二元一次方程组的12种应用题型归纳解析
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。
2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。
题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。
十二类二元一次方程组实际应用汇总

7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?
思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组。
解:设长方形地砖的长xcm,宽ycm,由题意得:
,
答:每块长方形地砖的长为45cm、宽为15cm。
总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解。
类型十:列二元一次方程组解决——浓度问题
9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?
思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;(4)混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比。
思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组。
二元一次方程组应用题题型分析及练习

二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩, 因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离; “同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.《二元一次方程组实际问题》赏析【知识链接】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得解得,⎩⎨⎧==.35,15y x故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x天进行精加工,y天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.二元一次方程组应用题1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2. 某厂买进甲、乙两种材料共56吨,用去9860元。
二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
二元一次方程组解应用题专题分类常见十三类

逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
A车路程+B车路程=相距路程总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?A甲、乙二人相距2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。
根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。
甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
二元一次方程组的应用压轴题十种模型全攻略(解析版) 七年级数学下册

专题06二元一次方程组的应用压轴题十种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二元一次方程组的应用——年龄问题】 (1)【考点二二元一次方程组的应用——分配问题】 (3)【考点三二元一次方程组的应用——古代问题】 (5)【考点四二元一次方程组的应用——行程问题】 (6)【考点五二元一次方程组的应用——工程问题】 (7)【考点六二元一次方程组的应用——和差倍分问题】 (9)【考点七二元一次方程组的应用——方案问题】 (10)【考点八二元一次方程组的应用——销售、利润问题】 (12)【考点九二元一次方程组的应用——数字问题】 (14)【考点十二元一次方程组的应用——几何问题】 (16)【过关检测】 (17)【典型例题】【考点一二元一次方程组的应用——年龄问题】例题:(2023下·江苏宿迁·七年级统考期末)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【答案】C【分析】由题意得:妹妹今年的年龄为8岁,我今年的年龄为14岁,设妈妈今年的年龄为x岁,爸爸今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是101岁,爸爸比妈妈大1岁,列出方程组,解方程组即可.【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,但实际上1016338-=(岁),说明十年前妹妹没出生,则妹妹今年的年龄为1040388()--=(岁),我的年龄为6814+=(岁),设妈妈今年的年龄为x 岁,爸爸今年的年龄为y 岁,由题意得:8141011x y y x +++=⎧⎨=+⎩,解得:3940x y =⎧⎨=⎩,即爸爸今年的年龄为40岁,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式训练】【详解】解:设大头儿子现在的年龄是x 岁,爸爸的年龄是y 岁,由题意得:2352(5)8y x y x =+⎧⎨+=++⎩,解得:1033x y =⎧⎨=⎩,答:大头儿子现在的年龄为10岁.【点睛】本题考查二元一次方程组的实际应用,解题的关键是根据题意列出二元一次方程组.【考点二二元一次方程组的应用——分配问题】例题:(2023上·重庆·八年级重庆八中校考期中)某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知2名熟练工人和3名新工人每天共安装44辆共享单车;4名熟练工人每天安装的共享单车数与5名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车;(2)共享单车安装公司计划抽调出熟练工人若干,并且招聘新工人共同安装共享单车.如果25天后刚好交付运营公司3500辆合格品投入市场,求熟练工人和新工人各多少人.【答案】(1)每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车(2)熟练工人和新工人分别有10人、5人或6人、10人或2人、15人【分析】(1)设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意列方程组即可;(2)设熟练工人和新工人各m ,n 人,根据题意列出等式取值即可.【详解】(1)解:设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意,得:234445x y x y +=⎧⎨=⎩,解得108x y =⎧⎨=⎩,答:每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车.(2)解:设熟练工人和新工人各m ,n 人,由题意得:25102583500m n ⨯+⨯=,整理得:5470m n +=,当2m =时,15n =;当6m =时,10n =;当10m =时,5n =;答:熟练工人和新工人分别有10人、5人或6人、10人或2人、15人;【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.【变式训练】1.(2023下·福建南平·七年级统考期末)“建盏”作为一种茶器,是黑瓷的代表,更是南平的一张名片.“建盏”的焙烧方法目前有两种:“柴烧”和“电烧”,制坯的原料是用当地的红土和白土.已知某种同样规格的建盏,一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.在不考虑破损的情况下,某生产车间在一次生产中恰好用了红土1530克,白土1170克.(1)在这次生产中,“柴烧”和“电烧”建盏各生产多少个?(2)该车间计划购买礼盒,现有两种礼盒可供选择,A 礼盒可装2个建盏,B 礼盒可装6个建盏,若要把本次生产的建盏恰好全部装完,且礼盒装满,有几种购买方案?请说明理由.【答案】(1)“柴烧”建盏生产12个,“电烧”建盏生产6个(2)有四种购买方案,见解析【分析】(1)设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据“一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.”再建立方程组解题即可;(2)设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,再利用方程的正整数解可得答案.【详解】(1)解:设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据题意,得9075153060751170x y x y +=⎧⎨+=⎩解这个方程组得:126x y =⎧⎨=⎩,答:“柴烧”建盏生产12个,“电烧”建盏生产6个.(2)由(1)可知共生产18个建盏,设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,化简得39m n +=,所以93m n =-,因为m ,n 均为非负整数,所以930n -≥,所以3n ≤,且n 为非负整数,所以当30n m ==时,;当23n m ==时,,当16n m ==时,,当09n m ==时,,所以共有四种购买方案.【点睛】本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,理解题意,确定相等关系建立方程或方程组是解本题的关键.【考点三二元一次方程组的应用——古代问题】【变式训练】【考点四二元一次方程组的应用——行程问题】例题:(2023上·陕西咸阳·八年级咸阳市秦都中学校考阶段练习)一艘船从甲码头到乙码头顺流而行,用了2小时,从乙码头到甲码头逆流而行,用了2.5小时,已知轮船在静水中的平均速度为27千米/时,求水流的速度和甲、乙码头间的距离?(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度,用二元一次方程组的知识解答)【答案】水流的速度是3千米/时,甲、乙码头间的距离为60千米【分析】本题考查一元一次方程的应用,设水流的速度为x 千米/时,甲、乙码头间的距离为y 千米,则顺流的速度为()27x +千米/时,逆流的速度为()27x -千米/时,根据顺流、逆流时行驶路程相等列方程组,解方程即可.根据题意正确列出方程是解题的关键.【详解】设水流的速度是x 千米/时,甲、乙码头间的距离为y 千米,根据题意得:()()227,2.527,x y x y ⎧+=⎪⎨-=⎪⎩解得:3,60,x y =⎧⎨=⎩答:水流的速度是3千米/时,甲、乙码头间的距离为60千米.【变式训练】1.(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,【考点五二元一次方程组的应用——工程问题】例题:(2023下·云南昆明·七年级校考阶段练习)巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)求A、B两工程队分别整治河道多少天?(2)若A工程队整改一米的工费为200元,B工程队整改一米的工费为150元,求完成整治河道时,这两工程队的工费共是多少?【答案】(1)A工程队整治河道5天,B工程队整治河道15天(2)60000元【分析】(1)设A工程队整治河道x天,B工程队整治河道y天,根据A工程队每天整治24米,B工程队每天整治16米,共用时20天完成认为列出方程组进行求解即可;(2)分别求出A、B两个工程队的工费,然后求和即可.【详解】(1)解:设A工程队整治河道x天,B工程队整治河道y天,根据题意得:20 2416360 x yx y+=⎧⎨+=⎩,解得:515 xy=⎧⎨=⎩.答:A工程队整治河道5天,B工程队整治河道15天;(2)解:根据题意得:2002451501615⨯⨯+⨯⨯2400036000=+60000(=元).答:完成整治河道时,这两工程队的工费共是60000元.【点睛】本题主要考查了二元一次方程组的实际应用,有理数四则混合计算的实际应用,正确理解题意找到等量关系列出方程组求解是解题的关键.【变式训练】1.(2023下·湖南邵阳·七年级统考期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.(提示:三种施工方式:方式一甲单独完成;方式二乙组单独完成;方式三甲、乙两个装修组同时施工.)【答案】(1)甲单独工作一天应付工资300元,乙单独工作一天应付工资140元(2)由甲、乙两个装修队同时施工有利于商店经营,理由见解析【分析】(1)设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,进行计算即可得;(2)分别算出甲单独完成时需装修的费用和少盈利的钱,乙单独完成时需装修的费用和少盈利的钱,甲乙合作完成时需装修的费用和少盈利的钱,进行比较即可得.【详解】(1)解:设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,解得300140 xy=⎧⎨=⎩,答:设甲单独工作一天应付工资300元,乙单独工作一天应付工资140元.(2)解:甲单独完成:30012200126000⨯+⨯=(元)乙单独完成:14024200248160⨯+⨯=(元)甲、乙两队完成:(300140)820085120+⨯+⨯=(元)512060008160<<,∴由甲、乙两个装修队同时施工有利于商店经营.【点睛】本题考查了二元一次方程组的应用,解题的关键是理解题意,根据等量关系列出方程,正确计算.【考点六二元一次方程组的应用——和差倍分问题】例题:(2023上·江西九江·八年级统考阶段练习)为落实“五育并举”、提高学生的身体素质,某校在课后服务中大力开展球类运动,现需要购买一批足球、篮球.已知购买1个足球和1个篮球共需140元,购买2个足球和3个篮球共需340元,求足球和篮球的单价.【答案】足球的单价为80元,篮球的单价为60元【分析】本题考查了二元一次方程组的应用.设足球的单价为x元,篮球的单价为y元,根据“购买1个足球和1个篮球共需140元;购买2个足球和3个篮球共需340元”,即可得出关于x,y的二元一次方程组,解之即可求解.【详解】解:设足球的单价为x元,篮球的单价为y元,依题意得:140 23340 x yx y+=⎧⎨+=⎩,解得:8060 xy=⎧⎨=⎩.答:足球的单价为80元,篮球的单价为60元.【变式训练】1.(2023下·河南周口·七年级校联考阶段练习)“绿水青山就是金山银山”,保护环境从日常出行做起.我市实行限行政策后,某天小林在某停车场观察到:该停车场停有三轮车和小轿车两种车型共30辆,已知停车场的车轮总数为110个,求三轮车和小轿车各有多少辆?(请用二元一次方程组解答)【答案】停车场有三轮车10辆,小轿车20辆【分析】设停车场有三轮车x 辆,小轿车y 辆,根据停车场停有三轮车和小轿车两种车型共30辆,停车场的车轮总数为110个,列出方程组进行求解.【详解】解:设停车场有三轮车x 辆,小轿车y 辆.由题意得:3034110x y x y +=⎧⎨+=⎩,解得:1020x y =⎧⎨=⎩;答:停车场有三轮车10辆,小轿车20辆.【点睛】本题考查二元一次方程组的应用,解题的关键是找准等量关系,正确的列出方程组.【考点七二元一次方程组的应用——方案问题】例题:(2023上·山东·八年级期末)现欲将一批荔枝运往外地销售,若用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A 型车和1辆B 型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨(2)答案见解析【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,根据用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨列出方程组求解即可;(2)根据题意可得3431a b +=,再根据a 、b 均为非负整数解方程即可得到答案.【详解】(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,【变式训练】1.(2023上·四川达州·八年级校考期末)下列两题任选一道12两班共计有95名学生,他们的体育平均达标率(达到标准的百分率)是60%,如果一班学(1)初二()()生的达标率是40%,二班学生的达标率是78%,那么一、二班人数各是多少人?(2)某单位新盖了一栋楼房,要从相距132米处的自来水主管道处铺设水管,现有8米长的与5米长的两种规格的水管可供选用.①请你设计一种方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?②若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱?【答案】(1)一班人数是45人,二班人数是50人;(2)①共有3种选取方案,方案1:选取4根8米长的水管,20根5米长的水管;方案2:选取9根8米长的水管,12根5米长的水管;方案3:选取14根8米长的水管,4根5米长的水管;②选取14根8米长的水管,4根5米长的水管最省钱.【分析】本题主考查了解二元一次方程组以及二元一次方程组的应用.(1)设一班人数是x人,二班人数是y人,根据“初二(1)(2)两班共计有95名学生,且他们的体育平均达标率(达到标准的百分率)是60%”,可列出关于x,y的二元一次方程组解之即可得出结论;(2)①设选取m根8米长的水管,n根5米长的水管,根据需要水管的总长度为132米,可列出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各选取方案;②利用总价等于单价乘以数量,可求【考点八二元一次方程组的应用——销售、利润问题】【变式训练】【考点九二元一次方程组的应用——数字问题】例题:(2023上·江苏·七年级校考周测)一个两位数,个位上的数字与十位上的数字的和为13,若把个位上的数字与十位上的数字对调,则所得的数比原数的2倍小4,求原来的两位数.【答案】原来的两位数是49.【分析】本题考查了二元一次方程组的应用,读懂题意,找到合适的等量关系,列出方程组,是解答本题的关键.根据题意设个位数字为x,十位数字为y,利用已知条件列出二元一次方程组,由此得到答案.【详解】解:根据题意设:个位数字为x,十位数字为y,∴()()13210104x y y x x y +=⎧⎨+-+=⎩,解得:94x y =⎧⎨=⎩,∴原来的两位数为:410949⨯+=,答:原来的两位数是49.【变式训练】1.(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5.(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.【详解】(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点睛】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【考点十二元一次方程组的应用——几何问题】例题:(2023上·吉林四平·八年级统考期末)如图,在大长方形ABCD 中放入10个相同的小长方形(图中空白部分),若大长方形的周长是104,图中阴影部分的面积是327,设小长方形的长为x ,宽为y ,求一个小长方形的周长和面积分别是多少?【答案】一个小长方形的周长为26,面积为30.【分析】本题考查了二元一次方程组,找到正确的数量关系是解题的关键.由大长方形的周长是104,图中阴影部分的面积是327.列出方程组,可求解.【详解】解:由题意可得:()()()2331043310327x y x y x y x y xy ⎧+++=⎪⎨++-=⎪⎩∴2213109x y x y +=⎧⎨+=⎩()226,30x y xy ∴+==答:一个小长方形的周长为26,面积为30.【变式训练】1.(2023上·甘肃张掖·八年级校考阶段练习)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?【答案】每块小长方形的长为36厘米,宽为12厘米【分析】本题考查了二元一次方程组的应用,观察图形、结合“大长方形宽为48厘米”列出二元一次方程组求解是解题的关键.【详解】解:设小长方形的长为x 厘米,宽为y 厘米,48x y +=⎩解得:3612x y =⎧⎨=⎩,答:每块小长方形的长为36厘米,宽为12厘米.【过关检测】一、单选题1.(2024下·全国·七年级假期作业)甲、乙两人相距42km ,若两人同时相向而行,可在6h 后相遇;若两人同时同向而行,乙可在14h 后追上甲.设甲的速度为km /h x ,乙的速度为km /h y ,列出的二元一次方程组为()A .6642141442x y y x +=⎧⎨=+⎩B .6642141442x y x y +=⎧⎨=+⎩C .66421414x y y x +=⎧⎨=⎩D .6642141442y x x y -=⎧⎨+=⎩【答案】A【解析】略2.(2024上·湖南怀化·九年级校考期末)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是()A . 4.50.51y x y x =+⎧⎨=-⎩,B . 4.521y x y x =+⎧⎨=-⎩,C . 4.50.51y x y x =-⎧⎨=+⎩,D . 4.521y x y x =-⎧⎨=+⎩,【答案】A 【分析】本题主要考查了从实际问题中抽象出二元一次方程组,设木头长为x 尺,绳子长为y 尺,根据用一根绳子去量一根木头的长、绳子还剩余4.5尺,可得 4.5y x =+,根据将绳子对折再量木头,则木头还剩余1尺可得0.51y x =-,据此列出方程组即可.【详解】解:可设木头长为x 尺,绳子长为y 尺,0.51y x =-⎩故选:A .3.(2024上·陕西宝鸡·八年级统考期末)某校课外小组的学生分组做课外活动,若每组7人,则余下3人:若每组8人,则少5人.设课外小组的人数为x ,应分成的组数为y ,可列方程组()A .7385y x y x =+⎧⎨+=⎩B .7385y x y x +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=-⎩D .7385y x y x =+⎧⎨=+⎩【答案】B【分析】本题主要考查了根据实际问题列方程组,审清题意、找准等量关系是解题的关键.设课外小组的人数为x ,应分成的组数为y ,根据等量关系“若每组7人,则余下3人”和“每组8人,则少5人”即可列出方程组.【详解】解:设课外小组的人数为x ,应分成的组数为y ,根据“每组7人,则余下3人;每组8人,则少5人”可得方程组:7385y x y x +=⎧⎨-=⎩.故选B .4.(2023上·山东青岛·八年级校考阶段练习)如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ,则每块墙砖的面积是()2cm .A .425B .525C .600D .800【答案】B 【分析】本题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.设墙砖的长为cm x ,宽为cm y ,根据等量关系“3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ”列出二元一次方程组求出x 、y 的值,然后再求面积即可.【详解】解:设墙砖的长为cm x ,宽为cm y ,根据题意得:3102240y x x y -=⎧⎨-=⎩,解得:3515x y =⎧⎨=⎩,所以墙砖的面积为:23515525cm ⨯=.故选:B .二、填空题【答案】92【分析】本题考查二元一次方程组的应用.根据图中的数据,可以列出相应的二元一次方程组,然后即可求得小长方形的长和宽,然后即可计算出图中阴影部分的面积.【详解】解:设小长方形的长为cmx,宽为由图可得:212418x y yx y+-=⎧⎨+=⎩,10x=⎧三、解答题9.(2023上·山东青岛·八年级校考阶段练习)古代有一个官兵分布的问题:“一千官兵一千布,一官四尺无【答案】90cm【分析】本题考查了二元一次方程组的应用,设1支塑料凳子的高度为加ycm,即可根据题意列出方程组求解.【详解】设1台A 型机器人每小时拣垃圾a 吨,1台B 型机器人每小时拣垃圾b 吨,根据题意,得()23 2.623 3.6a b a b +=⎧⎨+=⎩,解得0.40.6a b =⎧⎨=⎩,故1台A 型机器人每小时拣垃圾0.4吨,1台B 型机器人每小时拣垃圾0.6吨.【点睛】本题考查了方程组的应用,熟练列出方程组是解题的关键.14.(2023下·湖南岳阳·七年级统考阶段练习)小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?【答案】215mm 【分析】设每个小长方形的长是mm x ,宽是mm y ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,1个长加1的和等于两个宽的和,于是得方程组,解出即可.【详解】解:设小长方形的长是mm x ,宽是mm y ,由图(1),得35x y =,由图(2),得12x y +=,所以3512x y x y=⎧⎨+=⎩,解得53x y =⎧⎨=⎩,∴小正方形的长为5mm ,宽为3mm ,∴小长方形的面积为25315mm =⨯=,答:每个小长方形的面积是215mm .【点睛】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.(1)放入1个小球水面升高______cm,放入1个大球水面升高(2)如果使水面上升到50cm,应放入大球、小球各多少个?【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,根据题意列出二元一次方程组求解即可;(2)根据题意得到3431a b +=,然后由a ,b 都是正整数求解即可.【详解】(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,依题意得:210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩.答:1辆A 型车载满萝卜一次可运送3吨,1辆B 型车载满萝卜一次可运送4吨.(2)∵现有萝卜31吨,计划同时租用A 型车a 辆,B 型车b 辆,∴3431a b +=,∵a ,b 都是正整数,∴当9a =时,1b =;当5a =时,4b =;当1a =时,7b =;∴该物流公司共有3种租车方案:方案1:租用9辆A 型车,1辆B 型车方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.。
二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
(完整版)二元一次方程组应用题的常见类型

(二元一次方程组实际应用〔1〕(列方程解应用题的根本关系量(〔1〕行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆(水速度=静水速度—水流速度(2〕工程问题:工作效率×工作时间=工作量(3〕浓度问题:溶液×浓度=溶质(4〕银行利率问题:免税利息=本金×利率×时间(二元一次方程组解决实际问题的根本步骤(1、审题,搞清量和待求量,分析数量关系.〔审题,寻找等量关系〕(2、考虑如何根据等量关系设元,列出方程组.〔设未知数,列方程组〕(3、列出方程组并求解,得到答案.〔解方程组〕(4、检查和反思解题过程,检验答案的正确性以及是否符合题意.〔检验,答〕(列方程组解应用题的常见题型(1〕和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2〕产品配套问题:加工总量成比例(3〕速度问题:速度×时间=路程(4〕航速问题:此类问题分为水中航速和风中航速两类(1.顺流〔风〕:航速=静水〔无风〕中的速度+水〔风〕速(2.逆流〔风〕:航速=静水〔无风〕中的速度--水〔风〕速(5〕工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问(题(6〕增长率问题:原量×〔1+增长率〕=增长后的量,原量×〔1+减少率〕(=减少后的量(7〕浓度问题:溶液×浓度=溶质(8〕银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9〕利润问题:利润=售价—进价,利润率=〔售价—进价〕÷进价×100%(10〕盈亏问题:关键从盈〔过剩〕、亏〔缺乏〕两个角度把握事物的总量(11〕数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12〕几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13〕年龄问题:抓住人与人的岁数是同时增长的【典题精析】例1〔南京市〕某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x辆,小型汽车有y辆.由题意,得x y 50,6x4y230.x15,解得,35.y故中型汽车有15辆,小型汽车有35辆.例2〔四川省眉山市〕某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利〔元〕100250450现在该公司收购了140吨蔬菜,该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨〔两种加工不能同时进行〕.〔1〕如果要求在18天内全部销售完这140吨蔬菜,请完成以下表格:销售方式全部直接全部粗加工尽量精加工,剩余局部销售后销售直接销售获利〔元〕〔2〕如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,那么应如何分配加工时间?解:〔1〕全部直接销售获利为:100×140=14000〔元〕;全部粗加工后销售获利为:250×140=35000〔元〕;尽量精加工,剩余局部直接销售获利为:450×〔6×18〕+100×〔140-6×18〕=51800〔元〕.〔2〕设应安排x天进行精加工,y天进行粗加工.由题意,得x y15,6x16y140.x10,解得,y 5.故应安排10天进行精加工,5天进行粗加工.1、小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的3、〔分配问题〕某幼儿园分萍果,假设每人3个,那么剩2个,假设每人4个,邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票那么有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,题中的两个相等关系:萍果有y个=总枚数1、10分邮票的枚数可列方程为:+20分邮票的枚数题中的两个相等关系:1、萍果总数可列方程为:2、萍果总数=每人分=3个+2、10分邮票的总价+=全可列方程为:部邮票的总价可列方程为:10X+=4、〔金融分配问题〕需要用多少每千克售元的糖果才能与每千克售元的糖果混合成每千克售糖果为x千克,每千克售元的杂拌糖200千克?解:设每千克售元的糖果为y千克元的2、小兰在玩具工厂劳动,做题中的两个相等关系:4个小狗、7个小汽车用去3小时42分,做5个元的糖果销售总价+=1、每千克售小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时可列方程为:间?2、每千克售元的糖果重量+=题中的两个相等关系:可列方程为:1、做4个小狗的时间+=3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:二元一次方程组实际应用〔1〕〔李老师〕姓名:一、和差倍分例1、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,那么乙盒球就是甲盒球数的6倍,假设从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?例2、我区某学校原方案向内蒙察右旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原方案的120%,高中学生捐赠了原方案的115%,问初中学生和高中学生各比原方案多捐赠了图书多少册?例3、(2021年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表〞生活用水阶梯式计费价格表的一局部信息:小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元,求a,b的值自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a超过17吨不超过30吨的局部b超过30吨的局部例4、为满足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元.方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积.1〕求:原方案拆、建面积各是多少平方米?2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?同步练习:1、班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为2、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为3、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为4、学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是5、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为6、〔2021广东肇庆〕顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,那么到两地旅游的人数各分别为7、〔2021湖北咸宁〕某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,那么入住单人间和双人间各5个共需元.8、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,那么这个队胜了场,平了场,负了场。
二元一次方程组应用题经典题解析版----例题

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的根本思想列方程组解应用题是把"未知〞转化为"〞的重要方法,它的关键是把量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的根本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比拟直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开场时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比拟直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-本钱(进价);(2);(3)利润=本钱〔进价〕×利润率;(4)标价=本钱(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:"商品利润=售价-本钱〞中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.〔例如八折就是按标价的十分之八即五分之四或者百分之八十〕4.储蓄问题:(1)根本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)根本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥月利率=年利率1 12 .注意:免税利息=利息5.配套问题:解这类问题的根本等量关系是:总量各局部之间的比例=每一套各局部之间的比例.6.增长率问题:解这类问题的根本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的根本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的根本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的根本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最正确方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最正确方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比拟几种方案得出最正确方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写"答〞,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)"设〞、"答〞两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中根本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④正确书写速度单位,防止与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验.类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系: ①相向而行:汽车行驶113小时的路程+拖拉机行驶113小时的路程=160千米; ②同向而行:汽车行驶12小时的路程=拖拉机行驶112⎛⎫+ ⎪⎝⎭小时的路程. 解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组()4160,311122x y x y ⎧+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 解这个方程组,得: 90,30x y =⎧⎨=⎩ 1111901165,3011853232⎛⎫⎛⎫⨯+=⨯+= ⎪ ⎪⎝⎭⎝⎭.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.类型二:列二元一次方程组解决——工程问题2.一家商店要进展装修,假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:此题有两层含义,各自隐含两个等式,第一层含义:假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,由第一层含义可得方程8〔*+y〕=3520,由第二层含义可得方程6*+12y=3480.解:(1)设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进展分析.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价风格整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为*元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?〔利息所得税=利息金额×20%,教育储蓄没有利息所得税〕思路点拨:设教育储蓄存了*元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后 2.25%+⨯ 2.25%80%x x+⨯⨯2042.75y y解:设存一年教育储蓄的钱为*元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.类型五:列二元一次方程组解决——生产中的配套问题5.*服装厂生产一批*种款式的秋装,每2米的*种布料可做上衣的衣身3个或衣袖5只. 现方案用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:此题的第一个相等关系比拟容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.类型六:列二元一次方程组解决——增长率问题 6. *工厂去年的利润〔总产值—总支出〕为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为*万元,总支出为y 万元,则有总产值〔万元〕 总支出〔万元〕 利润〔万元〕 去年* y 200 今年 120%* 90%y 780 根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的量和未知量,可以列出两个等式.解:设去年的总产值为*万元,总支出为y 万元,根据题意得: ,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进展分析.类型七:列二元一次方程组解决——和差倍分问题7.〔2011年丰台区中考一摸试题〕"爱心〞帐篷厂和"温暖〞帐篷厂原方案每周生产帐篷共9千顶,现*地震灾区急需帐篷14千顶,两厂决定在一周赶制出这批帐篷.为此,全体职工加班加点,"爱心〞帐篷厂和"温暖〞帐篷厂一周制作的帐篷数分别到达了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周,"爱心〞帐篷厂和"温暖〞帐篷厂各生产帐篷多少千顶?思路点拨:找出量和未知量,根据题意知未知量有两个,所以列两个方程,根据方案前后,倍数关系由量和未知量列出两个等式,即是两个方程组成的方程组.解:设原方案"爱心〞帐篷厂生产帐篷*千顶,"温暖〞帐篷厂生产帐篷y 千顶,由题意得:9,1.6 1.514x y x y +=⎧⎨+=⎩, 解得:5,4x y =⎧⎨=⎩所以:1.6*=1.65=8, 1.5y =1.54=6答:"爱心〞帐篷厂生产帐篷8千顶,"温暖〞帐篷厂生产帐篷6千顶.类型八:列二元一次方程组解决——数字问题8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为*,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100*+y 问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y +*解:设较大的两位数为*,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.类型九:列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?思路点拨:此题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:〔1〕甲种酒精溶液与乙种酒精溶液的质量之和=50;〔2〕混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;〔3〕混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;〔4〕混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比.解:法一:设甲、乙两种酒精溶液分别取*kg , ykg.依题意得:,答:甲取20kg,乙取30kg法二:设甲、乙两种酒精溶液分别取10*kg和5ykg,则甲种酒精溶液含水7*kg,乙种酒精溶液含水ykg,根据题意得:,所以 10*=20,5y=30.答:甲取20kg,乙取30kg总结升华:此题的第〔1〕个相等关系比拟明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了.列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么.有时候需要设间接未知数,有时候需要设辅助未知数.类型十:列二元一次方程组解决——几何问题10.如图,用8块一样的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为*,宽为y,就可以列出关于*、y的二元一次方程组.解:设长方形地砖的长*cm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在*些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解此题的关键是理解"6年后〞这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲*岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化〔增大、减小〕了,其他人也一样增大或减小,并且增大〔或减小〕的岁数是一样的〔一样的时间〕.类型十二:列二元一次方程组解决——优化方案问题:12.*地生产一种绿色蔬菜,假设在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进展粗加工,每天可以加工16吨;如果进展细加工,每天可加工6吨. 但两种加工方式不能同时进展. 受季节条件的限制,公司必须在15天之将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进展粗加工;方案二:尽可能多的对蔬菜进展精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进展加工,获利最大,是生产经营者一直思考的问题. 此题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进展精加工,吨蔬菜进展粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进展比拟从中选择最优方案.。
二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。
为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。
类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。
类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。
完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)二元一次方程组常见题型二元一次方程组是初中数学中的重要内容,常见的题型包括分配调运问题、行程问题、百分数问题、分配问题、浓度分配问题和金融分配问题等。
其中,分配调运问题是指在不同的地方分配人员或物品,需要根据条件求出各个地方的人数或物品数量。
例如,某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,需要求出到两个工厂的人数各是多少。
行程问题是指两个人或物体在不同的路程上移动,需要根据条件求出它们的速度或路程。
例如,甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
需要求出甲、乙的平均速度各是多少。
百分数问题是指在数量变化中涉及到百分数的计算,需要根据条件求出各个数量的值。
例如,某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,需要求出这个市现在的城镇人口与农村人口。
分配问题是指在已知总量和每份数量的情况下,需要求出总量或份数。
例如,某幼儿园分萍果,若每人3个,则剩2个;若每人4个,则有一个少1个,需要求出幼儿园有几个小朋友。
浓度分配问题是指在不同浓度的物质中混合,需要根据条件求出各个物质的数量或浓度。
例如,要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少。
金融分配问题是指在不同价格的商品中混合,需要根据条件求出各个商品的数量或价格。
例如,需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克。
几何分配问题)用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米。
可以列出以下两个方程:1、8x = 482、4y = 48解方程得到x = 6,y = 12,因此每块小长方形的长是6厘米,宽是12厘米。
二元一次方程组应用题类型大全

根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成
二元一次方程组应用题经典题(解析版)

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比较直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2) ;(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售(.例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥月利率=年利率1.12注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:n 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆; 关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验.方程组⑤在寻找等量类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程. (2)有两个等量关系:①相向而行:汽车行驶 11小时的路程+拖拉机行驶11小时的路程=160千米;33②同向而行:汽车行驶 1小时的路程=拖拉机行驶1 1 小时的路程.22解:设汽车的速度为每小时行 千米,拖拉机的速度为每小时千米.4 x y 160,3x 90,根据题意,列方程组11 解这个方程组,得: 30x 1y 2y2901 1 165,30 1 1 185.1 21 233答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度.类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360 元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析.【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱 5.2 万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B(注:获利进价(元/件)1200售价(元/件)1380=售价—进价)求该商场购进A、B10001200两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为 2.25%的教育储蓄,另一种是年利率为 2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后xx2.25%yy2.25%80%2042.75 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华:我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为 3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000 元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等.各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套.【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条.现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题6.某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为x万元,总支出为y万元,则有总产值(万元)总支出(万元)利润(万元)去年x y200今年120%x90%y780根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的已知量和未知量,可以列出两个等式.解:设去年的总产值为x万元,总支出为y万元,根据题意得:,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进行分析.【变式1】若条件不变,求今年的总产值、总支出各是多少万元?【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口.类型七:列二元一次方程组解决——和差倍分问题7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组.解:设原计划“爱心”帐篷厂生产帐篷x千顶,“温暖”帐篷厂生产帐篷y千顶,由题意得:xy9,x5,1.6x1.5y14,解得:4y所以:1.6x=1.6 5=8,1.5y=1.5 4=6答:“爱心”帐篷厂生产帐篷8千顶,“温暖”帐篷厂生产帐篷6千顶.【变式1】(2011年北京门头沟区中考一模试题)“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多男孩与女孩各有多少人吗?.如果每位男1倍,你知道类型八:列二元一次方程组解决——数字问题8.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为x,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y问题2:在较大数的左边写上较小的数,所写的数可表示为:100y+x解:设较大的两位数为x,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数.类型九:列二元一次方程组解决 ——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是 3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和= 50;(2) 混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种 溶液所含水的质量之和=混合后溶液所含水的质量;( 4)混合前两种溶液所含纯酒精之和 与水之和的比=混合后溶液所含纯酒精与水的比 解:法一:设甲、乙两种酒精溶液分别取 . xkg,ykg.依题意得:,答:甲取20kg ,乙取30kg法二:设甲、乙两种酒精溶液分别取 10xkg 和5ykg ,则甲种酒精溶液含水 7xkg ,乙种酒精溶液含水 ykg ,根据题意得:,所以10x=20,5y=30.答:甲取20kg ,乙取30kg总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了 题目可以直接设未知数,但并不是千篇一律的,问什么就设什么有时候需要设辅助未知数.举一反三:【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效.用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?.有时候需要设间接未知数, .列方程组解应用题,首先要设未知数,多数类型十:列二元一次方程组解决——几何问题10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组.解:设长方形地砖的长xcm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.举一反三:3厘米,补到较短【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲x岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内).【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.类型十二:列二元一次方程组解决——优化方案问题:12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨.但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题.本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.举一反三:【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?。
完整版)二元一次方程组题型总结

完整版)二元一次方程组题型总结二元一次方程组题型总结类型一:二元一次方程的概念及求解例(1)已知(a-2)x-by=5是关于x、y的二元一次方程,则a=2,b=-1.2)二元一次方程3x+2y=15的正整数解为(3,3)。
类型二:二元一次方程组的求解例(3)若|2a+3b-7|与(2a+5b-1)互为相反数,则a=1,b=2.4)2x-3y=4,x-y=5的解为(-1,-6)。
类型三:已知方程组的解,而求待定系数。
例(5)已知3mx-2y=1,4x+ny+7=2,x=-2,y=1是方程组的解,则m-n的值为-1.6)若满足方程组kx+(2k-1)y=6的x、y的值相等,则k=2.练:若方程组2x-y=3,2kx+(k+1)y=10的解互为相反数,则k的值为-3/2.类型四:涉及三个未知数的方程,求出相关量。
例(7)已知abc/123=4/12,且a+b-c=1,则a=4,b=8,c=1.8)解方程组x+3y=2,3y+z=4,z+3x=6,得x=2,y=0,z=-2.练:若2a+5b+4c=10,3a+b-7c=-2,则a+b-c=0.由方程组x-2y+3z=2,2x-3y+4z=3可得,x∶y∶z是1∶2∶1.类型五:列方程组求待定字母系数是常用的解题方法。
例(9)若x=1,y=-2,y=-3都是关于x、y的方程|a|x+by=6的解,则a+b的值为-2.10)关于x,y的二元一次方程ax+b=y的两个解是(2,-1)和(1,1),则这个二元一次方程是y=-x+3.练:如果方程组x=-1y=2ax+by=zbx-cy=1中的{x,y}是解,下列哪个式子成立?A。
a+4c=2B。
4a+c=2C。
a+4c+2=0D。
4a+c+2=0解析:由{x=-1,y=2}可知,代入方程组中得a+2b=zb-2c=1又因为{x,y}是解,所以代入方程组中得a+2b=0b-2c=0解得a=4c,代入选项可知只有选项C成立。
二元一次方程(组)应用题专题讲解及练习(附答案)

实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。
加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2∴x=7 y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
二元一次方程组应用题题及答案

二元一次方程组应用题题及答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得: x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息元.已知两种储蓄年利率的和为%,问这两种储蓄的年利率各是百分之几(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是%-X,则有:2000*X*(1-20%)+1000*%-X)*(1-20%)=即:1600X+=800X=18X=%%%=%所以,2000的存款利率是%,1000的存款的利息率是%.法二:也可用二元一次方程组解。
实际问题与二元一次方程组题型归纳

实际问题与二元一次方程组题型一:方案问题
题型二:行程问题
题型三:工程问题
题型四:数字问题
题型五:年龄问题
题型六:分配问题
题型七:销售利润问题
题型八:和差倍分问题
“和差倍分”是用来描述一类数学问题的计算的,通常有以下两种公式表示。
和倍问题:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题。
差倍问题:差倍问题即已知两数之差和两数之间的倍数关系,求出两数。
题型九:几何问题
题型十:古代问题
题型十一:表格或图示信息题
题型十二:开放型问题
题型十三:其他问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的12种应用题型归纳类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为x 千米/时,乙的速度为y 千米/时。
{(2.5+2)x +2.5y =363x +(3+2)y =36解得{x =6y =3.6 答:甲的速度为6千米/时,乙的速度为3.6千米/时。
【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为x 千米/时,水流速度为y 千米/时。
{14(x +y)=28020(x −y)=280解得{x =17y =3 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲公司每周的工作效率为x ,乙公司每周的工作效率为y 。
{6x +6y =14x +9y =1 解得{x =110y =115 ∴1÷110=10(周) 1÷115=15(周)∴甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。
设甲公司每周的工钱为a 万元,乙公司每周的工钱为b 万元。
{6a +6b =5.24a +9b =4.8 解得{a =35b =415此时10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
类型三:商品销售利润问题【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?解:设李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
{x +y =102000x +1500y =18000解得{x =6y =4 答:李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
【例2】某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表,求该商场购进A 、B 两种商品各多少件。
注:获利 = 售价 - 进价解:设该商场购进A商品x件,B商品y件。
{1200x+1000y=360000 (1380−1200)x+(1200−1000)y=60000解得{x=200y=120答:该商场购进A商品200件,B商品120件。
类型四:银行储蓄问题【例】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱。
第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%。
三年后同时取出共得利息303.75元(不计利息税),求小敏的爸爸两种存款方式各存入了多少元。
解:设第一种方式存款x元,第二种方式存款y元。
{x+y=4000x·2.25%·3 + y·2.7%·3 =303.75解得{x=1500y=2500答:第一种方式存款1500元,第二种方式存款2500元。
类型五:生产中的配套问题【例1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮做盒身,y张铁皮做盒底,则有盒身8x个,盒底22y个。
{x+y=190 2·8x=22y 解得{x=110y=80答:用100张铁皮制盒身,80张铁皮制盒底,可以正好制成一批完整的盒子。
【例2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?解:设分配x人生产螺栓,y人生产螺母。
{x+y=60 2·14x=20y 解得{x=25y=35答:应分配25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套。
【例3】一张方桌由1个桌面、4条桌腿组成,1立方米木料可以做50个桌面或300条桌腿。
现有5立方米的木料,那么用多少立方米木料做桌面,多少立方米木料做桌腿,做出的桌面和桌腿恰好配成方桌?能配多少张方桌?解:设用x立方米木料做桌面,y立方米木料做桌腿。
{x+y=550x:300y=1:4解得{x=3y=23×50=150(张)答:用3立方米木料做桌面,2立方米木料做桌腿,做出的桌面和桌腿恰好配成方桌,能配150张方桌。
类型六:增长率问题【例】某市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求该市现在的城镇人口数与农村人口数。
解:设该城市现在的城镇人口数是x万人,农村人口数是y万人。
{x+y=420.8%x+1.1%y= 42×1%解得{x=14y=28答:该市现在的城镇人口数是14万人,农村人口数是28万人。
类型七:和差倍分问题【例】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
如果每个男孩看到蓝色与红色的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?解:设男孩有x人,女孩有y人。
{x−1=y2(y−1)=x解得{x=4y=3答:男孩有4人,女孩有3人。
类型八:数字问题【例1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?解:设这个两位数的十位数是x,个位数是y,则这个数是(10x+y)。
{10x+y−3(x+y)=23 10x+y=5(x+y)+1解得{x=5y=6答:这个两位数是56。
【例2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,这个两位数是多少?解:设这个两位数的十位数是x,个位数是y,则这个数是(10x+y)。
{x−y=512(10x+y)−(x+10y)=9解得{x=7y=2答:这个两位数是72。
【例3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。
解:设原三位数的百位数是x,个位数是y。
{x+y=9 x−y=1解得{x=5y=4答:原三位数是504。
类型九:浓度问题【例】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少千克?解:设10%的盐水需x千克,85%的盐水需y千克。
{x+y=1210%x+85%y=12×45%解得{x=6.4y=5.6答:10%的盐水需6.4千克,85%的盐水需5.6千克。
类型十:几何问题【例1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形的面积大多少?解:设长方形的长为x厘米,宽为y 厘米。
{2(x+y)= 48 x−3=y+3解得{x=15y=9(15-3)×(9+3)-15×9=9(平方厘米)答:正方形的面积比矩形的面积大9平方厘米。
【例2】一块矩形草坪的长比宽的2倍多10 m,它的周长是132m,则长和宽分别为多少?解:设它的长为x m,宽为y m。
{2(x+y)=132 x−2y=10解得{x=1423y=563答:它的长为1423m,宽为563m。
类型十一:年龄问题【例】今年,小明的年龄是他爷爷的五分之一。
小明发现,12年之后,他的年龄变成爷爷的三分之一。
小明今年多少岁?爷爷今年多少岁?解:设小明今年x岁,爷爷今年y岁。
{5x=y3(x+12)= y+12解得{x=12y=60答:小明今年12岁,爷爷今年60岁。
类型十二:优化方案问题【例】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?解:(1)设购进x台甲种电视机,y台乙种电视机,z台丙种电视机。
分情况:(Ⅰ)购进甲、乙两种电视机{x+y =501500x+2100y=90000解得{x=25y=25(Ⅱ)购进甲、丙两种电视机{x+z = 501500x+2500z=90000解得{x=35y=15(Ⅲ)购进乙、丙两种电视机{y+z= 502100x+2500z=90000解得{x=87.5y=−37.5(舍去)答:商场的进货方案为购进25台甲种电视机和25台乙种电视机,或购进35台甲种电视机和15台丙种电视机。
(2) 按方案(Ⅰ),获利150×25+200×25=8750(元)按方案(Ⅱ),获利150×35+250×15=9000(元)∵8750<9000,∴选择方案(Ⅱ)。
答:选择购进35台甲种电视机和15台丙种电视机。