有限元分析课后习题

合集下载

有限单元法课后习题全部答案_王勖成

有限单元法课后习题全部答案_王勖成


∂ 2φ ∂ 2φ ∂φ ∂φ k − ∫ k 2 + k 2 + Q δφ d Ω + ∫ δφ d Ω − ∫ αφ − q − k δφ d Γ Ω Γ − Γ Γ q q ∂y ∂n ∂n ∂x
欧拉方程: k
∂ 2φ ∂ 2φ + +Q = k 0 ∂x 2 ∂y 2
习题 1.2: 在用有限元法求解时,边界条件总是满足的,控制方程的不完全匹配,会产生误差。题中所 ,代入边 给出的近似函数: φ =a0 + a1 x + a2 x + a3 x ,应该满足边界条件,对于情况(1)
2 3
界条件可得 = a0 0, = a3
1 − a1 L − a2 L2 ,从而 L3 x3 x3 x3 2 ) + a ( x − ) + 2 L2 L L3

= =
∑{ A
m k =1 m
T
( N j ( xk )) [ A( N i ( xk )ai ) − f ( xk )]
m
}
( N j )A( N i )ai − ∑ AT ( N j ) f = k 1= k 1
T
∑A
= Ka-P
(写成矩阵形式)
因此, kij =
d 2 w dw d 3 w 0 dx 2 δ dx − dx3 δ w = 0
L
1.5 如有一问题的泛函为 = Π ( w)

L
0
EI d 2 w 2 kw2 + qwdx ,其中 E, I, k 是常数,q 2 + 2 dx 2

机械结构有限元分析第二章课后答案 哈工大

机械结构有限元分析第二章课后答案 哈工大

εz =
∂w =0 ∂z
γ xy =
∂u ∂v + =0 ∂y ∂x
γ yz =
∂v ∂w + =0 ∂z ∂y
γ zx =
∂u ∂w + = 12 × 10 2 ∂z ∂x
2.9 一具有平面应力场的物体,材料参数为 E、v。有如下位移场
u (x, y ) = ax 3 − bxy 2
v(x, y ) = cx 2 y − dy 3
εz
γ xy
γ yz
γ zx ]
T
式中, D —弹性矩阵,是一个常数矩阵。 虚位移原理:一个弹性体在外力和内力作用下处于平衡状态,则对于任何约束允许的虚位移来 说,外力所做的虚功等于内力的虚功。
2.2 说明弹性力学中的几个基本假设。
答:弹性力学中的几个基本假设有:
(1)连续性假定,指假定整个物体的体积都被组成该物体的介质所填满,不存在任何空隙。 (2)完全弹性假定,指假定物体服从胡克定律,即应变与引起该应变的应力成正比。 (3)均匀性假定,指假定整个物体是由同一材料组成的。
2 ∂ 2ε x ∂ ε y ∂ 3u ∂ 3v + = + = 2c − 2b ∂y 2 ∂x 2 ∂x∂y 2 ∂y∂x 2
∂ 2 γ xy ∂x∂y
= 2c − 2b
2 2 ∂ 2 ε x ∂ ε y ∂ γ xy 所以满足 的相容方程 + = ∂x∂y ∂y 2 ∂x 2
2.10 一具有平面应力场的物体,材料参数为 E、v。有如下位移场
σy =
⎛ ∂v ∂u ⎞ 4v ⎡⎛ 3aE Eb ⎞ 2 ⎛ ⎞ 2⎤ ⎜ ⎜ ∂y + µ ∂x ⎟ ⎟ = 4v − E ⎢⎜ c + 2v − 3a ⎟ x − ⎜ 3d + 2v − b ⎟ y ⎥ ⎠ ⎝ ⎠ ⎦ ⎣⎝ ⎝ ⎠

(完整版)有限元第二章课后题答案

(完整版)有限元第二章课后题答案

2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。

2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。

2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。

而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。

2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。

矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。

矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。

因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。

2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。

计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。

2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。

在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。

若形状相差过大,使结构应力分析困难加大,误差同时也加大。

2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。

《有限元分析》课程作业

《有限元分析》课程作业

《有限元分析》课程作业任课教师:徐亚兰学生姓名:陈新杰学号:班级:1304012时间:2016-01-05一、问题描述及分析问题:如图1所示,有一矩形平板,在右侧受到P=10KN/m 的分布力,材料常数为:弹性模量Pa E 7101⨯=;泊松比3/1=μ;板的厚度为t=;试按平面应力问题利用三角形与矩形单元分别计算各个节点位移及支座反力。

图1 平面矩形结构的有限元分析分析:使用两种方案:一、基于3节点三角形单元的有限元建模,将矩形划分为两个3节点三角形单元;二、基于4节点矩形单元的有限元建模,使用一个4节点矩形单元。

利用MATLAB 软件计算出各要求量,再将两种方案的计算结果进行比较、分析、得出结论。

二、有限元建模及分析1、基于3节点三角形单元的有限元建模及分析 (1)结构的离散化与编号如图2所示,将平面矩形结构分为两个3节点三角形单P=10KN/m1m1m元。

单元①三个节点的编号为1,2,4,单元②三个节点的编号为3,4,2,各个节点的位置坐标为(),,1,2,3,4i i x y i =,各个节点的位移(分别沿x 方向和y 方向)为(),,1,2,3,4i i u v i =。

图2 方案一:使用两个3节点三角形单元(2)各单元的刚度矩阵及刚度方程 a.单元的几何和节点描述单元①有6个节点位移自由度(DOF )。

将所有节点上的位移组成一个列阵,记作(1)q ;同样,将所有节点上的各个力也组成一个列阵,记作(1)F ,则有(1)112244,,,,,)q u v u v u v =((1)112244(,,,,,)x y x y x y F F F F F F F =同理,对于单元②,有(2)334422,,,,,)q u v u v u v =(1234X y ①②(2)334422(,,,,,)x y x y x y F F F F F F F =b.单元的位移场描述对于单元①,设位移函数012012(,)(,)u x y a a x a y v x y b b x b y ⎫=++⎪⎬=++⎪⎭(1-1)由节点条件,在,i i x x y y ==处,有(,)(,)i i i i i i u x y u v x y v =⎫⎬=⎭1,2,4i = (1-2) 将式(1-1)代入节点条件式(1-2)中,可求出式(1-1)中待定系数,即011122211223444411()22u x y a u x y a u a u a u AAu x y ==++ (1-3) 11122112234441111()221u y a u y b u b u b u AAu y ==++ (1-4) 21122112234441111()221x u a x u c u c u c u AAx u ==++ (1-5) 01122341()2b a v a v a v A =++(1-6) 11122341()2b b v b v b v A =++(1-7) 21122341()2b c v c v c v A =++(1-8)在式(1-3)~式(1-8)中1122123441111()221x y A x y a a a x y ==++ (1-9)2212442442124421244(1,2,3)1111x y a x y x y x y y b y y y x c x x x ⎫==-⎪⎪⎪⎪=-=-⎬⎪⎪⎪==-+⎪⎭ (1-10) 上式中的符号(1,2,3)表示下标轮换,如12,23,31→→→同时更换。

有限元习题及答案ppt课件

有限元习题及答案ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

有限单元法部分课后题答案

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。

(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。

因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。

(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。

1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。

整体刚度矩阵的性质:对称性、奇异性、稀疏性。

单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。

整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。

2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?(1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。

(2)外力势能就是外力功的负值。

(3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零δ∏p=δ Uε+δV=0此即变分方程。

对于线性弹性体,势能取最小值,即δ2∏P=δ2Uε+δ2V≥0此时的势能变分原理就是著名的最小势能原理。

完整版有限元法课后习题答案

完整版有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为假设干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下横截面上的内力有轴力、剪力、弯矩.5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角 .7、在弹性和小变形下,节点力和节点位移关系是线性关系.8、弹性力学问题的方程个数有15个,未知量个数有15个.9、弹性力学平面问题方程个数有8,未知数8个.10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值 ,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是三角形单元内部坐标的线性函数他反映了单元的位移状态16、在进行节点编号时,同一单元的相邻节点的号差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为双线性位移模式19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何各向同性20、单元刚度矩阵描述了节点力和节点位移之间的关系21、矩形单元边界上位移是连续变化的1.诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2.有限元法的根本思想是什么答:首先,将表示结构的连续离散为假设干个子域,单元之间通过其边界上的节点连接成组合体.其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量.3.有限元法的分类和根本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移.4.有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便, 对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点.缺点:有限元计算,尤其是复杂问题的分析计算, 所消耗的计算时间、内存和磁盘空间等计算资源是相当惊人的. 对无限求解域问题没有较好的处理方法. 尽管现有的有限元软件多数使用了网络自适应技术, 但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验.5.梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6.简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量.7.有限元法根本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵〔外载荷、约束力〕;整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵.8.位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解.9.简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正.10简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系.11.简述平面钢架问题有限元法的根本过程答:1〕力学模型确实定,2〕结构的离散化,3〕计算载荷的等效节点力,4〕计算各单元的刚度矩阵,5〕组集整体刚度矩阵,6〕施加边界约束条件,7〕求解降价的有限元根本方程, 8〕求解单元应力,9〕计算结果的输出.12.弹性力学的根本假设是什么.答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定.13.弹性力学和材料力学相比,其研究方法和对象有什么不同.答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移.弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等.因此,弹性力学的研究对象要广泛得多.研究方法:弹性力学和材料力学既有相似之外,又有一定区别.弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答.而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题. 14.简述圣维南原理. 答;把物体一小局部上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量, 而不影响远处的应力.“局部影响原理〞15.平面应力问题和平面应变问题的特点和区别各是什么试各举出一个典型平面应力和平面应变的问题的实例.答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后外表上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化.区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零.举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的外表无荷载作用.平面应变问题一一水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法.16.三角形常应变单元的特点是什么矩形单元的特点是什么写出它们的位移模式.答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活.其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想.矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高, 形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限.17.写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关.答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵.18.如何由单元刚度矩阵组建整体刚度矩阵〔叠加法〕答:〔1〕把单元刚度矩阵扩展成单元奉献矩阵 ,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列, 空白处用零子块填充.〔2〕把单元的奉献矩阵的对应列的子块相叠加, 即可得出整体刚度矩阵 .19.整体刚度矩阵的性质.答:〔1〕整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;〔2〕整体刚度矩阵中的主对角元素总是正的;〔3〕整体刚度矩阵是一个对称阵;〔4〕整体刚度矩阵式一个呈带状分布的稀疏性矩阵.〔5〕整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵.20.简述形函数的概念和性质.答:形函数的性质有:〔1〕形函数单元节点上的值,具有“本点为一、他点为零〞的性质;〔2〕在单元的任一节点上,三角函数之和等于1; 〔3〕三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;〔4〕型函数的值在0〜1之间变换.21.结构的网格划分应注意哪些问题 .如何对其进行节点编号.才能使半带宽最小.P50, P8相邻节点的号差最小答:一般首选三角形单元或等参元.对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元.一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号差尽可能最小才能使半带宽最小22.为了保证解答的收敛性,单元位数模式必须满足什么条件答:〔1〕位移模式必须包含单元刚体位移;〔2〕位移模式必须包含单元的常应变;〔3〕位移模式在单元内要连续,且唯一在相邻单元之间要协调.在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元.23有限元分析求得的位移解收敛于真实解得下界的条件.答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调.24.简述等参数单元的概念.答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元.25.有限元法中等参数单元的主要优点是什么答:1〕应用范围广.在平面或空间连续体,杆系结构和板壳问题中都可应用.2〕将不规那么的单元变化为规那么的单元后,易于构造位移模式.3〕在原结构中可以采用不规那么单元,易于适用边界的形状和改变单元的大小.4〕可以灵活的增减节点,容易构造各种过度单元.5〕推导过程具有通用性.一维,二维三维的推导过程根本相同.26.简述四节点四边形等参数单元的平面问题分析过程.答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵〔4〕用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成.27.为什么等参数单元要采用自然坐标来表示形函数为什么要引入雅可比矩阵答:简化计算得到形函数的偏导关系.28. ANSYS软件主要包括哪些局部各局部的作用是什么答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型.2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析水平.3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出.29. ANSYS软件提供的分析类型有哪些答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析.30.简述ANSYS软件分析静力学问题的根本流程.答:1.前处理器:1〕定义单元类型,2〕定义实常数,3〕定义材料属性,4〕创立实体几何模型,5〕划分网络;2.求解器:1〕定义分析类型,2〕施加载荷和位移约束条件,3〕求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变.矩形单元的边界上,位移是线性变化的,显然,在两个相邻矩形单元的公共边界上,其位移是连续的.节点的选用原那么:一般说,集中力、集中力偶、分布载荷强度的突变点、分布载荷与自由边界的分界点、支承点都能赢取为节点.单元的划分原那么:〔1〕划分单元的数目,视要求的计算精度和计算机的性能而定.〔2〕单元的大小,可根据部位的不同而有所不同.1、试述街节点力和节点载荷的区别.节点力是单元与节点之间的作用力;如果取整个结构为研究对象,节点力为内力,节点载荷是作用在节点上的外载荷.2、试述求整体刚度矩阵的两种方法.分别建立各节点的平衡方程式,写成矩阵形式,可求得整体刚度矩阵;将各单元刚度矩阵按规律叠加,也可得整体刚度矩阵.3、平面问题中划分单元的数目是否越多越好不是越多越好.划分单元的数目,视要求的计算精度和计算机的性能而定.随着单元数目的接连多,有限元解逐步逼近于真实解,但是,单元数目接连加,刚求解的有限元线性方程组的数目接连多, 需要占用更多的计算机内存资源,求解时间接连长,所以,在计算机上进行有限元分析时,还要考虑计算机的性能.单元数过多并不经济.4、写出单元刚度矩阵的表达式,并说明单元刚度与那些因素有关[B]-单元应变矩阵,[D]-弹性矩阵,t-厚度〕单元刚度矩阵取决于单元的大小、方向、和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平移而改变.5、选择多项式为单元的位移模式时,除了要满足单元的完备性和协调性要求,还须考虑什么因素还须考虑两个因素:1、所选的位移模式应该与局部坐标系的方位无关,即几何各向同性. 2、多项式位移模式中的项数必须等于或稍大于单元边界上的外节点的自由度数,通常取多项式的项数与单元的外节点的自由度数想等.。

(完整版)有限元第二章课后题答案

(完整版)有限元第二章课后题答案

2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。

2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。

2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。

而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。

2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。

矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。

矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。

因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。

2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。

计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。

2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。

在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。

若形状相差过大,使结构应力分析困难加大,误差同时也加大。

2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。

有限元分析与应用习题课

有限元分析与应用习题课

S DB

E 1
2
1 0

1 0
0 N 1 y N 1 x
N 2 x 0 N 2 y
0 N 2 y N 2 x
N 3 x 0 N 3 y
0 N 3 y N 3 x

a
10. 计算 解: (1)形函数N为
5
4. 回答下列问题: (3) 弹性力学空间问题4节点等参元,其单元自由度是多少? 单元刚阵元素是多少? 答: 空间问题4节点等参元,其单元自由度是12个;单元 刚阵元素有144个。
6
5. 对于平面、空间实体单元,位移有限元计算结果中, 位移和应力解结果的精确度是相当吗?如果精度不相 当,哪一个解较精确?
2
2
(1)形函数N为
N IN 1 N1 IN 2 N2 IN 3 N3
3 a 1
a
10. 计算 解: (1)形函数N为
N IN 1 N1 IN 2 N2 IN 3 N3
3 a
2
1
(2)单元应变矩阵B和应力矩阵S分别为
N 1 x B LN 0 N 1 y N 2 x 0 N 2 y N 3 x 0 N 3 y
平、(b)单元应力磨平和(c)分片应力磨平,请分别将
它们按计算精度(高>低)和计算速度(快>慢)进行排序。
计算精度
计算速度
(a)>(c)>(b)
(b)>(c)>(a)
9. 简答
(a)总体应力磨平
10. 计算 如图1所示等腰直角三角形单元,其厚度为t,弹性模量为 E=1,泊松比v=0;单元的边长a=1及结点编号见下图所示。

有限元习题及答案

有限元习题及答案

(a)
(b)
(c)
(a)单元间没有考虑节点相联 (b)网格形状太差,单元边长相差太大 (c)没有考虑对称性,单元边长相差太大
3、分别指出图示平面结构划分为什么 单元?有多少个节点?多少个自由度?
(a)桁架结构模型
• 划分为杆单元, 8个节点,12个自由度
(b)钢架结构模型
划分为平面梁单元,8个 节点,15个自由度
所以
F B B EAl
T
K
(2)

K B B EAl
T
将[B]值代入(2)式得
1 1 1 K 1 l 1 l
1 EAl

完毕
EA l
1 1
1 1
11
(c)混凝土梁结构
平面四节点,四边形单 元,8个节点,13个自由 度
(d)水坝模型
平面三角形单元,29个 节点,38个自由度
4、什么是平面应力问题?什么是平面应变 问题?举例说明
平面应力问题: 若物体的某一方向的尺寸较另外两个方向的小得多, 即为一等厚平板,且在平板的边界有平行于平面切沿 厚度方向均匀分布的面力,则此类问题可简化为平面 应力问题。 y 如一方形薄板边 y 上作用有分 布面力: b z x 连杆 a
2

1
x )
2
u1 )
2
(u 1 u
2
u

1

2
x
2

1 l
(x x
)u 1 )
1 l
( x1 x )u
2
1 (x x l
2

1
u1 ( x1 x ) l u 2

中南大学有限元习题与答案(Word最新版)

中南大学有限元习题与答案(Word最新版)

中南大学有限元习题与答案通过整理的中南大学有限元习题与答案相关文档,希望对大家有所帮助,谢谢观看!中南大学有限元习题与答案习题 2.1 解释如下的概念:应力、应变,几何方程、物理方程、虚位移原理。

解应力是某截面上的应力在该处的集度。

应变是指单元体在某一个方向上有一个ΔU的伸长量,其相对变化量就是应变。

表示在x轴的方向上的正应变,其包括正应变和剪应变。

几何方程是表示弹性体内节点的应变分量与位移分量之间的关系,其完整表示如下:物理方程:表示应力和应变关系的方程某一点应力分量与应变分量之间的关系如下:虚位移原理:在弹性有一虚位移情况下,由于作用在每个质点上的力系,在相应的虚位移上虚功总和为零,即为:若弹性体在已知的面力和体力的作用下处于平衡状态,那么使弹性体产生虚位移,所有作用在弹性体上的体力在虚位移上所做的工就等于弹性体所具有的虚位能。

2.2说明弹性体力学中的几个基本假设。

连续性假设:就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何间隙。

完全弹性假设:就是假定物体服从虎克定律。

各向同性假设:就是假定整个物体是由同意材料组成的。

小变形和小位移假设:就是指物体各点的位移都远远小于物体原来的尺寸,并且其应变和转角都小于1。

2.3简述线应变与剪应变的几何含义。

线应变:应变和刚体转动与位移导数的关系,剪应变表示单元体棱边之间夹角的变化。

2.4 推到平面应变平衡微分方程。

解:对于单元体而言其平衡方程:在平面中有代入上式的2.5 如题图2.1所示,被三个表面隔离出来平面应力状态中的一点,求和的值。

解:x方向上:联立二式得:2.6相对于xyz坐标系,一点的应力如下某表面的外法线方向余弦值为,,求该表面的法相和切向应力。

解:该平面的正应力全应力该平面的切应力2.7一点的应力如下MP 求主应力和每一个主应力方向的方向余弦;球该店的最大剪应力。

解:设主平面方向余弦为,由题知将代入得即,。

最大剪应力(1)当时代入式(2.21)(2)当时代入式(2.21)且2.8已知一点P的位移场为,求该点p(1,0,2)的应变分量。

有限元课后习题课件

有限元课后习题课件

k221 1 k32 k121
k231 k331 k131
单元2可看做单元1转角π后的单元,所以
1 0 0 18 E 2 [k ] 35 1 6 1 1 6 0 5 12 5 12 0 5 12 5 12 3 0 5 12 5 12 0 5 12 5 12 1 6 0 0 1 1 6 1 5 12 5 12 1 6 7 12 7 12 1 6 5 3 12 5 12 2 1 7 12 4 7 12 4
1 2 3 1 2 1 1 2 3 2 1 2 5 2
0 1 2 2 1 2
1 2 1 1 2 3 1 2 5 2 1 2 3 2
1 1 2
1 1 2 2 1 2 0 1 2
1 1 2 1 1 2
1 2 3 2 1 2 5 2 1 2 3 1 2 1

所以
1 1 1 0 1 E E 2 2 2 [kii ]22 ,[kij ]22 ,[kim ]22 3 4 1 4 1 3 1 2 2 2 1 1 1 1 2 1 E E E 2 2 2 [kin ]22 ,[ k jj ]22 ,[ k jm ]22 5 5 4 1 4 1 41 3 2 2 2 2 2 1 1 1 2 E E 2 2 [k jn ]22 ,[kmm ]22 4 1 3 4 1 3 2 2 2
9.图所示三角形在j结点处受集中力p作用,取 u=1/3,厚度h=1cm,自重不计,求该单元的 结点位移及应力分量。 解: bi y j ym , ci x j xm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三步:整体有限元矩阵的组装
求出了单元矩阵后,下一步就是把单元矩阵组装为整体有限元矩阵,因为结构的整体自由度为6,所以整体刚度矩阵为6x6矩阵,吧与某一节点相连的所有单元对该节点的贡献加起来就可以完成对该节点的组装,最后得到整体刚度矩阵为
第四步,施加边界条件
施加边界条件通常能见效整体矩阵的大小,在这里,如果约束D1, D2, D3和D5,于是有
3.3(a)域的离散
(b)位移插值
(c)构造形函数
(d)坐标变换
(e)整体有限元方程的组装
(f)位移约束的施加
(g)求解整体有限元方程
3.4理论上不用必须离散所求解问题的区域。把问题划分成单元的目的是更容易地假设位移场的模式。
3.5证明:
(1)方程的左边为
方程的右边为
很显然方程的左右两边相等。
(2)方程的左边为
KD = F
(6-11)
这里
(6-12)
力向量为
(6-13)
展开得
(6-14)
第五步:求解有限元矩阵方程
为了得到D2和D5的解,求解方程组,得到
D2 =1.0121×10-6 m
D5=1.7367×10-6 m
我们也能得到
7.1虽然单元的厚度是不均匀的,但是在2D平面内,厚度是线性的。这样我们就能利用节点位置处的厚度和线性形函数的性质插补得到任何点处的厚度。利用形函数的德尔塔函数性质,形函数在自身节点处应取单位值1,而在其他节点处为0.这是德尔塔函数的性质,作为插入函数,该形函数的应用也是可用的,因此单元厚度能写成:
当轴向变形和横向变形产生耦合时,即变形比较大时,叠加方法将失效变形。当变形比较大时,轴向变形能引起横向变行,反过来横向变形也能引起轴向变形,因此叠加方法将会失效。
6.2不用,因为对于平面框架,局部坐标系和整体坐标系Z轴同向。
6.3问题分析
该结构明显是轴对称结构,因此我们仅用一半结构如图所示
各参数如下表所示:.
7.5利用拉线法构造,线不一定全是直线,也可以是曲线。
8.1对于一个厚板的能量方程表达为
如果板不是匀质的而是分层的,沿Z方向的积分将会考虑
例如,一个四层对称等厚度的板,我们应该有
假设该板为瑞斯那板,得到刚度矩阵为
同样的得到质量矩阵,能量为
(1-5)
(1-6)
因此质量矩阵为
9.1可以,3D实体单元可以用于解决二维实体单元平面应力和平面应变的问题,因为2D单元是3D单元的特例,一些特殊的3D单元我们可以简化为2D单元。例如,如果结构一个方向厚度远小于其他两个方向的厚度,可以简化为平面应力问题。当然3D单元也能解决考虑所有的3D问题
利用公式
得到
所以
7.3有刚度矩阵的计算公式,我们看到被积函数为hBTcB.应变矩阵B是和的线性函数,厚度能够利用线性形函数和节点处的厚度值得到。因此,在每一个方向上,被积函数是一个立方函数,所以在每个方向上有两个高斯积分点就足以计算出含有最高次数为3次的多项式刚度矩阵。因此,一个矩形单元,4个高斯节点就足够了。
知道了整体坐标系中的节点坐标后,第一步就是考虑单元对于整体坐标系的方向,由于该问题是一个平面问题,因此只需要计算出lij和mij,各节点在整体坐标系中的坐标和个单元的方向余弦如下表所示:
单元编号
对应的整体节点
整体坐标系中的坐标
方向余弦
局部节点1 (i)
局部节点2 (j)
Xi, Yi
Xj, Yj
lij
将三个节点的自由度组合在一起,形成9x9矩阵,如下所示:
第四步:施加边界条件
施加边界条件后,这种情况下,
D1 = D3 = D4 = D6 = D7 = D8 = D9 = 0
因此对应的行和列对方程的解没有任何影响,所以我们去除相应的行和列。
(3-9)
压缩后的矩阵如下所示::
(6-10)
容易判定刚度矩阵是正定的,约束方程为
厚度函数能够写成
厚度是的和线性函数,NTN的次数为2,雅克比行列式的次数为2,因此,整个被积函数的次数为5,我们能用3x3个高斯点得到准确解。
单元体积能够表示成
所以被积函数次数为3,利用2x2个高斯点就可得到准确解
形函数是和的双线性函数,,将双线性函数进行微分并除以其元素也就是双线性函数饿雅可比矩阵就可以求出应变矩阵中的元素,因此被积函数 是不可能用多项式表示的分式函数,也就是说,利用高斯积分法不可能准确的计算出刚度矩阵。
这里Ni和hi分别为形函数和节点处的节点厚度。
刚度矩阵能写成
带入,得到
形函数能够表示成面坐标的形式。由于面坐标也具有德尔塔函数性质,利用数学方法
(1-3)
得到
所以7.2ຫໍສະໝຸດ 于单元的厚度变化是线性的,厚度能利用形函数插值方法得到,因此
这里Ni和hi分别为形函数和节点处的节点厚度。
单元质量矩阵能够写成
带入形函数得到
第五步:求解有限元矩阵方程
为了得到D2和D4的解,求解方程组,得到
D2 =1.0121×10-6 m
D4 =1.7367×10-6 m
我们也能得到
计算单元应力:
5.1同桁架单元推导公式一样
5.2在划分网格时,一般应该把受力的点划为节点,如果受力点不是节点,一般把力看成一个沿着单元分布的力。节点力p,能这样描述
杆1的应力为
第二步:计算整体坐标系中的单元矩阵
计算出方向余弦后,就可以求出整体坐标系中的单元矩阵,注意到该问题是一个静力学问题,因此不需要计算单元质量矩阵,只需要求刚度矩阵,局部坐标系中的单元刚度矩阵是6x6的矩阵,因此局部坐标系中刚度矩阵如下所示::
利用坐标变换,得到整体坐标系中的刚度矩阵
第三步:组装整体矩阵
3.1“强”形式相关的场变量要求强的连续性。定义这些场变量的所有函数必须可微,而可微的次数必须等于存在于强形式的系统方程中的偏微分方程的次数。“弱”形式通常是积分形式,且对场变量要求较弱的连续性,弱形式通常能得到更精确的解。
3.2 (a)协调性方程
(b)本质边界条件或运动边界条件
(c)在初始刻和末时刻的条件
因此,利用公式得到力向量
5.3为了得到力向量,将该结构分成两个单元,分析作用在每一个单元上的外力和力矩,如 下图所示
·
没有分散的力和力矩,因此1单元的力向量为
同样地单元2,
为了得到全局力向量,力和力矩叠加得到
6.1框架单元具有桁架单元和两单元的性质,框架单元不仅有桁架单元轴向的变形,还具有梁单元在x-y平面内的横向变形和绕着z轴的旋转。由于变形比较小,所以轴向变形不会影响横向变形,这时利用叠加方法就可以构造框架单元的方程。
方程的右边为
很显然方程的左右两边相等。
3.6再生性和连续性
形函数是线性无关的
德尔塔函数性质
单位分解性
线性场再生性
3.7答案很明显
3.8为了把所有的单元方程组合起来构成整体的系统方程,必须对每个单元进行坐标变换。
3.9组装的过程就是把与某个节点相连的所有单元的贡献相加。
4.1桁架构件通过销钉或铰链(而不是焊接)连接在一起,因此构件之间值传递力(而不是力矩)。因此,一个桁架结构仅仅有轴向变形,我们只分析轴向变形,我们可以沿杆单元的轴向取为局部坐标的x轴,在单元的每个节点处只有一个自由度,即轴向位移。
4.3结果类似于4.2.
4.4
4.5
4.6很明显这个结构师对称的,因此,我们可以仅仅分析结构的一半如下图所示,
简化后,各单元的尺寸参数如下表所示。
单元号
横截面积, Ae m2
长度le m
杨氏模量E N/m2
1
0.005
0.5
69 x 109
2
0.01
1.118
69 x 109
第一步:计算各单元的的方向余弦
9.2没有区别。这是因为形函数和节点总数完全一样。如果六边形用的是线性函数,结果可能不同因为四边形有恒定的应变矩阵,也就是它不如六面体单元准确。
9.3五边形单元如下所示,为了解该单元的方程,我们可以通过从多项式构建形函数。拎一个简单的方法是该单元类型由两个四边形单元组成。
11.1结构的几何形状、材料性质和支撑条件都是对称的。外载荷不一定是轴对称的。
11.2Answer:letL=a+b
Clamped symmetric beam structure
Clamped anti-symmetric beam structure
有质量矩阵的计算公式,我们看到被积函数为hNTN。厚度能够利用线性形函数和节点处的厚度值得到。因此,在每一个方向上,被积函数是一个立方函数,所以在每个方向上有两个高斯积分点就足以计算出含有最高次数为3次的多项式质量矩阵。因此,一个矩形单元,4个高斯节点就足够了。
7.4线性四边形单元的质量矩阵能够写成
单元
编号
横截面积,
Ae m2
长度
le m
杨氏模量
E N/m2
横截面积对z轴的二次矩, Iz m4
1
0.005
0.5
69 x 109
1.989 x 10-6
2
0.01
1.118
69 x 109
7.958 x 10-6
第一步:计算单元的方向余弦
知道了节点在整体坐标系中的坐标后,第一步就是要得到局部坐标系与整体坐标系之间的关系,这一关系能通过求方向余弦得到,各节点坐标及方向余弦如下表所示:
mij
1
1
2
0, -0.5
0, 0
0
1
2
2
3
0,
0.5, 1.0
0.4472
0.8945
由于节点1和2仅沿垂直方向运且外力也是竖直的,所以节点2相对于节点2的位移为
杆1的应力为
第二步:计算整体坐标系中的单元矩阵
相关文档
最新文档