高中数学人教大纲本必修第二册(B版)
新教材 人教B版高中数学选择性必修第二册全册精品教学课件(共958页)
3.1.1 基本计数原理 P2
3.1.2 排列与排列数 P80
3.1.3 组合与组合数 P167
3.3 二项式定理与杨辉三角 P234
4.1 条件概率与事件的独立性
4.1.1 条件概率 P315
4.1.2 乘法公式与全概率公式 P351
4.1.3 独立性与条件概率的关系 P428
4.2 随机变量
2.(变条件,变结论)本例(2)换为:用数字 1,2,3 可以组成多少个 没有重复数字的整数?
[解] 分三类: ①第一类为一位整数,有 1,2,3,共 3 个; ②第二类为二位整数,有 12,13,21,23,31,32,共 6 个; ③第三类为三位整数,有 123,132,213,231,312,321,共 6 个. ∴共组成 3+6+6=15 个无重复数字的整数.
的个数是( )
A.1
B.3
C.6
D.9
D [这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个
值 x 有 3 种方法;第二步,在集合{-1,-2,4}中任取一个值 y 有 3
种方法.根据分步乘法计数原理知,有 3×3=9 个不同的点.]
4.一个礼堂有 4 个门,若从任一个门进,从任一门出,共有不 同走法________种.
4.2.1 随机变量及其与事件的联系 P476
4.2.2 离散型随机变量的分布列 P511
4.2.3 二项分布与超几何分布 P566 4.2.4 随机变量的数字特征 P655 4.2.5 正态分布 P754
4.3.1 一元线性回归模型 P801
4.3 统计模型
4.3.2 独立性检验 P919
3.1.1 基本计数原理 第1课时 基本计数原理
高中数学(人教B版)必修第二册:事件之间的关系与运算【精品课件】
事件的关系及运算 【例 2】 在掷骰子的试验中,可以定义许多事件.例如,事件 C1={出现 1 点},事件 C2={出现 2 点},事件 C3={出现 3 点},事 件 C4={出现 4 点},事件 C5={出现 5 点},事件 C6={出现 6 点}, 事件 D1={出现的点数不大于 1},事件 D2={出现的点数大于 3}, 事件 D3={出现的点数小于 5},事件 E={出现的点数小于 7},事件 F={出现的点数为偶数},事件 G={出现的点数为奇数},请根据上 述定义的事件,回答下列问题:
(5)由(4)的分析,事件 E“一种报纸也不订”是事件 C 中的一种 可能情况,所以事件 C 与事件 E 可能同时发生,故 C 与 E 不是互斥 事件.
18
互斥事件和对立事件的判定方法 (1)利用基本概念 要判断两个事件是不是互斥事件,只需要找出各个事件所包含 的所有结果,看它们之间能不能同时发生,在互斥的前提下,看两 个事件中是否必有一个发生,可判断是否为对立事件.注意辨析“至 少”“至多”等关键词语的含义,明晰它们对事件结果的影响.
3
问题:在上述事件中,(1)事件 C1 与事件 C2 的并事件是什么? (2)事件 D2 与 G 及事件 C2 间有什么关系? (3)事件 C1 与事件 C2 间有什么关系? (4)事件 G 与事件 H 间有什么关系? [提示] (1)C1∪C2={出现 1 点或 2 点};(2)D2∩G=C2;(3)为 互斥事件;(4)为对立事件.
4
1.事件的关系与运算
(1)事件的关系
定义
表示法
一般地,对于事件 A 与事件 B,
包含 如果事件 A 发生,事件
_A_⊆__B__
关系 B__一__定__发__生_,这时称事件 A 包含 (或_B_⊇_A__)
高中数学人教B版 必修第二册 对数运算法则 课件1
【内化·悟】 1.lg 2与lg 5之间有何关系? 提示:lg 2+lg 5=1,lg 2=1-lg 5,lg 5=1-lg 2. 2.应用对数运算性质求值时关键是什么? 提示:关键是对数的底数应该相同,才能利用性 质合并计算.
【类题·通】
利用对数运算求值的方法 (1)“收”,将同底的两对数的和(差)收成积(商) 的对数. (2)“拆”,将积(商)的对数拆成同底的两对数 的和(差).
【习练·破】 1.(lg 5)2+lg 2×lg 5+lg 2=________. 【解析】原式=lg 5(lg 5+lg 2)+lg 2=lg 5+lg 2=
lg 10=1. 答案:1
2.计算:
log 27 3
+lg
4+lg
25.
【解析】原式= log 3 ( 3 )6+2lg 2+2lg 5=6+2(lg 2 +lg 5)=8.
【解析】选C.因为lg 2=m,lg 3=n, 所以 lg 12 2lg 2 lg 3 2m n 2m n .
lg 15 lg 3 lg 5 n 1 lg 2 n 1 m
2.化简 x2 y .
loga 3 z
【解析】因为 x2 y >0且x2>0, y >0,所以
y>0,z>0.
【思考】
(1)对数的换底公式用常用对数、自然对数表示是什么
形式?
提示:logab= logNM ,logab= logNM. .
(2)你能用换底公式推导出结论logNn Mm
提示: lg b
ln b
m吗? n
lg a
ln a
人教B版高中数学必修第二册教学课件:第五章5.4统计与概率的应用
员工 项目 子女教育 继续教育 大病医疗 住房贷款利息 住房租金 供养老人
A
B
C
D
E
F
○
○
×
○
×
○
×
×
○
×
○
○
×
×
×
○
×
×
○
○
×
×
○
○
×
×
○
×
×
×
○
○
×
×
×
○
【解题提示】 (1)按比例分配进行分层抽样。 (2)按照字典排序法列举出所有的抽取结果和事件M的所有基本 事件,然后利用基本事件个数计算概率。
6
6
(3)设第1组抽取的2人为A1,A2,第3组抽取的3人为B1,B2,B3,第4组抽取的1人为C,则从这6人
中随机抽取2人有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,
B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,
估算,其p%分位数即为频率分布直方图中使左侧小矩形面积之和等于p%的分点值. ②某校100名学生的数学测试成绩的频率分布直方图如图:
由此可估计其80%分位数.
首先求分数在130以下的学生所占比例为5%+18%+30%+22% =75%.在140以下的学生所占比例为75%+15%=90%.
因此,80%分位数一定位于[130,140)内,
织了一场PK赛,A,B两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者
得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A队选手获胜的概率均为 2 ,
高中数学人教B版 必修第二册 函数的应用(二) 课件1
,
a 4
5
2
4
2
经过了k-5=10-5=5秒,即m=5.
答案: 1ln 51
5
2
【内化·悟】 本题中用来求参数隐含的条件是什么? 提示:假设过5秒后甲桶和乙桶的水量 相等.
【类题·通】 怎样求应用性问题解析式中的参数? 应用性问题变量间的关系式中往往含有参数, 需要先确定参数值,解题中要认真审题,条件中 会给出特殊情况下的一对参数的对应值,用来 确定参数的值,这是解题的前提.
360
(1)此次行车最经济的车速是________. (2)如果不考虑其他费用,这次行车的总费用最 小值为________. 【思维·引】表示出行车的时间、总费用后利 用基本不等式求最小值及取最小值时的车速.
【解析】(1)总费用为y=36× 120 120 (4 x2 )6
=7 200 2x 240.
类型三 幂函数、对数型函数模型的应用 角度1 幂函数模型的应用 【典例】已知A,B两地的距离是120 km,按交通法规规 定,A,B两地之间的公路车速应限制在50~100 km/h, 假设汽油的价格是6元/L,以x km/h速度行驶时,汽车 的耗油率为 (4 x2 ) L/h,支付司机每小时的工资36元.
殖地产卵,科学家经过测量发现候鸟的飞行速度可以表
示为函数v=
1 2
log3
x 100
lg
x0
,单位是km/min,其中x表
示候鸟每分钟耗氧量的单位数,x0代表测量过程中某类
候鸟每分钟的耗氧量偏差(参考数据:lg 2=0.30,
31.2=3.74,31.4=4.66).
(1)当x0=2,候鸟每分钟的耗氧量为8 100个单位时,候鸟的飞行速度是多少 km/min? (2)当x0=5,候鸟停下休息时,它每分 钟的耗氧量为多少单位?
人教B版高中数学选择性必修第二册精品课件 第3章 排列、组合与二项式定理 第1课时 组合及组合数公式
数?
C.从全班同学中选出3名同学参加学校运动会开幕式,有多少种选法?
D.从全班同学中选出2名同学分别担任班长、副班长,有多少种选法?
解析 对于A选项,从4名志愿者中选出2人分别参加导游和翻译的工作,将2
人选出后,还要安排导游或翻译的工作,与顺序有关,这个问题为排列问题;
名师点睛
1.排列与组合的区别与联系
(1)共同点:两者都是从n个不同对象中取出m(m≤n)个对象.
(2)不同点:排列与对象的顺序有关,组合与对象的顺序无关.
(3)只要两个组合中的对象完全相同,不论对象的顺序如何,都是相同的组
合,只有当两个组合中对象不完全相同时,才是不同的组合.
2.组合与组Biblioteka 数的区别目录索引基础落实·必备知识一遍过
重难探究·能力素养速提升
学以致用·随堂检测促达标
1.理解组合的概念,会区分排列与组合问题.
正确认识组合与排列的区别与联系
课程标准
2.掌握组合数公式,会利用公式解决一些简单组合问题,理解排列
数与组合数之间的联系.
3.掌握组合数的两个性质,能够应用组合数的性质进行有关的化
多少种.
1
解 因为一共有2件次品,至多有1件正品即恰有1件正品,故抽法有 C98
=98种.
规律方法 解答简单的组合问题的方法
(1)弄清要做的这件事是什么事.
(2)看选出的元素是否与顺序有关,也就是看是不是组合问题.
(3)结合两计数原理,利用组合数公式求出结果.
变式训练3[2024甘肃白银高二期末]课外活动小组共13人,其中男生8人,女
选2人参加服务,则( AD)
高中数学(人教B版)必修第二册:增长速度的比较【精品课件】
(3)
1
1 2 1 4 1 2
, 2 , 4 可分别视为函数()
4
1
2
= ,() =
1
,ℎ()
2
在同一坐标系内分别作出这三个函数的图象,由图象易知
1
4
1
= 2,当 = 4时的函数值,
>
1
4
>ℎ
1
4
1
,即
1 4
2
1
>
1 2
4
>
1 2
.
4
反思
感悟
反思感悟
1.比较函数值大小的关键在于构造恰当的函数,若指数相同而底数不同,则考虑幂函数;若指数不同而底数
4
81
64
1.261
5
243
125
1.465
其中符合指数函数变化的函数是
6
729
216
1.630
1
7
2 187
343
1.771
8
6 561
512
1.892
…Hale Waihona Puke ……….
解析 (1)在一次函数、幂函数、对数函数和指数函数中,增长最快的是指数函数 = 5 ,故选D.
(2)通过观察、猜想、归纳,函数1符合指数函数的变化.
4.55 < 5,所以它符合奖金总数不超过5万元的要求.
再计算按模型 = 7 + 1奖励时,奖金是否超过利润的25%,即当∈[10,1 000]时,利用计算器或
计算机作() = 7 + 1 − 0.25的图象(图略),由图象可知()在[10,1 000]上是减少的,因此
解析 由于指数函数增长迅速,而对数型函数增长缓慢,因此满足先上升后下降再上升的是() =
人教B版高中数学选择性必修第二册精品课件 第三章 第1课时 组合与组合数、组合数的性质
答案:C
3.若C12
=
2-3
C12 ,则
n 的值为(
A.3或5
B.3或4
C.5
D.15
)
解析:由题意及组合数的性质,得n=2n-3或n+2n-3=12,解得n=3或n=5.故选
A.
答案:A
48
49
4.计算:C50
+ C50
=
48
解析:C50
49
+ C50
答案:1 275
=
49
C51
.
=
2
(2)从3,5,7,11中任取两个数相乘,不同的积有多少种?
以上两个问题中哪个是排列?(1)与(2)有何不同特点?
提示:(1)是排列.(1)中选取的两个数是有序的,(2)中选取的两个数是无序的.
2.(1)一般地,从n个不同对象中取出m(m≤n)个对象并成一组,称为从n个不
同对象中取出m个对象的一个组合.
成:
第一步,从 n 个不同对象中选出 m 个,有C 种选法;
第二步,将选出的 m 个对象做全排列,有A
种排法.
由分步乘法计数原理可知A
=
C
A
,因此C
=
A
.
A
2.组合数及其性质
组合数 m
n
公式
性质
备注
m
n(n-1)…[n-(m-1)]
n!
n
= m=
=
m m × (m-1) × … × 2 × 1 (n-m)!m!
A29 =72 种.因为选 2 名同学参加某项比赛不用考虑顺序,所以是组合问题,所以
高中数学(人教B版)必修第二册:分层抽样【精品课件】
2.下列试验中最适合用分层抽样法抽样的是( ) A.从一箱 3 000 个零件中抽取 5 个入样 B.从一箱 3 000 个零件中抽取 600 个入样 C.从一箱 30 个零件中抽取 5 个入样 D.从甲厂生产的 100 个零件和乙厂生产的 200 个零件中抽取 6 个入样 D [D 选项中甲、乙生产的零件有差异,最适合分层抽样.]
160 [男生人数为 560×5602+80420=160.]14源自合 作探究
释 疑
难
15
分层抽样的概念 【例 1】 (1)下列各项中属于分层抽样的特点的是( ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部分中抽取 D.将总体随意分成几部分,然后进行随机抽取
(2)分成的各层互不交叉;
(3)各层抽取的比例都等于样本容量在总体中的比例,即Nn ,其中 n 为样本容量,N 为总体容量.
31
2.计算各层所抽取个体的个数时,若 Ni·Nn 的值不是整数怎么 办?
[提示] 为获取各层的入样数目,需先正确计算出抽样比Nn,若 Ni·Nn 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多 余的个体.
21
(1)④ (2)分层抽样 [(1)①中对四个饲养房抽取的白鼠平均分, 但由于各饲养房所养数量不一,反而造成了每个个体入选的可能性 不相等,是错误的方法.②中保证了每个个体入选的可能性相等, 但由于没有注意到处在四个不同环境会产生不同差异,不如采用分 层抽样可靠性高,且统一编号、统一选择加大了工作量.③中总体 采用了分层抽样,但在每个层次中抽取时有一定的主观性,貌似随 机,实则每个个体被抽到的可能性无法保证相等.
11
3.甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取 一个容量为 90 的样本,应在这三校分别抽取学生( )
第章向量基本定理【新教材】人教B版高中数学必修第二册课件
思考 2:设 e1,e2 是平面向量的一组基底,则 e1,e2 中可能有零 向量吗?平面向量的基底唯一吗?
[提示] 平面向量基本定理的前提条件是 e1,e2 不共线,若 e1, e2 中有零向量,而零向量和任意向量共线,这与定理的前提矛盾, 故 e1,e2 中不可能有零向量;同一平面的基底可以不同,只要它们 不共线.
条件一 平面内任一向量 a 和同一平面内两个不共线向量 e1,e2
条件二
a=λ1e1+μ1e2 且 a=λ2e1+μ2e2
结论
λμ11==λμ22,
2.任意一向量基底表示的唯一性的应用 平面向量基本定理指出了平面内任一向量都可以表示为同一平 面内两个不共线向量 e1,e2 的线性组合 λ1e1+λ2e2.在具体求 λ1,λ2 时 有两种方法: (1)直接利用三角形法则、平行四边形法则及向量共线定理. (2)利用待定系数法,即利用定理中 λ1,λ2 的唯一性列方程组求 解.
2.平面向量基本定理 如果平面内两个向量 a 与 b 不共线,则对该平面内任意一个向 量 c,存在唯一的实数对(x,y),使得 c=__xa+yb______. 3.基底 平面内不共线的两个向量 a 与 b 组成的集合{a,b},常称为该 平面上向量的一组基底,如果 c=xa+yb,则称___xa+yb ______为 c 在基 底{a,b}下的分解式.
2.平面向量基本定理的实质是什么? [提示] 平面向量基本定理的实质是把任一向量两个方向进行 分解.
【例 3】 平面内有一个△ABC 和一点 O(如图), 线段 OA,OB,OC 的中点分别为 E,F,G,BC, CA,AB 的中点分别为 L,M,N,设O→A=a,O→B= b,O→C=c.
(1)试用 a,b,c 表示向量E→L,F→M,G→N; (2)求证:线段 EL,FM,GN 交于一点且互相平分.
高中数学(人教B版)必修第二册:对数运算法则【精品课件】
2
2
=
2
log3 36
=
2
log36 36
log36 3
1
1
log4 36
1
1
log3
= 2363 = 369, =
=
1
log36 36
log36 4
= 364. ∴
1
+ = 369 + 364 = 3636 = 1.
对数运算法则
学习目标
1.理解对数的运算性质,并能运用运算性质化简、求值.
2.能用换底公式将一般对数转化成自然对数或常用对数.
3.能用对数的运算性质和换底公式进行一些简单的化简和证明.
核心素养:逻辑推理、数学运算
新知学习
情景引入
地震是一种常见的自然灾害,它的强度一般用里氏震级来表示.里氏震级是一种以发生地震时产生的水平位
1
1
1
∴ = log, = log, = log. ∴ = log, = log, = log.
1
1
1
∵ + + = 0,∴ log + log + log = 0,即log() = 0.∴ = 1.
反思感悟
条件求值问题的求解方法
c
名师点析
1.换底公式成立的条件是公式中的每一个对数式都有意义.
2.换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题进行化简、计算和证明.换底
公式在实际应用中究竟换成以什么为底,要由具体已知的条件来确定,一般换成以10为底的常用对数.
人教B版高中数学必修第二册 4.3 指数函数与对数函数的关系【课件】
可知 f(x)∈12,1.故不等式-1≤f-1(x)≤12的解集为[-2,0)∪12,1.
5.[多选]已知函数 f(x)=12x的图像与函数 g(x)的图像关于直线 y= x 对称,令 h(x)=g(1-|x|),则关于函数 h(x)的说法正确的是( )
A.函数 h(x)的图像关于原点对称 B.函数 h(x)为偶函数 C.函数 h(x)的最小值为 0 D.函数 h(x)在(0,1)上为减函数
解析 ∵y=e2x>0,2x=ln y,x=12ln y,∴y=e2x 的反函数为 y=12ln
x,x>0.
2.已知函数y=log3(3-x)(0≤x<3),则它的反函数是( )
A.y=3-3x(x≥0)
B.y=3+3x(x≤1)
C.y=3+3x(x≥0)
D.y=3-3x(x≤1)
解析 ∵0≤x<3,∴y≤1.又3-x=3y,∴x=3-3y.∴y=log3(3- x)的反函数为y=3-3x,x≤1.
8.已知函数f(x)=log2(1-2x). (1)求函数f(x)的定义域和值域; (2)求证:函数y=f(x)的图像关于直线y=x对称.
解 (1)要使函数f(x)=log2(1-2x)有意义,则1-2x>0, 即2x<1.故x<0,此时0<1-2x<1, 所以f(x)=log2(1-2x)<0, 故函数f(x)的定义域为(-∞,0),值域为(-∞,0). (2)证明:由y=f(x)=log2(1-2x)可得1-2x=2y,解得x=log2(1- 2y),故原函数的反函数为y=f(x)=log2(1-2x),与原函数相同,所以函 数f(x)的图像关于直线y=x对称.
B.(0,+∞)
C.-
第章实数指数幂及其运算【新教材】人教B版高中数学必修第二册课件
[跟进训练]
1.(1)4 -34的值是( )
A.3
B.-3
C.±3
D.81
(2)若 x6=2 021,则 x=________.
(3)已知4 a+14=-(3 a+1)3,则实数 a 的取值范围是 ________.
(1)A (2)±6 2 021 (3)(-∞,-1] [(1)4 -34=|-3|=3. (2)因为 x6=2 021,所以 x=±6 2 021. (3)因为4 a+14=|a+1|,(3 a+1)3=a+1, 所以|a+1|=-(a+1),所以 a+1≤0,即 a≤-1.]
[解] (1)
(2) 614- 3 338-( 2-1)0+(-1)2 021+2-1 = 245- 3 287-1-1+21 =52-32-32=-12.
1.化简结果的一个要求和两个不能
2.幂的运算的常规方法 (1)化负指数幂为正指数幂. (2)化根式为分数指数幂. (3)化小数为分数进行运算.
所以 1-6x+9x2= 1-3x2=|1-3x|=1-3x. (2)因为(±9)2=81,所以 81 的平方根为±9,即 a=±9,又(-2)3 =-8, 所以-8 的立方根为-2,所以 b=-2, 所以 a+b=-9-2=-11 或 a+b=9-2=7.
(3)要使 4 a-1 3有意义,则a-1 3>0,且 a-3≠0,即 a>3.]
角度二 指数式的条件求值问题
[探究问题]
1.把
a+ 1a2,a+1a2 分别展开是什么?
[提示]
a+ 1a2=a+1a+2,a+1a2=a2+a12+2.
2.a+1a2 和a-1a2 有什么关系? [提示] a+1a2=a-1a2+4.
【例 4】 已知 a+a-1=5,求下列各式的值: (1)a2+a-2;(2)a -a . [解] (1)因为 a+a-1=5, 所以 a2+a-2=(a+a-1)2-2 =52-2=23. (2)因为a -a 2=a+a-1-2=5-2=3, 所以 a -a =± 3.
【新教材】高中数学 新人教B版必修第二册 6.1.1向量的概念 课件
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
核心概念掌握
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
知识点一
位移与向量
(1)概念:位移被“方向”和“距离”唯一确定,其中“距离”也称为位移
的大小,像位移这样既有 □01 大小 又有 □02 方向 的量称为向量(也称为矢量), 向量的大小也称为向量的 □03 模 (或长度),只有大小的量称为标量,长度、
头 的 端 点 称 为 向 量 的 □07 始点
(或起点),带箭头的端点称为向量
的 □08 终点 .
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
②向量的几何表示 有向线段始点和终点的相对位置确定向量的大小与方向.始点为 A,终
点为 B 的有向线段表示的向量,可以用符号简记为 □09 A→B ,此时向量的 模用 □10 |A→B| 表示.
6.1通过对力、速度、位移的分析,了解平面向量的实际背景, 理解平面向量的意义和两个向量相等的含义.2.理解平面向量的几何表示和基 本要素. 教学重点:1.结合物理背景认识向量,掌握向量与数量的区别.2.会用有 向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表 示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的 模等概念,会辨识图形中的这些相关概念. 教学难点:1.对向量概念的理解.2.共线向量的理解和应用.
A.A→D=C→B B.O→A=O→C C.A→C=D→B D.D→O=O→B
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(3)零向量的方向是________,零向量的模等于________,零向量记作 ________.
人教高中数学必修二B版《向量基本定理与向量的坐标》平面向量初步说课教学课件复习(向量基本定理)
课件 课件
课件
课件
和 e1+ke2
共线?
解:设 ke1+e2 与 e1+ke2 共线, 所以存在 λ 使 ke1+e2=λ(e1+ke2), 则(k-λ)e1=(λk-1)e2.
因为 e1 与 e2 不共线,所以只能有kλ-kλ-=10=,0,则 k=±1.
栏目 导引
第六章 平面向量初步
用基底表示向量
=a-23b.
第六章 平面向量初步
栏目 导引
第六章 平面向量初步
直线的向量参数方程式的应用
已知平面内两定点 A,B,对该平面内任一动点 C,总
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
栏目 导引
第六章 平面向量初步
4.直线上向量的运算与坐标的关系
假设直线上两个向量 a,b 的坐标分别为 x1,x2,即
a=x1e,b=x2e,则 a=b⇔__x_1_=__x_2___; a+b=_(_x_1+__x_2_)_e__.
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
D→F=D→E+E→F=-16b+13b-a=16b-a. 课件
人教B版高中数学必修第二册精品课件 第五章 5.1.4 用样本估计总体
因为两厂生产该产品的长度的平均数都为 10,
而 s2>12 ,
所以 B 厂生产的该产品更符合要求.
反思感悟
用样本的数字特征可估计总体的数字特征,且对同一总体样本容量越大,估
计得越准确.
【变式训练1】 (多选题)某农业科学研究所为对比研究海水稻与普通水稻
的根系深度,分别抽取了试验田中的海水稻以及对照田中的普通水稻各10
次数测试,将所得的数据整理后,画出频率分布直方图(如图所示).图中从左
到右各小长方形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,则估计该校高一年级全体学生的达
标率是多少?
解:(1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大
11
解得 x=140.
11
11
∴140÷10=1 400,
11
11 11
∴第二、四、六小矩形的高依次为1 400 , 350 , 700.
11
(2)∵ 0.004 +
×10≈0.118 6,
1 400
∴1 500×0.118 6≈178,
∴估计有178人不及格.
反思感悟
1.在频率分布直方图中,小矩形的面积表示频率,所有矩形的面积和为1.
数分别为(
)
A.85,85,85
B.87,85,86
C.87,85,85
D.87,85,90
解析:由题意可得所抽取学生成绩的平均数为87,众数为85,中位数为85.
由样本估计总体,可得答案C.
答案:C
2.某学校想要调查全校同学对获得过诺贝尔物理学奖的华人的了解程度,
人教B版高中数学必修第二册 4.2 4.22 对数运算法则【课件】
8.已知 x,y,z 为正数,3x=4y=6z,2x=py.
(1)求 p;
(2)求证:1z-1x=21y.
解 (1)设 3x=4y=6z=k(k>1), 则 x=log3k,y=log4k,z=log6k, 由 2x=py,得 2log3k=plog4k=p·lloogg334k, ∵log3k≠0,∴p=2log34. (2)证明:1z-1x=lo1g6k-lo1g3k=logk6-logk3=logk2=12logk4=21y, ∴1z-1x=21y.
18
2
=(log62)2+(log63)2+3log62×log63 9 =(log62)2+(log63)2+2log62×log63 =(log62+log63)2 =1.
解
10.设 0<a<1,x,y 满足 logax+3logxa-logxy=3,若当 y= 42时,
logay 取得最小值,求 a 的值.
C.logam Mn=
D.logaM=lloogg((--22))Ma
解析
由对数的运算性质知
A,B
错误;对于
C,logam
n
Mn=logaMm
=
mn logaM,
=mn logaM,∴C 正确;D 中-2 不能做底数,∴D 错误.故
选 C.
2.给出下列式子: ①lg (3+2 2)-lg (3-2 2)=0; ②lg (10+ 99)×lg (10- 99)=0;
)
A.13
B.3
C.-13
D.-3
解析 由 2.5x=1000,0.25y=1000 得 x=log2.51000=lg 32.5,y=
log0.251000=lg 03.25,∴1x-1y=lg 32.5-lg 03.25=13.
高中数学(人教B版)必修第二册:向量基本定理【精品课件】
激趣诱思
知识点拨
名师点析对共线向量基本定理的理解
(1)共线向量基本定理中条件“a≠0”必不可少,这是因为如果a=0,则
一定有b与a共线(零向量与任意向量共线),此时b有两种情况:
①b=0;②b≠0.若b=0,此时b=λa中的λ有无数个;若b≠0,此时不存在λ
使得b=λa成立.这两种情况违背λ“存在且唯一”的特点.
其中正确的结论的序号为
.
解析:如图,
1
1
= + =-b+2 =-b-2a,①正确;
1
= + =a+2b,②正确;
1
1
1
1
= + =-b-a, = + 2 =b+2(-b-a)=2b-2a,③正确;
④ =
1
1
=-2a,④不正确.
性.唯一性是指如果c=xa+yb=μa+vb,那么x=μ且y=v.
(3)当a与b不共线时,xa+yb≠0的充要条件是x与y中至少有一个不为
0.
激趣诱思
知识点拨
2.基底
平面内不共线的两个向量a与b组成的集合{a,b},常称为该平面上
向量的一组基底,此时如果c=xa+yb,则称xa+yb为c在基底{a,b}下
若|a|=5,b与a方向相反,且|b|=7,则a=
b.
5
解析:由题意知a=- 7 b.
5
答案:-
7
微拓展
对于任意两个向量a,b,若存在不全为0的实数对(λ,μ)使λa+μb=0,则
a与b共线.
激趣诱思
知识点拨
微练习 2
已知向量 a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教大纲本必修第二册(B版)知识点汇总一、立体几何初步(一)几何体1.柱、锥、台、球的结构特征(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
棱锥与圆锥统称为锥体。
(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台和棱台统称为台体。
(4)球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
(5)组合体由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。
2.空间几何体的三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。
他具体包括:(1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度;(2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度;3.空间几何体的直观图(1)斜二测画法①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使∠X’O’Y’ =45°(或135°),它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
(2)平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点。
(二)面积与体积1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
(三)空间点线面1.平面概述(1)平面的两个特征:①无限延展②平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。
2.三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A l ∈,B l ∈,A α∈,B α∈⇒α⊂l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
公理3:经过不在同一直线上的三点,有且只有一个平面。
推论一:经过一条直线和这条直线外的一点,有且只有一个平面。
推论二:经过两条相交直线,有且只有一个平面。
推论三:经过两条平行直线,有且只有一个平面。
3.空间直线:(1)空间两条直线的位置关系: 相交直线——有且仅有一个公共点; 平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。
相交直线和平行直线也称为共面直线。
异面直线的画法常用的有下列三种:(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。
即公理4:平行于同一条直线的两条直线互相平行。
(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。
推理模式:,,,A B a B a ααα∉∈⊂∉⇒AB 与a 是异面直线。
aba bαα4.直线和平面的位置关系(1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类。
它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=I,//a α。
aαaα线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
推理模式:,,////a b a b a ααα⊄⊂⇒.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
推理模式://,,//a a b a b αβαβ⊂=⇒I .5.两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
abβαaPαOA定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭I推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。
推论模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=⊂⊂=⊂⊂⇒I I (2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平6.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I 。
注意:(1)三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 (2)要考虑a 的位置,并注意两定理交替使用。
7.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,cbaβα我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:l ⊥α。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
8.面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。
二、解析几何初步1.倾斜角:一条直线L 向上的方向与X 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。
2.斜率:当直线的倾斜角不是90°时,则称其正切值为该直线的斜率,即k =tan α;当直线的倾斜角等于90°时,直线的斜率不存在。
3.过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k =tan 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为90°)。
4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。
确定直线方程的形直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
5.直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合: ①l 1//l 2⇔ k 1=k 2;②l 1⊥l 2⇔ k 1k 2=-1。
(2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零。
①l 1//l 2⇔212121C C B B A A ≠=; ②l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③l 1与l 2相交⇔2121B B A A ≠; ④l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。
两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。
5.距离(1)两点间距离:若A (x 1,y 1),B (x 2,y 2),则212212)()(y y x x AB -+-=特别地:x //AB 轴,则=AB ||21x x -、y //AB 轴,则=AB ||21y y -。
(2)平行线间距离:若0:,0:2211=++=++C By Ax l C By Ax l , 则:2221BA C C d +-=。
注意点:x ,y 对应项系数应相等。
(3)点到直线的距离:0C By Ax :l ),y ,x (P =++οο,则P 到l 的距离为:22BA CBy Ax d +++=οο7.圆的方程圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。
特殊地,当0==b a 时,圆心在原点的圆的方程为:222r y x =+。