3.3 圆周角和圆心角的关系教案一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角和圆心角的关系
教学目标
(一)教学知识点
1.了解圆周角的概念.
2.理解圆周角定理的证明.
(二)能力训练要求
经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.
(三)情感与价值观要求
通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法.
教学重点
圆周角概念及圆周角定理.
教学难点
认识圆周角定理需分三种情况证明的必要性.
教学方法
指导探索法.
教具准备
投影片两张
第一张:射门游戏(记作§3.3.1A)
第二张:补充练习1(记作§3.3.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角.
[生]学习了圆心角,它的顶点在圆心.
[师]圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角.这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?
Ⅱ.讲授新课
1.圆周角的概念
[师]同学们请观察下面的图(1).(出示投影片3.3.1A)
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关.
[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?
[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点.(通过学生观察,类比得到定义)
圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角.
[师]请同学们考虑两个问题:
(1)顶点在圆上的角是圆周角吗?
(2)圆和角的两边都相交的角是圆周角吗?
请同学们画图回答上述问题.
[师]通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:
(1)角的顶点在圆上;
(2)两边在圆内的部分是圆的两条弦.
2.补充练习1(出示投影片§3.3.1B)
判断下列图示中,各图形中的角是不是圆周角,并说明理由.
答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是.3.研究圆周角和圆心角的关系.
[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?
我们知道,在同圆或等圆中,相等的弧所对的圆心角相等.那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?
[师]请同学们动手画出⊙O中所对的圆心角和圆周角.观察所对的圆
周角有几个?它们的大小有什么关系?你是通过什么方法得到的?所对的圆心角和所对的圆周角之间有什么关系?
[生]所对的圆周角有无数个.通过测量的方法得知:所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.
[师]对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流.
[生]互相讨论、交流,寻找解题途径.
[师生共析]能否考虑从特殊情况入手试一下.圆周角−−−→
特殊一边经过圆心.
由下图可知,显然∠ABC=1
2
∠AOC,结论成立.
(学生口述,教师板书)
如上图,已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.
求证:∠ABC =12
AOC . 证明:∠AOC 是△ABO 的外角,
∴∠AOC =∠ABO +∠BAO .
∵OA =OB ,
∴∠ABO =∠BAO .
∴∠AOC =2∠ABO .
即∠ABC =12
∠AOC . [师]如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)
[生甲]如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.
由刚才的结论可知:
∠ABD =
12∠AOD ,∠CBD =12
∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD ),即∠ABC =12∠AOC . [生乙]在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.
由前面的结果,有
∠ABD =
12∠AOD ,∠CBD =12
∠COD . ∴∠ABD -∠CBD =12(∠AOD -∠COD ),即∠ABC =12∠AOC . [师]还会有其他情况吗?请思考.
[生]不会有.
[师]经过刚才我们一起探讨,得到了什么结论?
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
[师]这一结论称为圆周角定理.在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?
[生]由“特殊到一般”的思想方法,转化的方法,分类讨论的方法,……
[师]好,同学们总结得很好.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略.今后我们在处理问题时,注意运用.
4.课本P103,随堂练习1、2
Ⅲ.课时小结
[师]到目前为止,我们学习到和圆有关系的角有几个?它们各有什么特点?相互之间有什么关系?
[生]和圆有关系的角有圆心角和圆周角.圆心角顶点在圆心,圆周角顶点在圆上,角的两边和圆相交.一条弧所对的圆周角等于它所对的圆心角的一半.[师]这节课我们学会了什么定理?是如何进行探索的?
[生]我们学会了圆周角定理.通过分类讨论的思想方法,渗透了由特殊到一般的转化方法.对定理进行了研究和证明.
[师]好,同学们今后在学习中,要注意探索问题方法的应用.
注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.
(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.
Ⅳ.课后作业
习题3.4
Ⅴ.活动与探究
同学们知道:顶点在圆上,并且两边都和圆相交的角,叫圆周角,因为一条弧所对的角圆周角等于它所对的圆心角的一半,而圆心角的度数等于它所对的弧的度数,所以圆周角的度数等于它所对的弧的度数的一半.类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫圆外角.如下图中,∠DPB是圆外角,那么∠DPB的度数与它所夹的两段弧和的度数有什么关系?类似地可定