5.3 定积分的换元法和分部积分法-习题
【2019年整理】定积分的换元法与分部积分法99169
四、设 f ( x)在 a , b 上连续,
证明
b
f ( x)dx
b f (a b x)dx.
a
a
五、证明:
1 x m (1 x)n dx 1 x n (1 x)m dx .
0
0`
上页 下页 返回
六、证明:
a f ( x)dx
a
[ f (x)
f ( x)]dx,
a
0
并求
0
0
(2)设 x t dx dt,
x 0 t ,
x t 0,
0
0 xf (sin x)dx ( t) f [sin( t)]dt
0 ( t) f (sin t)dt,
上页 下页 返回
0 xf (sin x)dx 0 f (sin t)dt 0 tf (sin t)dt
解 令 u arcsin x, dv dx,
则 du dx , v x, 1 x2
1
2 arcsin xdx
0
x
arcsin
1
x2 0
1 2
0
1
1
1 2
2 6 20
1 d(1 x2 ) 1 x2
xdx 1 x2
12
1
1 x2
2
0
3 1.
12 2
上页 下页 返回
3
x
3
)dx
___________________;
2、 (1 sin3 )d ________________; 0
3、 2 2 x 2 dx _____________; 0
4、
1 (arcsin x)2
2
1
2
1 x2
定积分的换元法和分部积分法
10
1 1 ( x)2
d( x) 2
arcsin
x 2
1 0
π 2
2
例3
计算
02
sin6xcosxdx
解
02
sin6xcosxdx02
sin6xd(sinx)
π
sin
7x
2
7 0
1 7
例4
计算
1e
1 lnx x
dx
解
e 1
1 lnx dx x
e1(1lnx)d(1lnx)
(1
ln
1
1
解法1
2 0
arcsinxdx
02arcsixnd(x)
1 1 xdx
xarcsixn02
2 0
1 x2
1 26
1
1 2
20
1 d(1x2) 1x2
12
1
1x2
2
0
31.
12 2
解法2
1
02arcsixndx
换 元t: arcsxin
6td(sitn)
则xsin t 0
分 部 积 分
2. 第二类换元积分法
设函数 f ( x) 在区间 [a, b] 上连续 ,函数 xφ(t)
满足 (1) φ(α)a, φ(β)b
(2) φ(t)在 [α, β](或 [β, α])上具有连续
导数,且 φ(t)[a, b] ,于是
a bf(x)dx βf[φ(t)φ ](t)dt
注意: (1)换元前后,上限对上限、下限对下限;
2
t
3
2 t
3 1
8 3
例7
计算
04
5.3 定积分的换元法和分部积分法
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0
+ න () d
0
= න [(−) + ()] d
0
2 න () d , (−) = (),
=
0
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0
解
1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1
อ
第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .
5.3 凑微分法和分部积分法
例7. 求
解: 令 u a x b , 则 d u ad x , 故
m 1 d u 1 1 u m 1 C 原式 = u
a a m 1
注: 当
时
例8. 求
想到公式
1 a
解:
2
dx 1 ( x )2
du 1 u2
x 1 令 u , 则 du d x a a 1 1 du arctan u C a a 1 u2
小练习: 求下列不定积分
dx (1) ; 2 1 25 x
(2) e x sin( e x )dx;
1 ln x (4) dx. x
(3) x
23
1 x dx;
3
1 Key : arcsin 5 x C ; cos e x C ; 5 4 3 1 2 3 3 (1 x ) C ; (1 ln x ) 2 C . 4 3
2. (3) 3. (1)(9) 4. (2)
P136. 5. (1) (4) (6) (9)
( x 2) 3 C 3 ln x 2 ln x 1 C ln x 1
例18 dx d ( x 1) arctan( x 1) C x2 2x 2 1 ( x 1) 2 1
2x 1
1
1 ( 2 x 2) 4 dx 例19 2 dx 2 2 x 2x 2 x 2x 2
u
指: 指数函数 三: 三角函数
1 1 x
2
, vx
x 1 x
2
原式 = xarccos x
dx
2
1 2
xarccos x
定积分换元法
∫a
a +T
f ( x )dx = ∫ f ( x )dx
0
T
a为任何常数 .
周期函数在任何长为一周期的 这个公式就是说: 这个公式就是说: 区间上的定积分都相等. 区间上的定积分都相等 (留给同学证 留给同学证) 留给同学证
二、小结
定积分的换元法
∫a f ( x )dx = ∫α
b
β
f [ϕ ( t )]ϕ ′( t )dt
a
∫
定积分的换元法和分部积分法
换元积分 还可以证明一些定积分等式 通常 还可以证明一些定积分等式, 被积函数的变化和积分区间变化来确定变换 来确定变换. 由被积函数的变化和积分区间变化来确定变换 几个关于奇、 几个关于奇、偶函数及周期函数的定积分 的例子. 的例子 例 设f ( x )在区间[ − a , a ]上可积 , 则
π
π
0
= ∫ (π − t ) f (sin t )dt
0
π
t t t = ∫ π f (sin t )dt − ∫ x f (sinx)dx 0 0 π π π ∴ ∫ xf (sin x )dx = ∫ f (sin x )dx . 0 2 0
π
定积分的换元法和分部积分法
∫0 xf (sin x )dx = 2 ∫
π
π2
x sin x 说明:尽管 说明 尽管 ∈ C [0, π ], 但由于它没有 2 1 + cos x 公式求得. 公式求得 初等原函数, 故此积分无法直接用N--L公式求得 初等原函数 故此积分无法直接用
定积分的换元法和分部积分法
周期函数的定积分公式
如果 T是连续函数 f ( x )的周期, 则
定积分第三节定积分的换元法和分部积分法
2
解
4
0
sin
xdx
x0 t,tx0,;dxx22t,d tt202tsitndt
42
202tdcots
2tcot0 2s202cotdst
2sint02 2
例4 计算
1 0
l(n2(1x)x2)dx.
解
1
0
l(n2(1x)x2)dx
01ln1 ( x)d2 1x
ln2(1xx)10012 1xdln1(x)
f[ ( t ) ] ( t ) dt
说明:
b
af(x)d x f[ ( t ) ] ( t ) dt
1) 当 < , 即区间换为[,]时,定理 1 仍成立 .
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
f[
( t ) ]
( t ) dt
b
f (x)dx
0 2 fx 1 d 0 1 x fx 1 d 1 2 x fx 1 dx
1ex1dx 21dx
0
1x
01ex1dx1121 xdx
ex 11 0ln x1 211 eln 2
二、分部积分公式
设函数u( x)、v( x)在区间a, b上具有连续
导数,则有
b
a udv
例9 计算 01xscionsx2 xdx .
解 积分区间为 0,,被积函数为 xfsixn
型,利用定积分公式⑥得
0 1 xs cix o 2x n ds x 20 1 scix o 2n xdsx
20 1c1o 2xd scoxs 2arccta oxn s 042
例11
设f
定积分习题课
公式
f (u)du u (x)
即 f [(x)](x)dx f ((x))d(x)
(也称配元法 , 凑微分法)
例1. 求
解: 令 u ax b ,则 d u adx , 故
原式 = um 1 d u 1 1 um1 C a a m1
4x)
dx
3 2
dx
cos 2x d(2x)
1 8
cos
4
x
d(4x)
例 9 cos x cos 2xdx
原式=
1 2
(cos
x
cos
3x)dx
1 sin x 1 sin 3x C
2
6
例10 tan3 x sec2 xdx
原式= tan2 xsec x(tan xsec x)dx (sec2 x 1)sec xd(sec x)
例8. 求
含sin 2k xcos2l x 二倍角公式
解: cos4 x (cos2 x)2 (1 cos 2x)2
2
1 4
(1
2
cos
2
x
cos
2
2
x)
1 4
(1
2
cos
2x
1cos 2
4x
)
1 4
(23
2
cos
2x
1 2
cos
4x)
cos4 x dx
1 4
(
3 2
2
cos
2
x
1 2
cos
F(b) F(a),
说明:
1) 当 < , 即区间换为[ , ] 时, 定理 1 仍成立 .
5.3凑微分法和分部积分法
x 1 1 1 2 2 2 x x 1 ( x 1) x( x 1)
dx dx dx 原式 2 x x 1 ( x 1)2 d( x 1) d( x 1) ln x 2 x 1 ( x 1)2
1 d( x 2 1) ln x arctan x 2 2 x 1
1 ln x ln( x 2 1) arctan x C . 2
2. 当真分式分母中含有因子( x a) 时,则分解后
k
有下列k 个部分分式之和:
A1 A2 2 x a ( x a) Ak . k ( x a)
解 (1) (sin x) cos xdx (sin x) d sin x
t dt ( 令 t sin x )
ln sin x C , 1 ln t C , 1 1 1 (sin x ) t C , 1 . C , 1 1 1
1 1 1 d(a x) d (a x) 2a a x ax
1 ax 1 ln C ln a x ln a x C 2a a x 2a
1. 当真分式分母中含有因子( x 2 px q)k , p 2 4q 0 时,则分解后有下列k 个部分分式之和:
f [ ( x )] ( x )dx F [ ( x )] C [ f ( u)du]u ( x ) .
使用此公式的关键在于
(5 1)
第一换元积分公式(凑微分法)
说明
将
f ( x)dx 凑成 F '[ ( x)] '( x)dx.
第三节定积分的换元法和分部积分法(1)98796
一、换元公式 二、分部积分公式 三、小结 思考题
11
机动 目录 上页 下页 返回 结束
一、换元公式
【定理】 假设
(1) f ( x)在[a,b]上连续;
(2)函数 x (t)在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时,x (t) 的值在 [a,b]上变化,且 ( ) a 、 ( ) b,
4
2
于是 f ( x 2)dx f (t)dt
1
1
0
dt
2 tet2dt
11 cos t 0
或先求f(x-2)再求原积分
4
f ( x 2)dx
较麻烦
1
1166
机动 目录 上页 下页 返回 结束
【总结】 定积分的证明题——一般用到积分区间的分割性
1 2
x
2
f
(
x)
1 0
1 2
1
0
x
2df
(
x
)
1 2
f
(1)
11
2 0
x2
f
( x)dx
2233
机动 目录 上页 下页 返回 结束
f ( x)
x2 sin t dt,
定积分的分部积分公式
【推导】 uv uv uv,
b
a (uv
)dx
uv
b
a
,
uv
b a
b
a
uvdx
b
a
uvdx
,
定积分的换元法与分部积分法
1 2
2 dt
0
2 0
d
sin t cost
sin t cost
1 2
2
1 ln
2
sin
t
cos
t
2 0
.
4
例 4 当 f ( x)在[a, a]上连续,且有
① f ( x)为偶函数,则
a
a
f
( x)dx
a
20
f
(
x)
d dx
x
a
f (t )dt
f (x)
即Φ(x)是f(x)在[a,b]上的一个原函数。
证
xx
( x x) a f (t)dt
x x
x
( x x) ( x) f (t)dt f (t)dt
a
a
x
x x
x
x x
a f (t)dt x f (t)dt a f (t)dt x f (t)dt,
而 st vt
连续函数 f x 在区间 a, b 上的定积分等于它的一个
原函数 F x 在积分区间上的增量 F b F a ?
◆微积分基本公式——牛顿—莱布尼兹公式
设 f x 在区间 a, b上连续,F x 是它的任意一个原函数,
则有
b f x dx F b F a
a
0
a
f (x)dx f (x)dx f (x)dx
a
a
0
a
a
a
a
0 f ( x)dx 0 f (x)dx, 0 f ( x)dx 0 f (x)dx,
§5.3_定积分的换元法与分部法
2
20
定积分的换元法和分部积分法
3
例
e4
dx
e x ln x(1 ln x)
d( ln x) 1 1 d ln x 2 ln x
3
e4
解 原式
d(ln x)
e ln x(1 ln x)
3
3
e4
d(ln x)
e4 d ln x
2
e ln x (1 ln x)
e 1 ( ln x)2
2 arcsin(
ln x )
3
e4 e
.
6
21
定积分的换元法和分部积分法
a
1
dx (a 0)
0 x a2 x2
解 令 x a sint, dx a cos tdt
x0t0
x a t
2
原式
2
0
a
sin
t
a cost a 2 (1
则
b
a f ( x)dx F(b) F(a)
N--L公式
由于 d dt
F (t) F(t)(t)t) (t)的原函数, N--L公式
则
f [ (t)](t)dt
F ( )
b
a
所以 f (a b x)dx f (t)(dt)
a
b
b
b
a f (t)dt a f (x)dx
所以,原命题成立。
10
例
计算
4 dx .
0 1 x
解 用定积分换元法.
令
x
t, 则
5.3 定积分的换元法和分部积分法
例12 解
求
2
0
e cos xdx.
2
2x
[e sin x ] 0 sinxde
2x
2
2
2
0
e cos xdx e d sinx
2x 2x
0
2x
2
e 2 e sinxdx e 2 e 2 x d cos x
2
0
2x
0
e 2 4 e cos xdx 0 1 2 2x e cos xdx (e 2). 0 5
例5 解
计算
0
2
cos x sin xdx.
5
令 t cos x ,
x t 0, 2
dt sin xdx ,
x 0 t 1,
0
2
cos 5 x sin xdx
0 5
6 1
t 1 1 t dt . 60 6
5.3定积分换元法和分部积分法
5.3定积分换元法和分部积分法
I n sin n1 x cos x 0 ( n 1)0 sin n 2 x cos 2 xdx
2 2
0
I n ( n 1)0 sin
2
1 sin 2 x
n 2
xdx ( n 1)0 sinn xdx
2
(n 1) I n2 (n 1) I n
例2
计算
解 令 x a sin t , 则 dx a cos t d t , 且
. 当 x 0 时, t 0 ; x a 时, t 2
§5-3定积分的换元积分法和分部积分法
把新变量的上、下限代入 F[(t)] 进行运算即可.
例 4 计算下列定积分
ln 2
(1)
e x 1dx ;
0
(2)
a 0
a 2 x 2 dx
解
(1)令
ex
1
t
,
x
ln(t 2
1)
, dx
t
2t 2
1
dt
当 x=0 时,t=0;当 x=ln2 时,t=1.故
0
0
0
0
=(e 2-1)+ 2 sin xd (e x ) =(e 2-1)+ e x sin x 2 2 e xd (sin x)
0
0
0
=(e
2-1)-
2 0
ex
cos
xdx
移项得
2 2 e x 0
cos xdx
= e 2-1,
所以
2 e x 0
cos xdx
= 1 (e 2-1). 2
例 9
x
2
3
x
dx
=
4
4
1 cos 2
dx x
+
4
4
x3 cos 2
dx x
=2
4
0
1 cos 2
dx x
+0=2 tan x
4
0
=2.
二、 定积分的分部积分法
定理 2(定积分的分部积分公式) 设 u(x),v(x)在区间[a,b]上连续,则
或简写为
b a
u
(
x
)v
(x
5.3 定积分的换元法和分部积分法
−a
0
0
a
= ∫ 0 [ f (x ) + f (− x) ]d x
a
a
即
∫ ∫ f ( x)d x = [ f ( x) + f (− x) ] d x
−a
0
a
a
∫ ∫ 即
f (x)d x = [ f (x) + f (−x) ] d x
−a
0
(1)若 f (x) 为偶函数,即 f ( x ) = f (− x )
π
原式 =
t 2
+
ln
|
sin
t
+
cos
t
|
2 0
=π
4
例6:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
a
a
则 ∫ − a f (x)d x = 2∫ 0 f (x)d x
(2)若 f (x) 在 [ - a , a ] 上连续且为奇函数,
a
则 ∫ −a f (x)d x = 0
1 −1
f (u) d u
∫ ∫ ∫ =
1
f (x)d x =
0 (1 + x2 ) d x +
1 e−x d x
−1
−1
0
=
[
x
+
1 3
x
3
]0−1
+
[−e − x ]10
= 7− 1 3e
二、 定积分的分部积分法
设 u = u (x) , v = v(x) 在区间 [ a , b ] 上有连续导
π 2
−
t
dt
π
定积分的换元积分法与分部积分法
1 0
f (2x)dx
1
f (2)
1
1
f (2x)d(2x)
2
40
1 2
f
(2)
1f
4
(
2
x
)
1 0
5 1 f (2) f (0) 2.
24
23
定积分的换元法和分部积分法
思考题 试检查下面运算是否正确?
如 令x 11 dx11Fra bibliotek x2t
1 1
1
1
1 t2
d
1 t
1 dt 11 t 2
0t
x2
0
sinu
u
du x
x2 sin u du
0u
原式 lim x0
x
x2 sin u du 0u
x2
0
lim
sin x2 x2
2x
1
0 x0
2x
17
定积分的换元法和分部积分法
二、定积分的分部积分法
definite integral by parts
定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,
x3 sin2 x4 2x2
x
dx 1
0
1 4 x2dx 2 1 4 x2dx
1
0
2 x5 x4 x3 x2 2dx
2
1x2
奇
偶
2 2
x15xx23dx
2 x4 x2 2 2 1 x2 dx
02
2 0
x4 x2 1 x2
2dx
8 3
12
定积分的换元法和分部积分法
2
0 20
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算下列定积分: ⑴3sin()3x dx πππ+⎰;【解法一】应用牛顿-莱布尼兹公式3sin()3x dx πππ+⎰3sin()()33x d x ππππ=++⎰3cos()3x πππ=-+[cos()cos()]333ππππ=-+-+[cos (cos )]033ππ=----=。
【解法二】应用定积分换元法令3x u π+=,则d x d u =,当x 从3π单调变化到π时,u 从23π单调变化到43π,于是有3sin()3x dx πππ+⎰4323sin udu ππ=⎰4323cos uππ=-42[coscos ]33ππ=-- [cos(cos )]033ππ=----=。
⑵132(115)dxx -+⎰;【解法一】应用牛顿-莱布尼兹公式132(115)dx x -+⎰1321(115)(115)5x d x --=++⎰21211(115)52x --=⋅+-22111[]10(1151)(1152)=--+⨯-⨯211(1)1016=--51512=。
【解法二】应用定积分换元法令115x u +=,则15dx du =,当x 从2-单调变化到1时,u 从1单调变化到16,于是有132(115)dxx -+⎰163115u du -=⎰21611152u -=⋅-211(1)1016=--51512=。
⑶32sin cos d πϕϕϕ⎰;【解法一】应用牛顿-莱布尼兹公式320sin cos d πϕϕϕ⎰32cos cos d πϕϕ=-⎰4201cos 4πϕ=-441[cos cos 0]42π=--1[01]4=--14=。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到2π时,u 从1单调变化到0,于是有320sin cos d πϕϕϕ⎰031u du =-⎰130u du =⎰4114u =14=。
⑷30(1sin )d πθθ-⎰;【解】被积式为3(1sin )d θθ-,不属于三角函数的基本可积形式,须进行变换。
由于1是独立的,易于分离出去独立积分,于是问题成为对3sin d θθ的积分,这是正、余弦的奇数次幂的积分,其一般方法是应用第一换元法,先分出一次式以便作凑微分:sin cos d d θθθ=-,余下的22sin 1cos θθ=-,这样得到的2(1cos )cos d θθ--便为变量代换做好了准备。
具体的变换方式有如下两种: 【解法一】应用牛顿-莱布尼兹公式3(1sin )d πθθ-⎰201sin sin d d ππθθθθ=-⎰⎰20(1cos )cos d ππθθθ=+-⎰301(cos cos )3ππθθ=+-331(cos cos 0)(cos cos 0)3πππ=+---1(11)(11)3π=+-----43π=-。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到π时,u 从1单调变化到1-,于是有3(1sin )d πθθ-⎰201sin sin d d ππθθθθ=-⎰⎰20(1cos )cos d ππθθθ=+-⎰121(1)u du π-=+-⎰3111()3u u π-=+- 1(11)(11)3π=+-----43π=-。
⑸226cos udu ππ⎰;【解】这是正、余弦的偶次幂,其一般积分方法为,利用三角函数的半角公式:21cos cos 22u u +=,将平方部份降次成为一次的余弦三角函数:21cos 2cos 2u u +=,使之可以换元成为基本可积形式: 【解法一】应用牛顿-莱布尼兹公式226cos udu ππ⎰261cos 22u du ππ+=⎰226611(cos 22)22du ud u ππππ=+⎰⎰ 226611(sin 2)22u u ππππ=+11[()(sin sin )]22623ππππ=-+-13()234π=-。
【解法二】应用定积分换元法令2u x =,则12du dx =,当u 从6π单调变化到2π时,x 从3π单调变化到π,于是有226cos udu ππ⎰261cos 22u du ππ+=⎰226611(cos 22)22du ud u ππππ=+⎰⎰ 23611(cos )22u xdx ππππ=+⎰311[()sin ]2262x ππππ=-+ 11[(sin sin )]2323πππ=+-13()234π=-。
⑹2202x dx -⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令2sin x u =,当x 从0单调变化到2时,u 从0单调变化到2π,且22222sin 2cos x u u -=-=,2cos dx udu =,使得222x dx -⎰202cos 2cos u udu π=⋅⎰21cos 222udu π+=⎰ 220cos 2du udu ππ=+⎰⎰2201cos 222uud u ππ=+⎰ 2201sin 22uu ππ=+1(sin 0)22ππ=+-2π=。
⑺211221x dx x-⎰; 【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令sin x u =,当x 从12单调变化到1时,u 从4π单调变化到2π,且2222211sin cos sin sin x u ux u u--==,cos dx udu =,使得211221x dx x -⎰224cos cos sin u udu u ππ=⋅⎰224cot udu ππ=⎰224(csc 1)u du ππ=-⎰ 24(cot )u u ππ=--[(cotcot )()]2424ππππ=--+-14π=-。
⑻2220ax a x dx -⎰(0a >); 【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令sin x a u =,当x 从0单调变化到a 时,u 从0单调变化到2π,且22222222s i n s i n s i n c o s x a x a u a u u a u -=-=⋅,cos dx a udu =,使得2220axa x dx -⎰2220sin cos cos a u a u a udu π=⋅⋅⎰422sin 24audu π=⎰4201cos 442a u du π+=⎰421(sin 4)84a u u π=+41[(sin 20)]824a ππ=+-4116a π=。
⑼32211dx xx+⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方和转换成完全平方,应令tan x u =,当x 从1单调变化到3时,u 从4π单调变化到3π,且 2222222sec sec tan sec 1tan 1tan dx uduuduu u x x u u ==++2cos sin u du u=21sin sin d u u = 使得32211dx x x +⎰3241sin sin d u uππ=⎰ 这时,再令sin u t =,当u 从4π单调变化到3π时,t 从22单调变化到32, 又得3241sin sin d u u ππ⎰322221dt t =⎰32221t =-22()32=--223=-。
⑽1202x x dx -⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法。
由于根号内的二次多项式并非为三角变换中的平方和或差的标准形式,需要先将其转化为标准形:22221(12)1(1)x x x x x -=--+=--,现在,根号内的二次多项式成为了变量在后的平方差的形式了,因此可令1sin x u -=,当x 从0单调变化到1时,1x -从1-单调变化到0,从而u 对应从2π-单调变化到0,而且22221sin cos cos x x u u u -=-==,cos dx udu =,于是1202x x dx -⎰2cos cos u udu π-=⋅⎰021cos 22u du π-+=⎰0211(sin 2)22u u π-=+11{[0()][sin 0sin()]}222ππ=--+--4π=。
⑾411dxx+⎰;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令x u =,当x 从1单调变化到4时,u 从1单调变化到2,且由此得2x u =,2dx udu =,1111u x=++,于是 411dx x+⎰2121udu u =+⎰2112(1)1du u =-+⎰212(ln 1)u u =-+ 2[(21)(ln3ln 2)]=---32(1ln )2=-22(1ln )3=+。
【解法二】为便于积分,可使变换后的分母成为简单变量,即令1x u +=,当x 从1单调变化到4时,u 从2单调变化到3,且由此得2(1)x u =-,2(1)dx u du =-,111ux =+,于是411dxx+⎰322(1)u du u -=⎰3212(1)du u =-⎰322(ln )u u =-2[(32)(ln3ln 2)]=---32(1ln )2=-。
⑿13411dxx --⎰;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令1x u -=,当x 从34单调变化到1时,u 从12单调变化到0,且由此得21x u =-,2dx udu =-,11111u x =---,于是13411dx x --⎰01221u du u -=-⎰12012(1)1du u =+-⎰1202(ln 1)u u =+-112(ln ln1)22=+-12ln 2=-。
【解法二】为便于积分,可使变换后的分母成为简单变量,即令11x u --=,当x 从34单调变化到1时,u 从12-单调变化到1-,且由此得21(1)x u =-+,2(1)dx u du =-+,1111ux =--,于是13411dxx --⎰1122(1)u du u ---+=⎰12112(1)du u --=+⎰1212(ln )u u --=+112[()(1)ln ln 1)]22=---+---12ln 2=-。