(),()(),()()()()()()()x xx x x x x xx x x x x x P Z bv q P Z ev p P Z b v q P Z e v p E Z bvq evp E Z b v q e v p Var Z E Z E Z b v q e v p bvq evp v q p b e =========+=+=-=+-+=-第五章:年金的精算现值练 习 题1. 设随机变量T =Tx 的概率密度函数为0.015()0.015tf t e -=⋅t ≥0;利息强度为δ=0.05 ..试计算精算现值 x a ..0.050.015011()0.01515.380.05ttt x T v e a f t dt e dt δ-+∞+∞---==⋅=⎰⎰2.设 10x a =; 27.375x a =; ()50TVar a =..试求:1δ;2xĀ..()2222222222111012114.7511(())50(())0.0350.650.48375x x xx x x T x x x x x x a A A a A A Var a A A A A A A δδδδδδδ⎧⎧=+⎪⎪=+⎪⎪=+⇒=+⎨⎨⎪⎪⎪⎪=-=-⎩⎩=⎧⎪⇒=⎨⎪=⎩3. 某人现年50岁;以10000元购买于51岁开始给付的终身生存年金;试求其每年所得年金额..4. 某人现年23岁;约定于36年内每年年初缴付2 000元给某人寿保险公司;如中途死亡;即行停止;所缴付款额也不退还..而当此人活到60岁时;人寿保险公司便开始给付第一次年金;直至死亡为止..试求此人每次所获得的年金额..解:23:3637|2323:3637|2320002000a a R a R a =⇒=35353523232323:36000232323242526582335232359233737|232337236037236023:37111111()1.06(1.06)(1.06)(1.06) kkkk k kk k k l a v p v v l l l l l l l l l N N D a a a v p a E a ++=======+++++-==-==∑∑∑8282822323233737372323606062631052355236023111111()1.06(1.06)(1.06)(1.06)kkkk k kk k k l v p v v ll l l l l l l l N D ++=======+++++=∑∑∑查生命表或者相应的换算表带入计算即可..习题5将参考课本P87例5.4.1现年35岁的人购买如下生存年金;且均于每月初给付;每次给付1000元;设年利率i=6%;求下列年金的精算现值..(1) 终身生存年金..(12)35351000*1212000[(12)(12)]a a αβ=-其中12(12)(12)12(12)(12)(12)(12)(12)(12)(12)0.0566037741110.05841060612110.05812766712(12) 1.000281033,(12)0.46811975id ii i i d d d id i i i d i dαβ==+⎛⎫+=+⇒= ⎪⎝⎭⎛⎫-=-⇒= ⎪⎝⎭-====717171353535230003523353637381052370353535111111()1.06(1.06)(1.06)(1.06)kkkk k kk k k l a v p v v l l l l l l l l l N D ++=======+++++=∑∑∑若查90-93年生命表换算表则353535198569215.695458126513.8N a D === 5. 某人现年55岁;在人寿保险公司购有终身生存年金;每月末给付年金额250元;试在UDD 假设和利率6%下;计算其精算现值..解:(12)(12)55555511250*12250*12()250*12[(12)(12)]1212a a a αβ=-=-- 其中12(12)(12)12(12)(12)(12)(12)(12)(12)(12)0.0566037741110.05841060612110.05812766712(12) 1.000281033,(12)0.46811975id ii i i d d d id i i i d i dαβ==+⎛⎫+=+⇒= ⎪⎝⎭⎛⎫-=-⇒= ⎪⎝⎭-====717171355555230003523353637381052370353535111111()1.06(1.06)(1.06)(1.06) kkkk k kk k k l a v p v v l l l l l l l l l N D ++=======+++++=∑∑∑6. 在UDD 假设下;试证: 1()()||()m x x n x n n a m a m E αβ=- ..2 ()()::()(1)m n x x n x n a m a m E αβ=-- ..3()()::1(1)m m n x x n x n a a E m=-- .. 7. 试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值;且给付方法为:1按年;2按半年;3按季;4按月..1解:3130301200N a D =2(2)(2)3030351110001000()1000[(2)(2)]22a a a αβ=-=--其中2(2)(2)2(2)(12)(2)(2)(2)(2)(2)0.0566037741110.0591260282110.0574282762(2) 1.000212217(2)0.257390809id ii i i d d d idi d i i i dαβ==+⎛⎫+=+⇒= ⎪⎝⎭⎛⎫-=-⇒= ⎪⎝⎭==-==303030N a D =3(4)(4)3030301110001000()1000[(4)(4)]44a a a αβ=-=--其中4(4)(4)4(4)(4)(4)(4)(4)(4)(4)0.0566037741110.0586953854110.0578465544(4) 1.000265271(4)0.384238536id ii i i d d d idi d i i i dαβ==+⎛⎫+=+⇒= ⎪⎝⎭⎛⎫-=-⇒= ⎪⎝⎭==-==303030N a D =4(12)(12)3030301110001000()1000[(12)(12)]1212a a a αβ=-=-- 其中12(12)(12)12(12)(12)(12)(12)(12)(12)(12)0.0566037741110.05841060612110.05812766712(12) 1.000281033,(12)0.46811975id ii i i d d d id i i i d i dαβ==+⎛⎫+=+⇒= ⎪⎝⎭⎛⎫-=-⇒= ⎪⎝⎭-====303030N a D =8. 试证: 1()()m x x m a a iδ= 2():():m x n m x na a i δ= ..3 ()lim m x xm a a →∞= ..4 12x x a a ≈-.. 9. 很多年龄为23岁的人共同筹集基金;并约定在每年的年初生存者缴纳R 元于此项基金;缴付到64岁为止.. 到65岁时;生存者将基金均分;使所得金额可购买期初付终身生存年金;每年领取的金额为3 600元..试求数额R..10. Y 是x 岁签单的每期期末支付1的生存年金的给付现值随机变量;已知 10x a =;26x a =;124i =;求Y 的方差.. 11. 某人将期末延期终身生存年金1万元遗留给其子;约定延期10年;其子现年30岁;求此年金的精算现值..75753010|30301111304142431051112137530413011111()(1.06)(1.06)(1.06)(1.06)kkk k k k l a vp vl l l l l l N D +=====++++=∑∑ 12. 某人现年35岁;购买一份即付定期年金;连续给付的年金分别为10元、8元、6元、4元、2元、4元、6元、8元、10元;试求其精算现值.. 13. 给定(4)17.287a ∞=;0.1025x A =..已知在每一年龄年UDD 假设成立; 则(4)xa 是 A. 15.48 B. 15.51 C. 15.75 D. 15.8214. 给定()100()9T Var a x t k μ=+=及; 0t >; 利息强度4k δ=;则k = A. 0.005 B. 0.010 C. 0.015 D. 0.020()()2804022221915161100225()()1690.02ktt x x t kt kt x kt kt x x x T x t k p ke A e ke dt A e ke dt Var a A A k k μμδ-++∞--+∞--+=⇒=====⇒=-==⇒=⎰⎰15. 对于个体x 的延期5年的期初生存年金;年金每年给付一次;每次1元;给定:()50.01,0.04, 4.524x x t i a μ=+===; 年金给付总额为S 元不计利息;则P 51x S a >值为A. 0.82B. 0.81C. 0.80D. 0.83第六章:期缴纯保费与营业保费练 习 题1. 设()0x t t μμ+=>;利息强度为常数δ;求 ()x P A 与VarL..2. 有两份寿险保单;一份为40购买的保额2 000元、趸缴保费的终身寿险保单;并且其死亡保险金于死亡年末给付;另一份为40购买的保额1 500元、年缴保费P 的完全离散型终身寿险保单..已知第一份保单的给付现值随机变量的方差与第二份保单在保单签发时的保险人亏损的方差相等;且利率为6%;求P 的值.. 3. 已知 140:20604040:200.029,0.005,0.034,6%,P P P i a ====求 .. 4. 已知 6262630.0374,0.0164,6%,P q i P ===求..5. 已知L 为x 购买的保额为1元、年保费为:x n P 的完全离散型两全保险;在保单签发时的保险人亏损随机变量;2::0.1774,0.5850x n x n P A d==;计算V arL..6. 已知x 岁的人服从如下生存分布:()105105xs x -=0≤x ≤105;年利率为6%..对50购买的保额1 000元的完全离散型终身寿险;设L 为此保单签发时的保险人亏损随机变量;且PL ≥0=0.4 ..求此保单的年缴均衡纯保费的取值范围..7. 已知 20.19,0.064,0.057,0.019,X X x A A d π====;其中x π为保险人对1单位终身寿险按年收取的营业保费..求保险人至少应发行多少份这种保单才能使这些保单的总亏损为正的概率小于等于0.05..这里假设各保单相互独立;且总亏损近似服从正态分布;Pr Z≤1.645=0.95;Z 为标准正态随机变量.. 8. 2020:4020:4010007.00,16.72,15.72,1000x P a a P ===计算 .. 9.()10|201020201.5,0.04,P a P ==计算P ..10.已知1(12)(12):201:20:20:201.03,0.04,x x x x P P P ==计算P .. 11. 已知x 岁的人购买保额1000元的完全离散型终身寿险的年保费为50元;20.06,0.4,0.2x x d A A ===;L 是在保单签发时保险人的亏损随机变量..1计算EL.. 2计算VarL..3现考察有100份同类保单的业务;其面额情况如下:面额元 保单数份1 804 20假设各保单的亏损独立;用正态近似计算这个业务的盈利现值超过18 000元的概率..12. x 购买的n 年限期缴费完全离散型终身寿险保单;其各种费用分别为:销售佣金为营业保费的6%;税金为营业保费的4%;每份保单的第1年费用为30元;第2年至第n 年的费用各为5元;理赔费用为15元.. 且1:0.3,0.1,0.4,0.6x x n x nA A A i +====;保额b 以万元为单位;求保险费率函数Rb.. 13. 设 ()50500.014,0.17,P A A δ==则利息强度=().. A. 0.070 B. 0.071 C. 0.073 D. 0.07614. 已知10.05,0.022,0.99,x x x i p p p +====则()..A. 0.0189B. 0.0203C. 0.0211D. 0.0245 15. 设115456045:1545150.0380.056,0.625,P P A ===:,P 则= A. 0.005 B. 0.006 C. 0.007 D. 0.008第七章:准备金练 习 题1. 对于x 购买的趸缴保费、每年给付1元的连续定期年金;t 时保险人的未来亏损随机变量为:,0,a U n tU a U n t tn tL ≤≤-≥--⎧=⎨⎩ 计算()t E L 和()t Var L .. 2. 当::2:2::1,,2,26k k x n x n x k n k x k n k x k n k n k V a a a V +-+-+-<=+=时计算.. 3. 已知()()0.474,0.510,0.500,x t x t x P A V A V δ===计算t x V(A )..4. 假设在每一年龄内的死亡服从均匀分布;判断下面等式哪些正确: 11000x q ()::k k x n x niV A V δ=2 ()k x k x iV A Vδ=3 ()11::k k x n x niV A V δ=5.假设在每一年龄内的死亡服从均匀分布;且()()41101035:35:2035:2035:202035:2040.40,0.039,12.00,0.30,0.20,11.70P a V V a β======;求 ()4101035:2035:20V V - ..6. 已知()()()120:1010.01212,20.01508,30.06942x x x P P P ===()1040.11430x V = 计算2010x V ..7. 一种完全离散型2年期两全保险保单的生存给付为1000元;每年的死亡给付为1000元加上该年年末的纯保费责任准备金;且利率i=6%;0.1 1.1kx k q +=⨯ k=0;1..计算年缴均衡纯保费P..8. 已知1154545:2045:150.03,0.06,0.054,0.15P A d k ====;求1545:20V .. 9. 25岁投保的完全连续终身寿险;L 为该保单签发时的保险人亏损随机变量;已知()245250.20,0.70,0.30,Var L A A ===计算()2025V A ..10. 已知 0.30,0.45,0.52t x t x x t k E A +===; 计算()t x V A .. 11. 已知:0.20,0.08,x n A d ==计算1:n x n V -..12. 已知1110.0,0.100,0.127,0.043x t t x t x x t a V V P ++++====;求d 的值..13. 对30岁投保、保额1元的完全连续终身寿险;L 为保单签发时的保险人亏损随机变量;且()250300.7,0.3,0.2A A Var L ===;计算()2030V A ..14. 一 种完全连续型20年期的1单位生存年金;已知死亡服从分布:75x l x =-0≤x ≤75;利率0i =;且保费连续支付20年..设投保年龄为35岁;计算此年金在第10年年末的纯保费准备金..15. 已知3132:130.002,9,5%q a i ===;求 230:15FPTV .. 16. 对于完全离散型保额;1单位的2年期定期寿险应用某种修正准备金方法;已知21x x v p q α+=⋅⋅;求β..17. 个体x 的缴费期为10年的完全离散终身寿险保单;保额为1 000元;已知90.06,0.01262x i q +==;年均衡净保费为32.88元;第9年底的净准备金为322.87元;则101000x P += A. 31.52 B. 31.92 C. 33.12 D. 34.3218. 已知()1000100,1000()10.50,0.03t x x V A P A δ===;则 x t a += A. 21 B. 22 C. 23 D. 24第八章:保单现金价值与红利练 习 题1. 证明式8.1.7和式8.1.8..2. 证明表8.1.3和表8.1.4中的调整保费表达式..3. 根据表8.1.3和表8.1.4中的各种情况;计算第1年的费用补贴1E ..4. x 的单位保额完全连续终身寿险在k 年末转为不丧失现金价值..设 ()k k x CV V A =;分别按缴清保险与展期保险给出刚改变后的保险的未来损失方差与原保险在时间k 的未来损失方差之比..5. 已知::0.3208,12,0.5472,8,x x x n x n A a A a ====用1941年规则计算:ax n P ..6. 向30发行的1单位完全连续20年期两全保险;在第10年年末中止;并且那时还有一笔以10CV 为抵押的贷款额L 尚未清偿;用趸缴纯保费表达:1在保额为1-L 的展期保险可展延到原期满时的情况下;期满时的生存给付金额E.. 2转为第1小题中展期保险与生存保险后5年时的责任准备金..7. 考虑x 投保的缴费期为n 的n 年期两全保险;保险金为1单位;支付基础为完全离散的..在拖欠保费的情况下;被保险人可选择: 1减额缴清终身寿险..2期限不超过原两全保险的展期定期保险以及x+n 岁时支付的减额生存保险..在时间t 的解约金为 :t x n V ;它可用来购买金额为b 的缴清终身寿险;或用于购买金额为1的展期保险以及x+n 岁时的生存支付f ..设:2x t x t n t A A ++-=;用b ;1:x t n tA +-及n t x t E -+表示f .. 8. 设()k t k tx CV V A ++=..证明:决定自动垫缴保费贷款期长短的方程可写成Ht =0;其中()11x x k x i H t a GS a a ++=+-..9. 在人寿保险的早期;一家保险公司的解约金定为 ()()k x h x CV h G G a k +=-; 1,2,k=式中;G 为相应年龄的毛保费;()a k 为始于x+k 岁并到缴费期结束为止的期初生存年金值;h在实际中取23..如果终身寿险保单的毛保费按1980年规则取为调整保费;并且x P 与x t P +都小于0.04;h=0.9;验证以上给出的解约金为()0.909 1.125 1.125)()k x k x x k x CV P V P P +=++-10. 生存年金递推关系为()()11x h x h x h a i p a +++++= ; 0,1,2,h =1 如果实际的经验利率是h+1;经验生存概率是x+h;则年金的递推关系为()()111ˆˆ11()x h h x h x h h a ip a ++++++-+=+∆ 式中;1h +∆为生存者份额的变化..证明并解释()111ˆˆ()1()ˆh x h x h x h x h h x h i a p p a p++++++++-+-∆=2如果年末的年金收入调整为年初的1h r +倍;其中()()111ˆˆ11x h h x h h x h a ip r a ++++++-+=⋅⋅ 用 ˆ,,x h i ip +及 ˆx h p +表示1h r +.. 11. 证明式8.4.12、式8.4.13和式8.4.14..12. 在1941年法则中;若220.04,0.04x P P >> ;则 1E =A. 0.036B. 0.046C. 0.051D. 0.05313. 30投保20年期生死两全保险;若30:200.08,0.01P d == ;利用1941年法则求得 2300.01P =时的调整保费为A. 0.0620B. 0.0626C. 0.0638D. 0.0715第九章:现代寿险的负债评估练 习 题1.在例9.2.1中将第1年到第5年的保证利率改为9%;求0到第10年的现金价值及第4年的准备金.. 2. 在例9.2.3中将保证利率改为:前3年为8% ;3年以后为4% ;重新计算表9.2.8、表9.2.9和表9.2.10..3.在例9.2.5中;若保证利率:第1年到第5年为9.5%;以后为4%;求0到第5保单年度的准备金..4. 考虑固定保费变额寿险;其设计是公平设计且具有下列性质:男性:35岁;AIR=4%;最大允许评估利率:6%;面值即保额:10 000元;在第5保单年度的实际现金价值为6 238元;在第5保单年度的表格现金价值为5 316元..且已知391000 2.79q =;相关资料如下表..x a19.582 6 19.366 7 18.438 9 15.202 1 15.086 0 14.569 5求:1第5保单年度的基础准备金;2用一年定期准备金和到达年龄准备金求第5保单年度的GMDB 准备金..5. 已知某年金的年保费为1 000元;预先附加费用为3%;保证利率为第1年到第3年8%;以后4%;退保费为5/4/3/2/1/0%;评估利率为7%..假设为年缴保费年金;第1年末的准备金为 A. 1005 B. 1015 C. 1025 D. 10356. 在上题中;如果本金为可变动保费年金;保单签发时缴费1 000元;第2年保费于第1年末尚未支付;则第1年年末的准备金为A. 1005B. 1015C. 1025D. 1035第十章:风险投资和风险理论练习题1. 现有一种2年期面值为1 000的债券;每年计息两次的名义息票率为8%;每年计息两次的名义收益率为6%;则其市场价格为 元..A.1037.171B. 1028.765C. 1043.817D. 1021.4522. 假设X 是扔五次硬币后“国徽”面朝上的次数;然后再同时扔X 个骰子;设Y 是显示数目的总合;则Y 的均值为A .109648 B. 108548 C. 109636 D . 1085363. 现有一种六年期面值为500的政府债券;其息票率为6%;每年支付;如果现行收益率为5%;那么次债券的市场价值为多少 如果两年后的市场利率上升为8%;那么该债券的市场价值又是多少4. 考虑第3题中的政府债券;在其他条件不变的情况下;如果六年中的市场利率预测如下:1r :5% 2r :6% 3r :8% 4r :7% 5r :6% 6r :10%那么该债券的市场价值是多少 5. 计算下述两种债券的久期:1五年期面值为2 000元的公司债券;息票率为6%;年收益率为10%; 2三年期面值为1 000元的政府债券;息票率为5%;年收益率为6%.. 6.7. 7.5%;费用率为35%;市场组合的期望回报是20%;那么该保险人的期望利润率是多少8. 某保险人的息税前收入是6.2亿元;净利息费用为300万元;公司的权益值为50亿元;税率为30%;试求股本收益率..9. 某建筑物价值为a;在一定时期内发生火灾的概率为0.02..如果发生火灾;建筑物发生的损失额服从0到a 的均匀分布..计算在该时期内损失发生的均值和方差..10. 如果短期局和风险模型中的理赔次数N 服从二项分布Bn ; p;而P 服从0到1的均匀分布;利用全概率公式计算:1N 的均值;2N 的方差..11. 如果S 服从参数0.60λ=;个别赔款额1;2;3概率分别为0.20;0.30;0.50的复合泊松分布;计算S 不小于3的概率..12. 若破产概率为()2470.30.20.1u u u e e e ψμ---=++;0u ≥;试确定θ和R..13. 设盈余过程中的理赔过程St 为复合泊松分布;其中泊松参数为λ;个别理赔额C 服从参数为1β=的指数分布;C = 4 ;又设L 为最大聚合损失;μ为初始资金并且满足{}P L μ>= 0.05;试确定μ..第一章1. 386.4元2. 10.1 0.083 3 0.071 420.1 0.1 0.13. 1 097.35元 1 144.97元 4. 794.1元5. 111 956 212 285 6. ()()m m d di i δ<<<<7. 20 544.332元 8. 0.074 6 9. 0.358 2 10. 1.822 11. B 12. A第二章1. 略2. 80 037.04元 3.0.082 99 4. 12 968.71元5. 1 800 元6. 略 7. 6.71% 8.28911i i=∑ 9. A 10. B第三章1. 1 0.130 95 2 0.355 96 3 0.140 86 4 0.382 892. 0.020 583. 41 5714. 1 0.92 2 0.915 3 0.9095. B6. C第四章1. 1 0.092 2 0.0552. 1 5.2546元 25.9572元 3略3. 1 0.05 2 0.54. 略5. 0.546. 0.817. 283 285.07元8. 略9. 2 174.29元 10. 71 959.02元 11. 690.97元 12. 3 406.34元 13. 749.96元 14. 397.02元 15. D 16. C 17. B第五章1. 15.382. 1 0.035 2 0.653. 793元4. 25 692.23元5. 36 227.89元6. 略7. 1 18 163.47元 2 18 458.69元 318 607.5 元 4 18 707.28 元8. 略 9. 167.71元10. 106 11. 83 629.47元 12. 46.43元 13. A 14. D 15. B第六章1. ()x P μ=Ā ; ()()222āx xx Var L δ=Ā-Ā2. 28.30元3. 14.784. 0.039 75. 0.1036. 20.07<P ≤21.747. 21份 8. 3.20 9. 0.016 10. 0.041 311. 1 -100 2 134 444.44 3 0.272 7 12. ()10.194471.7R b b=+13. B 14. C 15. D第七章1. ()()22::2:,x t n t x t n tt t x t n t E L a Var L δ+-+-+--==ĀĀ2.153. 0.5154. 2 35. 0.001 66. 0.156 947. 556.88元8. 0.609. 0.40 10. 0.239 11. 0.90 12. 0.06 13. 0.40 14. 3.889 元 15. 0.058 16.xxq p 17. C 18. B第八章1. 略2. 略3. 根据表8.1.3中的各种情况算出的1E 分别为: 10.650.02ää0.65x x x p ⎛⎫+⎪-⎝⎭ 20.046 30.650.02ää0.65x p ⎛⎫+ ⎪-⎝⎭40.40.250.02ää0.4x p p α⎛⎫++ ⎪-⎝⎭50.250.36x p α+6 0.650.02ää0.65x p ⎛⎫+⎪-⎝⎭70.046根据表8.1.4中的各种情况算出1E 分别为: 1 1.25P+0.01 2 0.064.1()()221k x xW ⎡⎤-⎣⎦ĀĀ2 ()()()22211::221x x k s x k s x k x k++++⎡⎤--⎢⎥⎣⎦-ĀĀĀĀĀ5. 0.073 86. 1 ()11040:101CV L L ⎡⎤---⎣⎦Ā1040E2 154545:5(1)L E E -+Ā 7. 1:122x t n t n t x tb b E +--+⎛⎫+- ⎪⎝⎭Ā8. 略 9. 略10.1略 2 1ˆ1ˆ1h x h x h iP i P +++⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭11. 略12. B 13. B.第九章1. 第0年到第十年的现金价值分别为: 9300元 10 137元 11 168元 12 303元 13 551元 14 925元 14 722元 16 475元 17 307元 18 000元 18 720元 第四年的准备金为 13 819 元2. 重新计算表9.2.8后的值..重新计算表9.2.9后的值..重新计算表9.2.10的值..3. 第0到第5保单年度的准备金分别为:962元 1 964元 3 142元 4 423元 5 816元4. 1 5 712.12元 2 11.34元 60.86元5. A6. D第十章1. A2. B3. 525.38元 466.88元4. 479.22元5. 1 4.413 2 2.8576. 4.70%7. 0.0058. 8.64%9. E x = E x | y = 0.010 ()()m m d di i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练习题在时刻8的积累值。

a(0) b 1 a(5) 25a b 1.80.8 , 亦,b2. (1)假设 A(t)=100+10t, 试确定 i 1,i 3,i 5。

i 1 A(1^0) 0.1,i 30.0833,i 50.0714A(0)A(2)A(4)(2)假设 An 1001.1 n ,试确定 i 1,i 3,i 5 。

i 1沁如0.1,i 3坐4 0.仏壓3 0.1 A(0)A(2) A(4)3 .已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资 800元在5年后的积累值。

500a (3) 500(1 3iJ 620 h 0.08 800a(5) 800(1 5i 1) 1120 500a (3) 500(1 i ?)3 620 h 0.0743363800a(5) 800(1 i 3)51144.974•已知某笔投资在 3年后的积累值为1000元,第1年的利率为i 110%,第2年的利率为i 2 8% , 第3年的利率为i 3 6%,求该笔投资的原始金额。

A(3) 1000 A(0)(1 ij(1 i 2)(1 i 3) A(0) 794.15 .确定10000元在第3年年末的积累值:(1) 名义利率为每季度计息一次的年名义利率6%(2) 名义贴现率为每4年计息一次的年名义贴现率6%1 .已知atat 2 b ,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻 5投资300元,300*100a(5) 300300*100 180 a(8)300*100180(64 a b) 508•⑷ i 1210000a(3) 10000(1 )4(4) i 410000 a (3) 10000 1 丁412.甲向银行借款1万元,每年计息两次的名义利率为6%甲第2年末还款4000元,则此次还款后所余本11956.1811750.086 .设 m o 1, 按从大到小的次序排列 d d (m)i (m)7 .如果t0.01t ,求 10 000元在第12年年末的积累值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档