3.3 圆周角和圆心角的关系教案一

合集下载

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。

教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。

教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。

圆周角:圆上的两条弧所对的角叫做圆周角。

圆心角:由圆心射出的两条弧所对的角叫做圆心角。

2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。

Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。

2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。

”Step 3:练习1.完成教材《数学必修二》的相关习题。

2.制定小组练习题,提高学生之间的合作学习能力。

Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。

2.学生自主完成其他实际问题的解答。

Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。

2.提问巩固所学内容。

教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。

2.学生利用计算器综合运用所学知识解决实际问题。

3.4第1课时圆周角和圆心角的关系(教案)

3.4第1课时圆周角和圆心角的关系(教案)
举例:引导学生通过折叠、旋转等方法,观察圆周角和圆心角的变化,从而理解两者关系。
(2)运用圆周角和圆心角的关系解决问题:在实际问题中,学生可能不知道如何将所学的圆周角和圆心角关系应用到解题过程中。
举例:针对不同类型的题目,指导学生分析问题,找到运用圆周角和圆心角关系的关键步骤,并给出解题策略。
四、教学流程
3.加强实践活动的引导,让学生在讨论和操作过程中,能够更加深入地思考问题;
4.提高自己的课堂应变能力,针对学生的反馈,及时调整教学方法和策略。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课将紧密围绕核心素养目标,关注学生能力培养,使学生在掌握知识的同时,提高数学学科综合素养。
三、教学难点与重点
1.教学重点
(1)圆周角和圆心角的概念及其关系:圆周角是圆上一段弧所对的角,圆心角是以圆心为顶点的角。圆周角是圆心角的一半,这是本节课的核心知识点。
举例:讲解圆周角和圆心角的定义,通过图示和实际操作,让学生直观感受两者的关系。
3.重点难点解析:在讲授过程中,我会特别强调圆周角和圆心角的关系,以及它们在解题中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角和圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量圆周角和圆心角,验证圆周角是圆心角的一半这一性质。

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。

教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。

- 引导学生思考圆周角和圆心角的定义和特点。

II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。

- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。

III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。

- 使用具体案例和图形进行说明,让学生理解这一关系。

IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。

- 引导学生逐步解决问题,并给予必要的提示和指导。

- 鼓励学生主动思考和讨论,提高解决问题的能力。

V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。

- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。

VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。

- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。

VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。

- 强调作业的重要性,并鼓励学生按时完成和提交。

备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。

(教案完)。

圆心角与圆周角的关系教案

圆心角与圆周角的关系教案

圆周角与圆心角的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】理解圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4.1节的内容。

本节课主要让学生了解圆周角和圆心角的关系,掌握圆周角定理,并能够运用该定理解决一些实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而得出圆周角定理。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法。

他们具备一定的观察、分析和推理能力。

但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识,需要通过实例和推理来理解和掌握。

三. 教学目标1.让学生了解圆周角和圆心角的概念,理解它们之间的关系。

2.让学生掌握圆周角定理,并能够运用该定理解决一些实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.圆周角和圆心角的关系。

2.圆周角定理的证明和运用。

五. 教学方法1.采用问题驱动法,引导学生发现问题、分析问题和解决问题。

2.利用几何画板和实物模型,直观地展示圆周角和圆心角的关系。

3.采用小组合作学习,让学生在讨论中共同探究和解决问题。

4.通过练习题,巩固所学知识,提高解题能力。

六. 教学准备1.准备几何画板和实物模型,用于展示圆周角和圆心角的关系。

2.准备相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用几何画板或实物模型,展示一个圆和一些圆周角、圆心角,让学生观察它们之间的关系。

提问:你们觉得圆周角和圆心角有什么关系呢?2.呈现(10分钟)引导学生通过观察和推理,发现圆周角和圆心角的关系。

呈现圆周角定理:圆周角等于它所对圆心角的一半。

让学生理解并记住这个定理。

3.操练(10分钟)让学生分组讨论,每组设计一个实例,验证圆周角定理。

每组选取一个代表进行汇报,其他组进行评价。

通过这个过程,让学生加深对圆周角定理的理解。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。

圆周角和圆心角的关系(一)教学设计

圆周角和圆心角的关系(一)教学设计

图1 (1) (2) (3) (4) (5) (7) (6) (8)§3.3、圆周角和圆心角的关系(一)教学目标:1、 理解圆周角的概念;掌握圆周角和圆心角之间的关系,并会运用它进行有关的证明和运算.2、经历探索圆周角和圆心角关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力;通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.3、在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.教学重点与难点:重点是:理解圆周角的概念;掌握圆周角与圆心角之间的关系定理.难点是:圆周角和圆心角关系定理的证明.教学方法:引导发现法.在老师的启发引导下,学生经过观察、操作、猜测、推理论证、发现、归纳等方法,探究出新知.教学手段:多媒体PPT 课件使用教材的构思:本节课对教材内容进行了重新加工,以学生熟悉的圆心角引入圆周角,学习新概念,并比较它们的异同.在探究圆周角和圆心角关系定理时,以“问题串”形式,教师创设问题情境,层层推进教学,使学生经历观察、操作、猜想、讨论、推理、归纳等数学活动,最后得到新知,并获得一些学习数学学习的方法.同时,课堂练习的设计力求符合不同层次学生的心理特点,通过练习,让不同层次学生体会到本节课是学有所得的,真正体现“使不同的人在数学上得到不同的发展”的新课程理念.教学流程:一、 创设问题,引入新课:(说明:由学生熟悉的知识,以问题形式引出课题,回顾旧知的同时明确新知,激发学生的学习热情,引导学生充分体会新旧知识间的联系.)问题1:什么是圆心角?如图1:哪个是圆心角?圆心角有什么主要特征?学生回顾概念,根据概念分辨图形,进一步理解圆心角的主要特征.问题2:图1(2)的角有什么主要特征?他与圆心角有什么联系和区别?学生观察、比较、发现,并尝试归纳总结.师引导生观察角的顶点、角的两边与圆的位置关系,然后师生共同归纳总结(学生口述,教师板书内容).ABC O图3 图2问题3:按照“顶点在圆上,两边都和圆相交”的条件画图,能画出多少个这样的角? 学生画图、发现,并与同桌交流,得到结论:无数多个.师:这无数多个具有共同特征的角,就是圆周角.圆周角和我们前面所学的圆心角之间有什么关系呢?就让我们一起走进今天的课堂.(引入新课,板书课题)二、讲授新课,探究新知:(一)、圆周角定义:板书:顶点在圆上,两边都和圆相交的角叫做圆周角.师引导生强调圆周角的两个特征:1)顶点在圆上;2)两边在圆内的部分是圆的两条弦,即两边都和圆相交,两者缺一不可,并与圆心角区别.学生理解概念,并找出圆周角与圆心角的异同点.巩固练习:图1中还有圆周角吗?学生观察、分析.中下游生口答,并分析其他图为什么不是圆周角.当遇到问题时,其他学生补充.(通过此过程,让学生再次强化理解有关概念.)(二)、探究圆周角和圆心角之间的关系:问题4:小组交流:在你们所画的图中,圆周角和圆心有几种位置关系?学生在小组内交流、汇总,并在全班交流,补充.师投影展示学生所发现的几中位置关系,并让其他小组补充.师:通过画图,我们知道:以圆上任意一点为顶点的圆周角有无数多个,但它们与圆心的位置关系只有三种,如图2: (1) 圆心在圆周角的一边上,(2) 圆心在圆周角的内部, (3) 圆心在圆周角的外部.问题5:在同一个圆中,任意的圆周角和圆心角有什么大小关系?师引导生画图发现.学生画图、观察、测量、发现:它们之间不一定存在某种特殊的关系.如图3:问题6:如果圆周角和圆心角都对同一圆中的一条弧,如图4:在⊙O 中,∠A 、∠BOC 都对着弧BC ,那么这两个角存在着怎样的关系呢?学生画图、测量、比较、发现、猜想.再试一试,并在小组内交流,归纳总结,最后在全班交流. 师引导生完成,师生共同补充归纳得出结论:(师板书) 命题:一条弧所对的圆周角等于它所对圆心角的一半.师:对于从有限次试验中得出的命题,能当做定理吗?学生:不能.需要用学过的定义和定理对得出的结论的各种情况,进行严密的推理论证后才能做为定理来用。

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。

通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。

但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。

此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。

三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。

四. 教学重难点1.教学重点:圆周角定理的掌握和运用。

2.教学难点:圆周角定理的证明和理解。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。

3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。

2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。

3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。

2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。

通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。

九年级数学上册《圆心角和圆周角的关系》教案、教学设计

九年级数学上册《圆心角和圆周角的关系》教案、教学设计
3.数学证明:在学生自主探究的基础上,给出严谨的数学证明,让学生理解圆心角和圆周角关系的数学原理。
4.应用举例:通过具体例题,展示圆心角和圆周角关系在实际问题中的应用,使学生认识到数学知识在实际生活中的价值。
(三)学生小组讨论
1.分组:将学生分成若干小组,确保每个小组内成员的数学水平相对均衡。
2.讨论主题:以圆心角和圆周角的关系为主题,让学生在小组内分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们在之前的课程中学习了角度、三角形等基本概念,为本章节的学习奠定了基础。但在圆的相关知识方面,学生们的认识可能还不够深入,对圆心角和圆周角的关系理解可能存在困难。因此,在教学过程中,要注意以下几点:
1.充分发挥学生已有的知识经验,引导他们主动发现圆心角和圆周角的关系。
五、作业布置
为了巩固学生对圆心角和圆周角知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础巩固题:根据课堂所学,完成课本相关练习题,加深对圆心角和圆周角概念的理解。
(1)画出一个圆,并在圆内画出两个圆心角相等、圆周角相等的两组角,比较它们之间的关系。
(2)画出一个圆,并在圆内画出两个圆心角相等、圆周角不相等的两组角,分析原因。
2.提高拓展题:结合圆心角和圆周角的关系,解决以下实际问题。
(1)一块圆形的披萨,被切成八等份,每份的圆心角是多少度?如果切成十二等份呢?
(2)一个圆形的花坛,要将其分割成若干个扇形区域,每个区域圆心角相等,且总面积为花坛面积的一半。请问需要分割成几个区域?
3.创新研究题:以小组为单位,选择以下课题进行研究,并将研究结果以报告形式提交。
c.组织小组讨论,让学生分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。

数学初三下北师大版3.3圆周角和圆心角的关系(第一课时)教案

数学初三下北师大版3.3圆周角和圆心角的关系(第一课时)教案

教学过程:一、设计情景,引入新课师:在上周我们班和九二班旳足球友谊赛中,咱们班以二比三险胜,现在说起来还有些小兴奋呢,大家和记不记得这三个球都是谁进旳? 生:是王程、李明亮、李柄桦.师:感谢他们给我们班带来旳胜利,现在有这样旳一个游戏是他们三个人参与旳. 课件出示:如果他们三人进展一射门游戏,过球门A 、C 画了一个圆,在球门B 、D 、E 旳位置射任意球〔直线射〕,仅从教学旳角度考虑,请问站在那个位置射球最有利?生:D .课时第三章第三节第1课时 课 题课 型新授课时 间 2021年2月28日 周四节 次第四节授 课 人教学 目标 旳概念,掌握圆周角旳两个特征、定理旳内容及简单应用. 旳关系.旳证明,进一步体会思考问题旳全面性和合理性. 旳运用,渗透转化旳数学思想.5.学会以特殊情况为根底,通过转化来解决一般问题旳方法,体会分类旳数学思想. 重点 圆周角旳概念和圆周角定理难点 圆周角定理旳证明中由“一般到特殊〞旳数学思想方法和完全归纳法旳数学思想 教法 学法 类比教学法、启发式教学法、合作探究法、直观教学法 课前准备 多媒体课件、几何画板、圆规、三角尺师:为什么呢?生:因为角度大.师:你说旳角度是这旳什么呢?可不可以到黑板上给同学们指一下.生:〔边指边说〕连接AD、CD形成旳∠ADC.师:同学们都是这样认为旳吗?生表达意见.师:我看有好多同学都是想选D,那我们带着这个问题来学习今天旳内容:圆周角和圆心角旳关系〔板书课题〕,学完以后我们再来看终究应该怎样选择.设计意图:由生活实践来创设情境,让学生感受数学与生活旳联系.将实际问题数学化,让学生从一些简单旳实例中,不断体会从现实世界中寻求数学模型、建立数学关系旳方法.引导学生对图形旳观察、发现激发学生旳好奇心和求知欲,并在运用数学知识解答问题旳活动中获取成功旳体验,建立学生旳自信心.二、师生互动,探究新知〔一〕圆周角旳定义师:大家还记得什么叫做圆心角吗?生:顶点在圆心上旳角叫做圆心角.师:这个图中旳∠AOB就是一个圆心角,那我把它旳圆心拖到圆周上C点旳位置,看一下这个角有什么特点?生:这个角旳顶点在圆周上,并且角旳两边都和圆相交.师:他观察出了这个角旳特征,那同学们能不能仿照圆心角旳名字给它起一个名字?生:圆周角.师:是根据什么而定旳?或者说什么叫做圆周角呢?生:顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆周角.师:对,这就是我们要来掌握旳另一种角.板书:圆周角.设计意图:采用类比教学法,通过圆心角定义让学生得出圆周角定义,培养学生旳观察能力、归纳能力.师:我们来看一组图片,这里五个角哪些是圆周角?为什么?A B C D E生1:A不是,因为它旳顶点不在圆周上.生2:B不是,因为它旳顶点不在圆周上.生3:C是.生4:D不是,角旳两边分别与圆没有另一个交点.生5:E不是,角旳一条边和圆没有另一个交点.师:那我们判断一个角是不是圆周角时要把握什么?生:先看这个角旳圆心在不在圆周上,再看角旳两边与圆还有没有另一个交点.师:说旳很好,我们再来看这道题目:课件出示:2.判断以下命题是否正确.〔1〕圆周角旳顶点一定在圆上.〔〕〔2〕顶点在圆上旳角叫做圆周角.〔〕〔3〕圆周角旳两边都和圆相交.〔〕〔4〕两边都和圆相交旳角是圆周角.〔〕学生判断并说明理由.生1:〔1〕正确.生2:〔2〕错误.还要看角旳两边是否和圆还有另外一个交点.生3:〔3〕正确.生4:〔4〕错误.还有看这个角旳顶点是否在圆上.师:这道题目比拟简单,下面我们来看谁能在最短旳时间内找出图中所有旳圆周角.课件出示:以下两个圆中,各有几个圆周角?生1:∠CAD,∠BAD,∠BAC师:你是怎样找旳?生:我先在圆上找顶点,在确定角.师:第二幅图呢?生:∠CAB,∠ABD,∠ABC,∠DBC,∠BCA,∠BCD,∠ACD和∠CDB共8个圆周角.设计意图:通过练习加深对圆周角定义旳理解.师:非常好,不重与不漏.我们在学习了圆周角旳定义以后再来看看刚刚旳问题.〔课件出示图3-13〕球员射中球门旳难易程度与他所处旳位置B对球门AC旳张角〔∠ABC〕有关.当球员在B、D、E处射门时,他所处旳位置队球门AC分别形成三个张角∠ABC,∠ADC,∠AEC,我们首先把这个问题转化成数学模型.这三个角有什么特征?生:这三个角都是圆周角.师:还有呢?生:它们都对着AC.师:那这三个角谁大谁小?生大胆猜测:一样大.师:为什么?生有些茫然.师:我们上节课学习了圆心角旳有关知识,那么我们旳这个问题是不是能转化成圆周角和圆心角旳关系,然后再来说明这三个角旳大小呢?这是我们这节课要研究旳主要内容.〔二〕探究活动一.师:下面请各个组进展探究活动一,拿出探究活动纸:学生开场探究活动,教师进展巡视指导.师:现在我们请每一个小组派一位组员上来,我们汇总一下结果.各个小组利用实物投影仪进展汇报,教师引导学生进展汇总,最后分为三类:教师利用几何画板固定∠AOC旳位置,拖动点B使其落在不同旳位置上,是同学们再次形象旳并且连续性旳认识上面旳问题.师:如图①O点在∠ABC旳一条边上;拖动O点如图②,O点在∠ABC旳内部;继续拖动如图③,O点在∠ABC旳外部.所以我们把圆周角和圆心角旳位置关系分为三种,我们在分类时一定要做到不重不漏.下面我们进展探究二.①A②③设计意图:引导学生发现问题、提出问题、分析问题、并能解决问题.展示旳设计:教师利用几何画板从动态旳角度进展演示,目旳是用运动变化旳观点来研究问题,在运动变化旳过程中寻求不变旳关系.〔三〕探究二师:我们要研究一条弧所对旳圆周角∠ABC与它所对旳圆心角∠AOC旳大小关系.我们先来看一下用电脑测量出来旳这两个角是什么关系?找一位学生利用电脑上旳几何画板软件进展操作:每拖动一次B点旳位置就测量一次圆周角和圆心角.A师:同学们计算一下∠AOC与∠ABC旳大小有什么关系?生:两倍关系.师感谢学生旳操作,然后利用几何画板改变AC旳位置引导学生发现,∠AOC依然是∠ABC旳两倍.师:那现在同学们能不能猜测一下同一条弧所对旳圆周角和圆心角旳大小关系呢?.生:一条弧所对旳圆周角等于它所对旳圆角心旳12师板书结论.设计意图:让学生亲自动手,利用度量工具〔几何画板〕进展猜测、实验、探究,得出结论.激发学生旳求职欲望,调动学生学习旳积极性.师:刚刚我们是通过观察、猜测得到了一条弧所对旳圆周角和圆心角旳大小关系,下面我们就来尝试证明一下,看看哪个小组能最快旳把这三种情况旳证明旳出来.学生利用探究纸进展小组探究,师巡视指导,抽时间将这三组图画在黑板上以方便随后旳展示.师:好,先停一下.下面我们将小组已经探究旳结果来展示一下.我们从那一幅图开场?生:第一幅图.师:谁来说一下?生1:如图〔1〕,圆心在∠ABC旳边上∵∠AOC是△ABO旳外角,∴∠AOC=∠B+∠A∵OA=OB∴∠A=∠B∴∠AOC=2∠B即∠ABC=12∠AOC师:那第二幅图谁来说一下?生2:如图,连接BO并延长交圆于D点,那么将这幅图转化成图〔1〕旳形式.由〔1〕可知,∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD+∠CBD=12〔∠AOD +∠COD〕=12∠AOC师:我刚刚发现,很多组旳同学在探究第三幅图旳时候被卡住了,那第三幅图形是不是也可以通过做一些辅助线转化成第一幅图旳形式呢?再给同学们两分钟旳时间快速旳思考一下.小组讨论,教师巡视并作出适时适当旳指导.师:现在谁来说一下第三种情况你们是怎样证明旳?生3:还是连接BO并延长交圆于D点,我们就可以得到两组根本图形:∠ABD和∠AOD;∠CBD和∠COD.由〔1〕可知∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD-∠CBD=1 2〔∠AOD -∠COD〕ABCOD=1∠AOC2师:在证明旳过程中,我们把第二种和第三种情况通过添加辅助线把它们转化成第一种情况,这就运用了我们数学中化归思想,同时在这道题旳证明中我们也应用了分类讨论旳方法以及完全归纳旳证明方法.对于这个定理“一条弧所对旳圆周角等于它所对旳圆心角旳一半.〞我们也可以这样理解:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.设计意图:让学生对所发现旳结论进展证明,培养学生严谨旳治学态度.学生通过合作探索学会运用分类讨论旳数学思想研究问题,培养学生思维旳深刻性.同时让学生学会一种分析问题、解决问题旳方式方法:从特殊到一般.学会用化归思想将问题转化,体验数学建模思想.同时也解决了难点、突出了重点.(四)解决问题师:现在让我们再回到到个问题上〔多媒体出示画面〕,在B、D、E这三个点上,在那个点上射门是最有利旳呢?生:一样旳.师:为什么?生:因为∠ABC、∠ADC、∠AEC所对旳弧都是AC,AC所对旳圆心角旳度数是固定旳,这三个角旳度数等于这个角度数旳一半,所以这三个角旳度数是相等旳.师:从而我们就能得到这样旳结论:在同圆或等圆中,同弧或等弧所对旳圆周角相等.(五)联系实生活实际师:在生活中还有那些运用圆周角旳实例,有没有同学想出来啊?只要我们善于观察就会发现我们旳生活中处处有数学.比方〔课件出示〕:我们有团圆吧,团徽、团旗中有没有圆周角啊?生:有.师:还有许多歌剧院、大剧院旳座位排列都是呈圆弧状旳,这是为什么呢?生:这样可以保证在同排旳观众视角是一样旳.师:非常好.〔学生鼓掌〕设计意图:通过回归生活实践,将数学知识与现实生活相联系起来,让学生在解决实际问题中获得成功旳体验.三、稳固应用,开拓创新师:现在请同学们看大屏幕,快速旳完成这两道题.多媒体出示:1、如图1,在⊙O中,∠BOC=50°,那么∠A= .2、如图2,A,B,C,D是⊙O上旳四点,且∠BCD=100°,那么∠BOD= °,∠BAD= °.图1 图2学生完成后,教师安排学生到大屏幕前讲解自己旳做法.设计意图:练习层层推进,难易结合,考察学生对定理旳理解和运用,使学生很好地进展知识旳迁移,让学生在练习中加深对本节知识旳理解.教师通过练习及时发现问题,评价教学效果.四、课堂小结师:刚刚同学们旳表现都非常好.现在我们请一位同学来谈一谈这节课旳收获.;在同圆或等圆中,同弧或等弧所对旳生:一条弧所对旳圆周角等于它所对旳圆角心旳12圆周角相等.师:还有要补充旳吗?生:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.师:我们这节课学习了圆周角定理以及圆周角定理旳推论,在圆周角定理旳证明中,运用了数学中分类讨论和化归旳思想以及完全归纳旳证明方法.设计意图:小结使学生归纳、梳理总结本节课旳知识、技能、方法,将本节课所学知识与以前所学知识进展严密联接,有利于培养学生数学思想、数学方法、数学能力和对数学旳积极情感.五、课堂检测1、⊙O旳弦AB等于半径,那么弦AB所对旳圆周角一定是〔〕.〔A〕30°〔B〕150°〔C〕30°或150°〔D〕60°2、△ABC 中,∠B =90°,以BC 为直径作圆交AC 于E ,假设BC =12,AB =123 ,那么BE 旳度数为〔 〕.〔A 〕60° 〔B 〕80° 〔C 〕100° 〔D 〕120° 3、一条弦分圆为1:4两局部,求这弦所对旳圆周角旳度数? 4、AB 为⊙O 旳直径,AC 和AD 为弦,AB =2,AC =2,AD =1,求∠CAD 旳度数. 六、布置作业作业题:课本112页,数学理解,第2、3题.思考题:在航海时,船长常常通过测定角度来确定是否遇到暗礁,你知道其中旳微妙吗?设计意图:课后作业是对课堂所学知识旳检验,是让学生稳固、提高、开展,同时关注不同层次学生对所学内容旳理解和掌握.师:最后再送给同学们一句话:要养成用数学旳语言去说明道理,用数学旳思维去解读世界旳习惯. 下课.七、板书设计§旳关系〔一〕一、圆周角定义顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆心角.二、圆周角定理一条弧所对旳圆周角等于它所对旳圆心角旳一半. (1) (2) (3)设计意图:让本节课旳学习内容及重难点一目了然.教学反思:收获:研究圆周角和圆心角旳关系,应该说,学生解决这一问题是有一定难度旳,尽管如此,教学时仍应给学生留有时间和空间,让他们进展思考.让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习旳主要目标. 问题:在探究一中,学生画图表示圆周角和圆心角旳关系旳位置关系时,有一个小组是这样画旳:我说这也属于“圆心角旳顶点在圆周角旳内部〞,当时就有一些同学不认可,或者说是不能BA AO C A BCO D很好地理解,我当时对这个问题没有重视一带而过了,现在想想这说明同学们对优角和优弧旳概念还是很陌生,不能灵活旳加以应用.改良:这对圆周角定理完成证明后,可以把上面这幅图在呈现出来,让同学们来验证一下.。

《圆周角和圆心角的关系》教学设计

《圆周角和圆心角的关系》教学设计

圆周角和圆心角的关系(第1课时)教学目标:(一)知识与技能 1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.(二)过程与方法经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。

(三)情感态度价值观通过观察、猜想、验证推理,培养学生探索问题的能力和方法教学重点:理解圆周角定义,掌握圆周角定理并会熟练运用定理解决问题. 教学难点:认识圆周角定理需分三种情况证明的必要性教学设计第一环节知识回顾活动内容:Array1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.第三环节 定义的应用 活动内容:(1)练习、如图,指出图中的圆心角和圆周角 解:圆心角有∠AOB 、∠AOC 、∠BOC 圆周角有∠BAC 、∠ABC 、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角圆周角第四环节 探究新知2 活动内容:(一)问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立AB ⌒CC(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角,求证:分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角∴∠AOB =∠C +∠A∵OA=OC ∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB与圆心角∠AOB 的大小关系会怎样? 老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?12ACB AOB∠=∠AB ⌒AB ⌒12ACB AOB∠=∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即C●OACB老师提示:能否也转化为1的情况?过点C 作直径CD.由1可得:活动目的:本活动环节,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.第五环节 方法小结 活动内容:化归化归DD思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.第六环节定理的应用 活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理. 第七环节 课堂小结活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结. 五、教学设计反思111,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ABC ADC AEC∴∠=∠=∠。

3.3_圆周角和圆心角的关系(1)

3.3_圆周角和圆心角的关系(1)
∵∠AOC是△ABO的外角, ∴∠AOC=∠B+∠A. ∵OA=OB, ∴∠A=∠B. ∴∠AOC=2∠B.

C
老师期望: 你可要理 解并掌握 这个模型.

O
B

1 ∠ABC = ∠AOC. 2
你能写出这个命题吗?
一条弧所对的圆周角等于 它所对的圆心角的一半.
圆周角和圆心角的关系

演示
如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
B
C
D
B
演示
圆周角定理

演示
综上所述,圆周角∠ABC与圆心角∠AOC的大小 关系是:

圆周角定理 一条弧所对的圆周角等于它所 对的圆心角的一半. 1
即∠ABC=
C

A C

A
2
∠AOC.
A
C B

O
O
O
B

B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
1.如图:OA、OB、OC都是⊙O的半径 ∠AOB=2∠BOC. 求证:∠ACB=2∠BAC. 1 ⌒ ___ 分析:AB所对圆周角是∠ACB, 圆心角是∠AOB. 则∠ACB= ∠AOB.
C
A
O
B
返回
D
演示
3.如图,AB是⊙O的直径,BD是弦,延长BD 到C,使DC=BD,AC与AB的大小有什么关系? 为什么?
A

O
C 返回
D
B
四、思考下列各题,并记住结论: 1.如图,⊙O的弦AC、BD相交于⊙O 内一点P. 求证:

2024年《圆周角和圆心角的关系》说课稿

2024年《圆周角和圆心角的关系》说课稿

2024年《圆周角和圆心角的关系》说课稿《圆周角和圆心角的关系》说课稿1“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。

1、本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念;(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。

教学重点:圆周角定理。

教学难点:认识圆周角定理需要分三种情况逐一证明的必要性。

(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。

今天我向大家汇报的是第一课时的设计。

三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。

本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。

四、教学步骤(一)、旧知回放,探索新知(圆周角的概念的突破)1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。

2、引导学生进行讨论,规范圆周角的概念。

(设计意:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。

)特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.3、巩固练习,看谁最棒(请同学们判断各形的角是否是圆周角,并说明理由。

4《圆周角和圆心角的关系》教学设计

4《圆周角和圆心角的关系》教学设计

第三章圆《圆周角和圆心角的关系(第1课时)》一、目标确定的依据1、课程标准的相关要求理解圆周角的概念,认识圆周角,探索圆周角及其所对弧的关系,了解并证明圆周角定理及其推论2、教材分析《圆周角与圆心角的关系》是北师大版九年级下册第三章第3小节的内容,本课是在学生学习了圆的圆心,半径,直径,弦,弧,圆心角等概念以及圆的对称性的基础上,用推理论证的方法研究圆周角与圆心角关系。

它在与圆有关推理、论证和计算中应用广泛,是本章重点内容之一3、学情分析学生在本章的第二节课中,通过探索,已经学习了同圆或等圆中弧、弦和圆心角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.在之前的学习过程中,学生已经经历了“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.二、目标1、理解圆周角的概念及其相关性质2、经历探索圆周角和圆心角的关系的过程3、体会由特殊到一般、分类、化归思想、并能熟练地应用“圆周角与圆心角的关系”进行论证和计算。

三、评价任务本节共分2个课时,这是第1课时,主要内容是圆周角的定义以及探究圆周角定理,并利用定理解决一些简单问题.具体地说,本节课的教学目标为:1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.四、教学设计分析本节课设计了七个教学环节:知识回顾——探究新知1——定义的应用——探究新知2——方法小结——定理的应用——课堂小结(作业布置).第一环节知识回顾活动内容:1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.练习1是复习圆心角定义:顶点在圆心的角叫圆心角;练习2和练习3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.活动的注意事项:题目以复习概念和定理为主,特别是定理当中的前提条件“同圆或等圆”,需要再特别向学生强调一遍,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?圆心角圆周角类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.活动的注意事项:问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.第三环节定义的应用活动内容:(1)练习、如图,指出图中的圆心角和圆周角解:圆心角有∠AOB、∠AOC、∠BOC圆周角有∠BAC、∠ABC、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动的注意事项:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.第四环节探究新知2活动内容:(一)问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角, 求证: 分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠A ∵OA=OCAB⌒12ACB AOB∠=∠AB ⌒ AB ⌒12ACB AOB∠=∠∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否也转化为1的情况? 过点C 作直径CD.由1可得:活动目的:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.活动的注意事项:本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想,在(三)中注意渗透“特殊到一般”思想,在(四)(五)中注意渗透“猜想,试验,证明”的探究问题一般步骤.12ACB AOB ∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即活动内容:思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.活动的注意事项:多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.第六环节 定理的应用活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.活动的注意事项:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.111,,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠Q ABC ADC AEC ∴∠=∠=∠活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.第八环节:附课后练习答案随堂练习1.如图,在⊙O 中,∠BOC =50°,求∠BAC 的大小 解:在⊙O 中,∠BOC =50°2.如图,哪个角与∠BAC 相等,你还能找到那些相等的角? 解:∠BAC =∠BDC ∠ADB =∠ACB ∠CAD =∠CBD ∠ABD =∠ACD0011502522BAC BOC ∴∠=∠=⨯=习题1.如图,OA 、OB 、OC 都是⊙O 的直径,∠AOB =2 ∠BOC ,∠ACB 与∠BAC 的大小有什么关系,为什么? 解:∠BAC = 2 ∠ACB ,理由:又∵∠AOB =2 ∠BOC即∠BAC= 2∠ACB2.如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 与∠BAD 的大小 解:∵∠BCD =100°∴优弧所对的圆心角∠BOD =2∠BCD =200° ∴劣弧所对的圆心角∠BOD =36O °-200°=160°3.为什么电影院的作为排列呈弧形,说一说这设计的合理性.答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.船在航行过程中,船长通过测定角数来确定是否遇到暗礁, 如图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形 区域内,优弧AB 上任一点C 都是有触礁危险的临界点,∠ACB 就是“危险角”,当船位于安全区域时,∠α与“危险角” 有怎样的大小关系?解:当船位于安全区域时,即船位于暗礁区域外(即⊙O 外) ,与两个灯塔的夹角∠α小于“危险角” .五、教学设计反思112AOB∠=∠Q 122BOC∠=∠11122222AOB BOC BOC ∴∠=∠=⨯∠=∠=∠o1802BAD BOD ∴∠=∠=1.根据学生特点灵活应用教案针对编者学校学生的特点,大部分学生能力相对较高,因此课堂的容量会比较大,而且在教学过程中渗透的思想方法也较多,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,注意突出渗透分类讨论的思想方法和体会探索问题的一般步骤即可.2.让学生有充分的探索机会,经历猜想,试验,证明的环节学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.。

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

圆周角和圆心角的关系(1)(说课稿)3.3 圆周角和圆心角的关系一、教材分析(一)教学内容今天我说课的内容是义务教育课程标准北师大版实验教科书九年级(下)第三章《圆》第3节《圆周角和圆心角的关系》第一课时||。

(二)地位和作用本节课是学生在掌握圆心角的概念以及圆心角、弧、弦的关系的基础上进行学习的||,既是前面圆有关性质的延续||,又是下一节课证明圆周角定理推论的理论依据||。

本节课所渗透的学习内容和学习方法||,在学生今后的学习中应用广泛||,是本章重点内容之一||。

(三)教学目标根据新课程标准的要求以及九年级学生的认知结构与心理特征||,我从以下三方面确定教学目标:知识与技能——理解圆周角的概念和圆周角定理以及证明||。

过程与方法——经历探索圆周角与圆心角的关系的过程||,体会分类、归纳、转化的数学思想方法||。

情感态度与价值观——在推理证明的过程中获得正确的学习方法;在合作交流中培养团结协作的精神;在自主探究中体会成功的喜悦||。

(四)教学重点和难点根据新课程的理念||,经历过程带给学习的能力||,比具体的结果更重要||,结合本课内容||,我认为本节课的教学重点是:经历探索“圆周角与圆心角的关系”的过程||,理解掌握圆周角定理||,难点是:利用化归思想推导证明圆周角定理||。

二、教法学法分析(一)教学方法根据新课程理念的要求||,教师应该是数学学习的组织者、引导者与合作者||,结合本节课的内容及学生的实际情况||,在教法上我主要采用“探究合作||,启发引导”的方法||,同时以多媒体演示为辅助||,使学习的主要内容不是教师直接传授给学生||,而是以问题的形式不断呈现出来||,由学生自己去发现||,然后内化为自己知识结构的一部分||,这样既能唤起学生学习的欲望||,又调动学生学习的积极性和主动性||。

(二)学生学法在学法上||,学生主要采用动手实践、自主探索与合作交流相结合的学习方法||,在教师的引导下从直观感知上升到理性思考||,从自己的实践中获取知识||。

初中数学圆周角和圆心角的关系--教学设计

初中数学圆周角和圆心角的关系--教学设计

《圆周角和圆心角的关系(第1课时)》一、内容和内容解析本课是在学生学习了圆的有关概念和圆心角的基础上,进一步学习有关圆的又一个重要性质,它将在今后圆的有关推理、论证和计算中广泛应用,是本章重点内容之一。

二、目标和目标分析知识与技能1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.过程与方法1.经历操作、猜想、验证、归纳等一系列的数学研究性学习过程,让学生体会解决问题的方法,落实核心素养。

2.在探索定理的过程中,有意识的向学生渗透解决问题的策略以及转化、分类、归纳的数学思想方法。

情感态度与价值观:培养学生的探索精神和解决问题的能力.教学重点:掌握圆周角定理及其应用,教学难点:在圆周角定理证明过程中渗透“分类讨论”、转化等数学思想。

三、教学问题诊断分析学生在本章的第二节课中,通过探索,已经学习了同圆或等圆中弧、弦和圆心角的关系,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.并且在之前的学习过程中,学生经历过“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有一定的合作学习的能力,具备一定的合作和交流的能力.但由于学生的类比、转化能力稍显不足。

因此,在课堂定理的演绎推理过程中容易遇到困难,教师应引导学生发现问题的特点,引导学生利用转化的方法解决问题。

四、教学支持条件分析本节课使用了多媒体和实物投影展示辅助教学五、教学过程设计本节课共分为七个环节,复习引课-引出定义-探究活动1(圆周角定理)-探究活动2(推论)-探究活动3(定理应用)-课堂小结-布置作业环节一复习引课活动内容:1.圆心角定义:顶点在圆心的角叫圆心角2.圆心角、弧、弦的相等关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

3.实例展示:展示奔驰、大众车标设计意图:复习旧知是为了助学,车标的设计是让学生体会生活中随处都是数学,激趣、引课.注意事项:在复习圆心角性质的时候要强调在同圆或等圆中这一前提条件环节二圆周角定义活动内容:1.观察大众车标中一组角的特点,给出圆周角定义2.明确确定一个角是圆周角需要满足的两个条件3.练习1,对圆周角的定义进行辨析设计意图:让学生充分理解具体满足什么条件的角才是圆周角,为后续活动中,学生能够画出正确的圆周角打下基础注意事项:让学生了解圆周角的两边一定要与圆相交环节三探究1(圆周角定理)活动1:让学生在课堂练习本上,画一个圆O,在其上任意取一段弧AB,画出弧AB所对的圆周角∠ACB和所对的圆心角∠AOB,并用量角器测量它们的度数,猜想它们的数量关系,与同伴进行交流。

教案:圆周角与圆心角的关系

教案:圆周角与圆心角的关系

教案:圆周角与圆心角的关系。

一、圆周角与圆心角的定义圆周角:在一个圆上,两个相邻的线段所夹的角叫做圆周角。

圆周角的度数等于其所对应的圆弧的度数。

圆心角:在一个圆上,以圆心为顶点,两条切线所夹的角叫做圆心角。

圆心角的度数等于其所对应的圆弧的度数的一半。

二、圆周角与圆心角的性质1.圆周角和圆心角的度数是正比例关系。

根据圆周角的定义可知,一个圆上的所有圆周角的度数之和等于360度。

而根据圆心角的定义可知,一个圆上的所有圆心角的度数之和也等于360度。

因此,我们可以得出圆周角和圆心角的度数是正比例关系。

2.圆周角和其所对应的圆弧的大小相等。

因为圆周角的度数等于其所对应的圆弧的度数,所以圆周角和其所对应的圆弧的大小相等。

3.圆心角是其所对应的圆弧的一半。

根据圆心角的定义可知,圆心角的度数等于其所对应的圆弧的度数的一半。

因此,圆心角是其所对应的圆弧的一半。

4.在同一个圆上,圆周角相等的两条弧所对应的圆心角也相等。

根据圆周角的定义可知,两个圆周角的度数相等当且仅当它们所对应的圆弧的长度相等。

而圆心角的度数是其所对应的圆弧的一半,因此,在同一个圆上,圆周角相等的两条弧所对应的圆心角也相等。

5.在同一个圆上,圆心角相等的两个弧所对应的圆周角不一定相等。

由圆心角的定义可知,同一个圆上,圆心角相等的两个弧所对应的圆周角不一定相等。

这是因为圆心角只与它所对应的圆弧的长度有关,而圆周角则与整个圆弧的长度有关。

三、圆周角与圆心角的关系圆周角与圆心角之间有以下的关系:1.在同一个圆上,相等的圆心角所对应的圆弧长度大的圆周角也大。

由圆心角的定义可知,圆心角的度数等于其所对应的圆弧的度数的一半。

因此,相等的圆心角所对应的圆弧长度大的圆周角也大。

2.在同一个圆上,圆周角相等的两个弧所对应的圆心角不一定相等。

由圆心角的定义可知,同一个圆上,圆心角相等的两个弧所对应的圆周角不一定相等。

这是因为圆心角只与它所对应的圆弧的长度有关,而圆周角则与整个圆弧的长度有关。

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

3.4 圆周角和圆心角的关系 第1课时 圆周角和圆心角的关系1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点) 2.能运用圆周角定理及其推论进行简单的证明计算.(难点)一、情境导入在以下图中,当球员在B, D, E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC ,∠AEC .这三个角的大小有什么关系?二、合作探究探究点:圆周角定理及其推论【类型一】 利用圆周角定理求角的度数如图,CD 是⊙O 的直径,过点D的弦DE 平行于半径OA ,假设∠D 的度数是50°,那么∠C 的度数是( )A .25°B .30°C .40°D .50°解析:∵OA ∥DE ,∠D =50°,∴∠AOD =50°.∵∠C =12∠AOD ,∴∠C =12×50°=25°.应选A.方法总结:解决问题的关键是熟练掌握圆周角定理. 变式训练:见《学练优》本课时练习“课堂达标训练〞第2题【类型二】 利用圆周角定理的推论求角的度数如图,在⊙O 中,AB ︵=AC ︵,∠A=30°,那么∠B =( )A .150°B .75°C .60°D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等〞得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°.应选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题【类型三】 圆周角定理与垂径定理的综合如以下图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,E 在⊙O 上.(1)∠AOD =52°,求∠DEB 的度数; (2)假设AC =7,CD =1,求⊙O 的半径.解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵=BD ︵,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵=BD ︵,∴∠DEB =12∠AOD =12×52°=26°;(2)设⊙O 的半径为x ,那么OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.方法总结:此题综合考查了圆周角定理及其推论、垂径定理以及勾股定理.注意掌握数形结合思想与方程思想的应用. 变式训练:见《学练优》本课时练习“课堂达标训练〞第3题【类型四】 圆周角定理的推论与圆心角、弧、弦之间的关系的综合如图,△ABC 内接于⊙O ,AB =AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵的中点,求证:∠B =∠BEC .解析:由点B 是CD ︵的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题【类型五】 圆周角定理的推论与三角形知识的综合如图,A 、P 、B 、C 是⊙O 上四点,且∠APC =∠CPB =60°.连接AB 、BC 、AC .(1)试判断△ABC 的形状,并给予证明;(2)求证:CP =BP +AP .解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,那么△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形;(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB≌△ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .方法总结:此题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键. 【类型六】 圆周角定理的推论与相似三角形的综合如图,点E 是BC ︵的中点,点A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE ·DE .解析:点E 是BC ︵的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.证明:∵点E 是BC ︵的中点,即BE ︵=CE ︵,∴∠BAE =∠角),∴△BDE ∽△DE ∶BE ,∴BE 2=AE 方法总结:角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等〞这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来那么相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.第2课 伟大的历史转折1 教学分析【教学目标】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。

九年级数学下册《圆周角和圆心角的关系》教案、教学设计

九年级数学下册《圆周角和圆心角的关系》教案、教学设计
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。

《圆周角和圆心角的关系》教学设计

《圆周角和圆心角的关系》教学设计

《圆周角与圆心角的关系》教学设计教学目标:1.掌握圆周角的概念和圆周角定理的证明.2.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.3.学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重点与难点:重点:圆周角定理的证明及应用.难点:圆周角定理的证明和分类讨论问题的应用.课前准备:多媒体课件、圆规、三角板.教学过程:一、创设情境,引入新课活动内容1:视频欣赏(多媒体播放足球射门视频)活动内容2:设疑导入如图,在足球射门的游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠BAC)有关.当球员在B、D、E三点射门时,他所处的位置对球门AC分别形成三个张角∠BAC,∠BAC,∠BAC.这三个角的大小有什么关系?在这三点射门的效果一样吗?今天就让我们一起来共同学习圆周角和圆心角的关系.【板书课题:3.4圆周角和圆心角的关系(1)】处理方式:学生观看视频后思考、分析并进行交流.设计意图:通过视频欣赏,充分调动学生的课堂热情和积极性,同时也让学生感受到生活或娱乐中处处体现着数学的艺术.通过设疑,激发学生的求知欲,培养学习兴趣.二、探究学习,感悟新知活动内容1:圆周角的概念问题1:观察右图中的∠BAC,∠BAC,∠BAC,你有什么发现?与同伴交流.问题2:∠BAC,∠BAC,∠BAC是圆心角吗?它们与圆心角的区别是什么?与同伴交流.处理方式:学生先自主思考,然后与同伴交流自己的想法.教师组织学生说出自己发现,引导学生与圆心角进行对比,重点引导学生说出∠BAC、∠BAC、∠BAC的共同特特征,把握两点特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.接着给出圆周角定义:顶点在圆上,并且两边分别与圆还有另一个交点.像这样的角,叫做圆周角.巩固练习:火眼金睛1.判断下列各图形中的角是不是圆周角.(第1题图)(第2题图)2.指出图中的圆周角.处理方式:教师先引导学生回顾圆周角定义中的两个条件:①顶点在圆上;②两边分别与圆还有另一个交点.对于第2题,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.两题可采用抢答的形式来完成.设计意图:通过让学生经历“观察--发现—对比--交流---总结”这一数学活动过程,一方面积累数学活动的经验,另一方面也加深了学生对圆周角的理解.类比圆心角来学习圆周角,学生会感觉自然,易于接受;通过两个练习,让学生加深了对圆周角定义的理解和直观感受. 让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容2:圆周角与圆心角的关系1.直观感受:做一做如图,∠AOB=80°.(1)请你画几个AB所对的圆周角?这几个圆周角有什么关系?与同伴进行交流.(2)这些圆周角和圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.处理方式:对于问题(1)应先让学生明确问题的要求,找到特定的弧,然后再画圆周角.学生所画的圆周角的位置会有不同,教师可以从中找出典型的图形进行展示,同时引导学生观察所画的圆周角与圆心角∠AOB有几种位置关系,然后通过对比猜测这几个圆周角的关系,与同伴交流自己的想法.学生所画圆周角展示:对于问题(2),教师可引导学生通过度量来进行猜测验证这些圆周角和圆心角∠AOB 的大小有什么关系.并启发学生思考:为什么不同位置的圆周角度数相同?从而初步得出结论:圆周角的度数等于它所对弧上的圆心角的一半.设计意图:通过画图加深对圆周角的理解,同时在画图的过程中让学生感受所画的圆周角与圆心角∠AOB所对的弧是同一段弧.为下面的对比或度量猜测结论做好铺垫.2.猜想:议一议在上图中,改变∠AOB的度数,你得到的结论还成立吗?说说你的想法,并与同伴交流.处理方式:学生猜想结论是否成立,并尝试进行说理.3.证明已知:如图,∠C 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角. 求证:12C AOB ∠=∠.分析:根据圆周角和圆心角的位置关系,分三种情况讨论:(1)圆心O 在圆周角∠C 的一边上,如图(1);(2)圆心O 在圆周角∠C 的内部,如图(2);(3)圆心O 在圆周角∠C 的外部,如图(3).处理方式:先引导学生明确题意,再根据圆周角和圆心角的位置关系,进行分析--讨论--证明.证明时先让学生证明圆心O 在圆周角∠C 的一边上的情况,对于另外两种情况教师应适时进行引导,分析如何添加辅助线,将其转化为(1)的情况进行证明.情况(1)可让学生到黑板板演,适时点拨强调,规范学生的解题步骤.情况(2)(3)如果时间充足可让学生板演证明过程,也可借助实物投影展示学生的证明过程.注意要及时给予肯定的评价,帮助学生树立信心.证明:(1)当圆心O 在圆周角∠C 的一边上时,如图(1).∵∠AOB 是△ACO 的外角,∴∠AOB =∠C +∠A .∵OA=OC ,∴∠A =∠C .∴∠AOB =2∠C ,12C AOB ∠=∠即. (2)当过点C 作直径CD .证明过程略.(3)当过点C 作直径CD . 证明过程略.(2)(3)4.总结归纳通过以上证明过程你能得出什么结论?圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.5.应用(1)如图,在直径为AB的半圆中,O为圆心,C,D为半圆上的两点,∠COD=50°,则∠CAD=_______.第(1)题第(2)题(2)如图,A、B、C为⊙O上三点,∠ABO=65°,求∠BCA的度数.处理方式:学生在说出答案的同时,请学生说出理由.教师总结:求圆周角时,要想到它所对的弧对的圆心角.设计意图:通过学生画圆周角,并测量出来,就能直观地感受它们之间的关系,然后就会很努力的去验证这个目标.两个巩固练习,是为了让学生活学活用.三、拓展延伸,提高认识想一想:(1)在足球射门的游戏中,球员在B、D、E三点射门时,所形成的三个张角∠BAC,∠BAC,∠BAC大小有什么关系?你能用圆周角定理证明你的结论吗?(2)如图,在⊙O中AB=EF,那么∠C和∠G的大小有什么关系?为什么?处理方式:(1)引导学生观察∠BAC,∠BAC,∠BAC是同弧(AC )所对的圆周角,根据圆心角定理,它们都等于AC 所对圆心角的一半,所以这几个圆周角相等.(2)引导学生结合圆心角定理和圆周角定理得出∠C 和∠G .根据以上学生的回答教师及时提出问题:由以上两题你能得出什么结论?学生思考总结后给出圆周角定理的推论:同弧或等弧所对的圆周角相等巩固训练:1.判断题:(1)在同圆或等圆中等弧所对的圆周角相等. ( )(2)相等的圆周角所对的弧也相等. ( )(3)同弦所对的圆周角相等. ( )2.在如图所示的8个角中,哪些是相等的角?你能从图中找出几对相似三角形吗?处理方式:训练习题由学生独立思考,然后采用抢答的形式完成.对于第1题中的第(3)题,要留给学生更多的思考空间.第(2)个问题由学生来处理,最后总结:由同一条弧去找圆周角,相似三角形也是去找相等的角.设计意图:学生掌握圆周角定理的基础上,应用圆周角定理得出推论,让学生更能深刻的体会到圆心角和圆周角的关系和联系.即时训练就是加深对知识的理解和应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再与大家一起分享.学生畅谈自己的收获!设计意图:通过学生对本节课所学进行梳理,理清本节课的主要内容,并且养成反思与总结的习惯,培养学生自主发展的意识.五、达标检测,反馈提高1.如图,点B ,C 在⊙O 上,且BO =BC ,则圆周角∠BAC 等于 .OABC(第1题)(第2题)(第3题)2.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC 的度数为.3.(选做)如图,弦AB与CD相交于点P,求证:P A•PB=PC•PD处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,尽可能地调动学生学习数学的积极性,使每个学生都能有所提高,明确哪些学生需要加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本80页,习题3.4第1、2题.选做题:课本81页,习题3.4第4题.板书设计:学生活动区域。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周角和圆心角的关系
教学目标
(一)教学知识点
1.了解圆周角的概念.
2.理解圆周角定理的证明.
(二)能力训练要求
经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.
(三)情感与价值观要求
通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法.
教学重点
圆周角概念及圆周角定理.
教学难点
认识圆周角定理需分三种情况证明的必要性.
教学方法
指导探索法.
教具准备
投影片两张
第一张:射门游戏(记作§3.3.1A)
第二张:补充练习1(记作§3.3.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角.
[生]学习了圆心角,它的顶点在圆心.
[师]圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角.这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?
Ⅱ.讲授新课
1.圆周角的概念
[师]同学们请观察下面的图(1).(出示投影片3.3.1A)
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关.
[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?
[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点.(通过学生观察,类比得到定义)
圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角.
[师]请同学们考虑两个问题:
(1)顶点在圆上的角是圆周角吗?
(2)圆和角的两边都相交的角是圆周角吗?
请同学们画图回答上述问题.
[师]通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:
(1)角的顶点在圆上;
(2)两边在圆内的部分是圆的两条弦.
2.补充练习1(出示投影片§3.3.1B)
判断下列图示中,各图形中的角是不是圆周角,并说明理由.
答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是.3.研究圆周角和圆心角的关系.
[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?
我们知道,在同圆或等圆中,相等的弧所对的圆心角相等.那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?
[师]请同学们动手画出⊙O中所对的圆心角和圆周角.观察所对的圆
周角有几个?它们的大小有什么关系?你是通过什么方法得到的?所对的圆心角和所对的圆周角之间有什么关系?
[生]所对的圆周角有无数个.通过测量的方法得知:所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.
[师]对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流.
[生]互相讨论、交流,寻找解题途径.
[师生共析]能否考虑从特殊情况入手试一下.圆周角−−−→
特殊一边经过圆心.
由下图可知,显然∠ABC=1
2
∠AOC,结论成立.
(学生口述,教师板书)
如上图,已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.
求证:∠ABC =12
AOC . 证明:∠AOC 是△ABO 的外角,
∴∠AOC =∠ABO +∠BAO .
∵OA =OB ,
∴∠ABO =∠BAO .
∴∠AOC =2∠ABO .
即∠ABC =12
∠AOC . [师]如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)
[生甲]如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.
由刚才的结论可知:
∠ABD =
12∠AOD ,∠CBD =12
∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD ),即∠ABC =12∠AOC . [生乙]在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.
由前面的结果,有
∠ABD =
12∠AOD ,∠CBD =12
∠COD . ∴∠ABD -∠CBD =12(∠AOD -∠COD ),即∠ABC =12∠AOC . [师]还会有其他情况吗?请思考.
[生]不会有.
[师]经过刚才我们一起探讨,得到了什么结论?
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
[师]这一结论称为圆周角定理.在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?
[生]由“特殊到一般”的思想方法,转化的方法,分类讨论的方法,……
[师]好,同学们总结得很好.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略.今后我们在处理问题时,注意运用.
4.课本P103,随堂练习1、2
Ⅲ.课时小结
[师]到目前为止,我们学习到和圆有关系的角有几个?它们各有什么特点?相互之间有什么关系?
[生]和圆有关系的角有圆心角和圆周角.圆心角顶点在圆心,圆周角顶点在圆上,角的两边和圆相交.一条弧所对的圆周角等于它所对的圆心角的一半.[师]这节课我们学会了什么定理?是如何进行探索的?
[生]我们学会了圆周角定理.通过分类讨论的思想方法,渗透了由特殊到一般的转化方法.对定理进行了研究和证明.
[师]好,同学们今后在学习中,要注意探索问题方法的应用.
注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.
(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.
Ⅳ.课后作业
习题3.4
Ⅴ.活动与探究
同学们知道:顶点在圆上,并且两边都和圆相交的角,叫圆周角,因为一条弧所对的角圆周角等于它所对的圆心角的一半,而圆心角的度数等于它所对的弧的度数,所以圆周角的度数等于它所对的弧的度数的一半.类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫圆外角.如下图中,∠DPB是圆外角,那么∠DPB的度数与它所夹的两段弧和的度数有什么关系?类似地可定
义圆内角及其度量.
(1)你的结论用文字表述为(不准出现字母和数学符号):________;
(2)证明你的结论.
[过程]让学生通过思考讨论,想办法把圆外角转化成和已学过的圆周角联系起来,借助圆周角把∠DPB 的度数转化成它所夹的两段弧和的度数差的一半.
[结果](1)圆外角的度数等于它所夹弧的度数差的一半.
(2)证明:连结BC .
∵∠DCB =∠DPB +∠ABC ,
∴∠DPB =∠DCB -∠ABC .
而∠DCB =21的度数.
∠ABC =2
1
的度数.
∴∠DPB =
12(的度数-的度数).
板书设计 §3.3.1 圆周角和圆心角的关系(一)
一、1.探究圆周角的定义及其特征.
2.探究圆周角定理及其证明.
二、课堂练习
三、课时小结
四、课后作业。

相关文档
最新文档