有机化合物波谱解析 第二章 红外光谱 (IR)
波谱解析IR
空间障碍
COCH3 COCH3 CH3 1663 1686 1693 H3C CH3 COCH3 CH3
跨环效应
环外双键
CH2 CH2
CH2
CH2
1651 O
1657 O
1678
Oห้องสมุดไป่ตู้
1680 O
1716
1745
1775
1810
环内双键
1650
1646
1611
1566
1641
3. 氢键效应: *氢键的形成, 通常可使伸缩振动频率向 低波数方向移动, 且谱带变宽。 *对于固态或液态的羧酸, 由于氢键的作用, 分子以二聚体形式存在, 羟基伸缩振动出 现在3200-2500cm-1区间, 表现为一个宽 而散的吸收峰, 非常特征, 常用于羧酸的 鉴定。
• 合频:电磁波的能量正好等于二个基频跃 迁能量的总和时,则同时激发二个基频振 动到相应激发态,称为合频。 • 差频:电磁波的能量正好等于二个基频跃 迁能量之差的吸收谱带。实际为一个振动 状态由基态跃迁到激发态,同时另一个振 动状态由激发态回到基态的过程。 • 热带:由第一激发态跃迁到第二激发态所 产生的吸收谱带称为热带。 • 组频峰(泛频峰):倍频、合频、差频峰 的总称。
亚甲基的振动模式:
谱图解析——正己烷
在 2962cm-1 处 的 峰 是 CH3 基 团的不对称伸缩振动。这种 不 对 称 伸 缩 振 动 范 围 2962±10cm-1 ,事实上,存 在两个简并的不对称伸缩振 动(显示其中一个)。
IR
● 外部因素
1.溶剂影响 ——极性基团,如,C=O
伸缩振动波数随溶剂极性增大而减小。
如,羧酸中的νC=0 气体 1780cm-1(游离) 非极性溶剂 1760cm-1(游离) 乙醚 1735cm-1 乙醇 1720cm-1 碱溶液中 νas C=0 1610~1500cm-1 νsC=0 1400cm-1
● 红外光谱谱带强度(峰强)
● 影响红外光谱的内外因素
一、分子振动特性描述(峰位)
● 谐振子模型 —— 描述分子振动特性
力学的Hoocke定律
◆ 谐振子恢复力(f): 谐振子恢复力与质点离开平衡位置的位 移或正比,但方向则与位移的方向相反。
f = - K(dA + dB)2 / 2
式中,K为键力常数(force constant)
药物波谱解析 第二章 红外光谱(IR)
红外光谱(IR)
IR:属于分子的振转光谱 IR光谱特征:指纹性 IR谱图: 横坐标 —— 波数为( )
纵坐标 —— 透光率(T%)
IR光谱分三种
① 近红外光谱:0.8~2.5um 即1250~4000cm-1
——分子中O-H、N-H、C-H振动倍频和组频;
◆ 分子振转能级示意图:
◆ IR 能级跃迁类型: V0→V1:产生的IR谱带 —— 基频峰 V0→ niVi —— 倍频峰 V0→miVi+niVi —— 合频峰 V0→V1- V2 , 2V1- V2 等 —— 差频峰
※ 泛频峰(组频峰):倍频峰、合频
峰与差频峰的总称。
四、影响IR光谱的的其他因素
弯曲振动引起的吸收
如,C—X(X=C,N,O)
—— 指纹区域
【课件】红外光谱(IR)的原理及其谱图的分析
1.2 红外光谱的产生: 用频率4000~400cm-1(波长2.5~25m)的光波照射样品,
引起分子内振动和转动能级跃迁所产生的吸收光谱。
1.3 波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
1.4 红外光谱的表示方法
I T % 100 % I0
I:透过光的强度 I0:入射光的强度
横坐标:波数( v)400~4000 cm-1;表示吸收峰的位置。
纵坐标:透过率(T %),表示吸收强度。
T越小,吸收越好,曲线低谷表示是一个好的吸收带。
1.5
分子振动与红外光谱
1.5.1 分子的振动方式:伸缩振动,弯曲振动 (1)伸缩振动:
沿轴振动,只改变键长,不改变键角
C
对称伸缩振动(νs) -1 (2853 cm )
α-卤代酮规律(甾体类化合物中常见)
• 面内弯曲振动的频率大于面外弯曲振动的频率。 vas > vs >>δ面内> δ面外
以上振动产生的吸收峰叫基频峰。
基频峰:分子吸收光子后从一个能级跃迁到相邻的
高一能级产生的吸收。 0 1
倍频峰:指 0 2的振动吸收带,出现在强的基频
峰的大约2倍处(实际比两倍低)。一般为弱吸收峰。
CH2 VC=C 1651 1657
CH2 1690
CH2
CH2 1750
O VC=O 1715 1745
O 1780
O 1815
O
VC=C
1645
1610
1560
b. 空间位阻(降低共轭程度,向高频移动)
O (H3C)3C
1725
O (H3C)3C Br
波谱解析第2 章 红外光谱
1 K 2c
2015-7-8
药物分析学科组
药学院
双原子分子的实际势能 曲线并非抛物线,在经 韦 Morse修正后,表现为如 国 兵 图2-2所示的实线部分 (化学键)。 由图2-3可知:
(1)振动能(势能)是 原子间距离的函数。振 动时振幅加大,则振动 能也相应增加。
2015-7-8
药物分析学科组
药学院
韦 国 兵
2015-7-8
药物分析学科组
药学院
(2)在常温下,分子处于最低的振动能级,化
韦 国 兵
学键振动与简谐振动模型非常近似(仅当振动量 子数V=3或4时,势能曲线才显著偏离简谐振动 曲线)。由于通常的红外吸收光谱主要讨论从基 态跃迁到第一激发态(V0V1),以及从基态直接 跃迁到第二激发态(V0 V2)引起的吸收。因此,
2
2015-7-8
药物分析学科组
药学院
(一)量子力学处理的振动能量
韦 国 兵 • 因 • 有
v
1
c
K m
v 1307
• 所以:
1 K v 2c u
• 结论:双原子基团的基本振动频率的大小与化学键两 端原子的折合相对原子质量和化学键的力常数K的大小 有关;化学键力常数K越大,折合相对原子质量m越小, 则谐振子的振动频率越大,即振动吸收峰的波数越大。
如:单原子分子、同核分子:He、Ne、N2、O2、 Cl2、H2 等。 没有红外活性 。
2015-7-8
药物分析学科组
药学院
一、红外吸收产生的条件
韦 国 兵
• 红外辐射的能量必须与分子发生跃迁的 两振动能级间的能量差别相等,即: E L V h 或 L V • 分子在振动过程中其偶极矩必须发生变 化,即Δμ≠0,即只有红外活性振动才能 产生吸收峰。两个条件缺一不可。 • 红外非活性振动是造成基频峰数小于基 本振动自由度的另一个原因
波谱分析课件—红外光谱
基团的键角不 发生变化,基 基团的键角交替 团只是作为一 发生变化 个整体在分子 的对称平面内 左右摇摆
两个H原子核 在垂直于纸面 的方向上振动, 两个H原子核 且运动方向相 运动方向相反 同---同时向纸 面的同一侧运 动
3
骨架 振 动
定义
多原子分子的骨架振动产生,
如苯环的骨架振动。
晶格振动。
振动频率
以双原子为例,在双原子作伸缩振动时,可以 将其视为一个简单的谐振子。根据经典力学原理, 简谐振动遵循胡克定律:
m1
m2
1 2
K m
式中: ν ----振动频率 K ----化学键的力常数(N· -1) m
对于双原子分子来讲,可
用折合质量 μ(Kg)代替 m:
1 2
红外光谱的发展历史
在十九世纪初就发现了红外线,到1892年有人利 用岩盐棱镜和测热幅射计(电阻温度计)测定了20多 种有机化合物的红外光谱 1905年科伯伦茨发表了128种有机和无机化合物 的红外光谱,红外光谱与分子结构间的特定联系才被 确认。 到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。 1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
产生红外吸收峰。而
, C
O
, N C
,H O
NH2 等强极性基团的伸缩振动吸收均为强吸收。
2
诱导效应
使基团极性降低的诱导效应导致基团的吸收
强度减小; 使基团极性升高的诱导效应导致基团的吸收 强度增加。 例如:
C N 为强极性基团,其
C N 吸收带尖
波谱分析教程-第2章-红外光谱(IR)改PPT课件
• 本章内容与要求: • 介绍红外光谱法的原理,红外光谱仪和实验方法。
重点介绍红外吸收峰的位置、强度和形状与有机 物结构的关系及影响谱带位置和强度的因素。 • 掌握各种功能团的特征吸收,影响吸收峰位置的 因素,标准光谱利用中的注意事项,掌握红外光 谱谱图解析方法。了解FT-IR, Raman光谱等.
C=C
1650
CH3CN
C=N
2255
RCOOR
C=O
1735
(C2H5)2C=C(CN)COOC2H5 C=C 1629 , C=N 2224, C=O 1727
.
40
中介效应
R C NHR O
OR C N+HR
.
41
共轭效应:共轭效应使不饱和键的波数显著降低
.
42
• 在许多情况下,诱导效应和共轭效应会同时存 在:
.
21
4、红外光谱的选律
• IR选律:在红外光的作用下,只有偶极矩 ()发生变化的振动,即在振动过程中0 时,才会产生红外吸收。这样的振动称为红 外“活性”振动,其吸收带在红外光谱中可 见。在振动过程中,偶极矩不发生改变(= 0)的振动称红外“非活性”振动;这种振动 不吸收红外光,在IR谱中观测不到。如非极 性的同核双原子分子H2,N2,O2等 *偶极矩=q·d
.
23
.
24
三、IR光谱得到的结构信息
• IR光谱表示法: 横坐标为吸收波长(m),或吸收频率(波数/cm) 纵坐标常用百分透过率T%表示
• 从谱图可得信息: 1 吸收峰的位置(吸收频率) 2 吸收峰的强度 ,常用 vs (very strong), s (strong),
m (medium), w (weak), vw (very weak), b (broad) ,sh (sharp),v (variable) 表示 3 吸收峰的形状 (尖峰、宽峰、肩峰)
有机波谱第二章红外光谱解读
1.3 分子偶极变化与峰强
1.3.1 峰强度表示方法 谱带强度单位为透射率(T)或吸收强度(A)。它们
可以用透过样品的出射光强度I与入射光强度I0表示:
T = I / I0 A = lg(I0 / I) = lg(1 / T)
在单色光和溶液的实验条件下,溶液的吸收可遵从BeerLambert定律:吸收度与溶液c和吸收池的厚度l成正比,即:
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
化学键键强越强(即键的力常数 K 越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
吸收频率随键的强度的增加而增加,随键连原子的质量增 加而减少。化学键力常数:单键—4~8 双键—8~12 叁 键—12~18
1.3.2决定峰强的因素
(1)振动过程中偶极矩的变化
基频吸收谱带的强度取决于振动过程中偶极矩变化的 大小。只有具有极性的键在振动过程中才出现偶极矩的变 化,在键周围产生稳定的交变电场才能与频率相同的辐射 电磁波作用,从而吸收相应能量使振动跃迁到激发态,得 到振动光谱。这种振动称为红外活性振动。
高极性键的振动,产生强度大的吸收谱带,如羟基、羰 基、硝基等强极性基团都具有很强的红外吸收谱带。
K为 化学键的力常数, 与键能和键长有关; m 为双原子的折合质 量.
2、质量和力常数的影响
有机化合物中个别的化学键可以近似地看作是双原子 分子,这样就可以利用双原子分子的振动公式来理解化学
键的振动:
v
=
1 2πc
(K / u)1/2 = 1303
K (m1 + m2) 1 / 2 m1m2
K:力常数,m1 和 m2 分别为二个振动质点的质量数。
IR1
分子能级图
E电 =1 ~ 20ev λ = 0.06 ~1.25m 紫外 可见吸收光谱 E振 = 0.05 ~1ev λ = 25 ~1.25m 红外吸收光谱 E转 = 0.005 ~ 0.05ev λ = 250 ~ 25m 远红外吸收光谱
红外光区划分
近红外(泛频) 近红外 泛频) 泛频 (0.75~2.5 m) 红外光谱 (0.75~1000m) 中红外(振动区) 中红外(振动区) 振动区 (2.5~25 m) 远红外(转动区 远红外 转动区) 转动区 (25-1000 m) 分区及波长范围
1.样品要求: 纯度>98% 。 样品应不含水分。 2.测定方法: 测定IR光谱的样品可以是液、固、气状态。 固态样品:常用压片法、糊剂法或薄膜法制样测定。 液态样品:液态样品可注入吸收池内测定。 气态样品:一般灌入特制的气体池内测定。
红外光谱特点
1)红外吸收只有振-转跃迁,能量低; 红外吸收只有振-转跃迁,能量低; 应用范围广:除单原子分子及单核分子外, 2)应用范围广:除单原子分子及单核分子外,几乎 所有有机物均有红外吸收; 所有有机物均有红外吸收; 分子结构更为精细的表征: 谱的波数位置、 3)分子结构更为精细的表征:通过IR谱的波数位置、 波峰数目及强度确定分子基团、分子结构; 波峰数目及强度确定分子基团、分子结构; 定量分析; 4)定量分析; 气态样均可用,且用量少、不破坏样品; 5)固、液、气态样均可用,且用量少、不破坏样品; 分析速度快; 6)分析速度快; 与色谱等联用(GC具有强大的定性功能。 7)与色谱等联用(GC-FTIR)具有强大的定性功能。
弯曲振动
– 对称弯曲振动 – 不对称弯曲振动
所以,多原子分子的振动类型可分为两大类:
伸缩振动(υ) 弯曲振动(δ) 面内弯曲振动(δi. p) 剪式振动(以δs表示) 平面摇摆(以ρ表示) 面外弯曲振动(δo.o.p) 非平面摇摆(以ω表示) 扭曲振动(以τ表示) 对称与不对称弯曲振动 其中,以对称伸缩、不对称伸缩、剪式振动、 其中,以对称伸缩、不对称伸缩、剪式振动、非平面摇摆 出现较多。 对称伸缩(以υs表示) 不对称伸缩(以υas表示)
波谱解析 第二章 红外光谱习题参考答案
10.
首先计算不饱和度:U=0,结构中含氧,推测可能是饱和醇或者醚。 3366cm-1:-OH 伸缩振动。(中等宽峰,含醇羟基,此化合物为饱和醇) 2974cm-1:-CH3 的 C-H 伸缩振动。 1381,1375cm-1:偕二甲基特征吸收。 1050 cm-1:伯醇 C—O 伸缩振动 综上所述,推测该化合物的结构为:
9. (较难判断)
首先计算不饱和度:U=8,结构中可能含有两个苯环或多个双键。 结合红外谱图分析, 3085,3021cm-1:苯环 C-H 伸缩振动。 2961,2856cm-1:-CH2 的 C-H 伸缩振动。 1601,1500,1452 cm-1:苯环骨架变形振动。 752,703cm-1:单取代苯环 C-H 面外弯曲振动。 谱图中没有明显的烯烃的峰,因此推测结构中应该含有两个苯环,其他的碳 氢均为饱和连接,且没有发现甲基的特征峰。 综上所述,推测该化合物的结构为:
5/6
12.
首先计算不饱和度:U=1,存在一个双键。 结合红外谱图分析, 3294cm-1:N-H 伸缩振动。 2946cm-1:-CH3 的 C-H 伸缩振动。 1655cm-1:羰基伸缩振动(酰胺Ⅰ峰)。 1563cm-1:仲酰胺 C-N-H 弯曲振动(酰胺Ⅱ峰)。 1372 cm-1:甲基对称变角振动。 1299cm-1:仲酰胺的酰胺Ⅲ峰。 721cm-1:仲酰胺 N-H 面外弯曲振动(酰胺Ⅴ峰)。 此外,2820~2720cm-1 无明显吸收峰,结构中不含醛基 综上所述,推测该化合物的结构为:
4.
(1)
O O
A
B
C
B 化合物中含有共轭双键,羰基双键 π 电子发生共轭而离域,降低了双键的
力常数,从而使 C=O 伸缩振动频率相对于 A 降低。C 化合物为烯醇酯,烯氧基
有机化合物波谱分析-红外.ppt
①对称伸缩振动以s
HH
HH
②不对称伸缩振以as表示。
C
C
(2)弯曲振动(bending vibration),也叫变角振动,以δ表示
①面内弯曲振动以δs表示。
HH C
HH C
②面外弯曲振动,以δo.o.p表示
剪式振动 s 面内摇摆
HH C
HH C
面外摇动 扭曲变形
8
3. 振动图示
按能量高纸顺序排列,通常是:as >s >δs >δo.o.p
OCO 对称伸缩
OCO
OCO
O CO
不对称伸缩 弯曲(x,y平面) 弯曲(y,z平面)
峰简并为1个
12
第二章 红外光谱(Infrared spectra IR)
(三)峰强 1、峰强的表示方法
红外光谱中峰的强度一般用百分透光率T%或吸光度A 表示。物质对红外光的吸收符合Lambert-Beer定律。 测试样品的浓度大,吸收峰强。 1)百分透光率:T%=I/I0×100% 2)吸光度:A=lgI0/I=lgT0/T A---------吸光度 I0---------吸收峰基线的透射比 I----------峰顶的透射比 3)百分吸收率:百分吸收率=(100-T)% 4)摩尔吸光系数
25
第二章 红外光谱(Infrared spectra IR)
稀溶液(游离状态),OH3650~3600cm-1 浓度增加(氢键),OH3515cm-1(二聚体),3350cm-1 (多聚体)
乙醇在 不同浓 度下分 子间氢 键的影
响
26
第二章 红外光谱(Infrared spectra IR)
5、互变异构:峰位移
3
波谱-红外IR讲解
组频峰 合频峰 差频峰
强度更弱,不易辨认
2
特征峰:凡能用于鉴定原子基团存在并有较高强度的吸收峰 相关峰:相互依存,又相互佐证的峰 特征区:4000~1330cm-1 峰较疏,易辨认 指纹区:1330~650cm-1 峰密集,确定有机物时用途很大。
二、 IR图的表示
横坐标: λ(μm)或υ(cm-1)表示吸收峰的位置. 纵坐标:透过率T%,表示吸收强度.
T(%)
苯酚红外光谱
注意: T-λ或T-υ曲线上的吸收峰是图谱上的谷.
三、IR产生的基本原理 1、分子的振动
红外光谱:引起分子振动能级和转动能级的跃迁, 所以又称振-转光谱。
2、双原子分子的振动
c—光速3×108m/s
k
k
k—化学键的力常数(N· m-1) —双原子折合质量(kg) μ=
若化学键的力常数k 以(N· m-1)为单位,折合质量以原子 质量为单位,则可简化为
双原子分子的振动频率取决于化学键的力常数和原子的质量。 化学键越强(K值越大),相对原子质量越小,振动频率越高
例 HCl分子K=4.8×102 N· m-1 ,计算出HCl的振动频率。
振动自由度:基本振动的数目。 分子自由度数(3N)= 平动自由度 + 转动自由度 + 振动自由度 振动自由度=分子自由度数(3N)- (平动自由度 + 转动自由度) 理论上,每个振动自由度(基本振动数)在红外光谱区均产生一个吸收峰带
线形分子只有两个转动自由度
含N个原子的线型分子振动自由度为3N-5 非线型分子振动自由度为 3N-6
2、hυ0=ΔE(红外光能43; H r O δδ+ H
有机波谱分析第二章红外光谱
湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
• 共轭与诱导效应共存时的情况:
湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
• 2.空间效应 • (1)场效应 F 互相靠近的基团之间通过空间传递的效应。
– 只在立体结构上靠近的基团间才能产生。 – 同 e- 排斥↑→ K ↑→ν↑
湖北理工学院医学院药学系
➢ 8)与色谱等联用(GC-FTIR)具有强大的定性功能。
湖北理工学院医学院药学系
有机波谱分析第二章红外光谱
(五)红外光谱产生的条件
分子吸收辐射产生振转跃迁必须满足两个条件:
条件一:辐射光子的能量应与振动跃迁所需能量相等。 根据量子力学原理,分子振动能量Ev 是量子化的, 即
E V =(V+1/2)h
1000 m 25 cm 1
• 红外光的三个区域:
– (1)近红外区:13000~4000cm-1
• 研究分子中的O-H、N-H、C-H键的振动倍频与组频。
– (2)中红外区:4000~400cm-1
• 研究大部分有机化合物的振动基频。
– (3)远红外区: 400~25cm-1
• 研究分子的转动光谱以及重原子成键的振动等。
凡能用于鉴定原子基团存在并有较高强度的吸收峰-特征
峰。其对应的频率称为特征频率。
一个基团除了特征峰以外,还有许多其它振动形式的吸收
峰,这些相互依存而又相互可以佐证的吸收峰-相关峰。
(3)特征区与指纹区
4000-1330 cm-1 -特征区;
湖北理工学院医学院药学系
1330-400 cm-1 -指纹区
(3)n↑→ r ↑
→△E振动↑
湖北理工学院医学院药学系
姚新生有机波谱解析第二章红外光谱
共轭体系使电子云密度平均化,使双键 的吸收峰向低频方向移动 。
O RC
CH2
νc=o 1715cm-1
O
CH CH C
νc=o
CH2
1685 ~
1665cm-1
O R C NH2
νc=o
1650cm-1
• π-π共轭、p-π共轭均使羰基的π电子离域, 其双键性减弱,键的力常数减小,使羰基 向低频方向移动。
第二章 红外光谱分析(IR)
返回
b)、经典力学导出的波数计算式为近似式。因为振动能 量变化是量子化的,分子中各基团之间、化学键之间会 相互影响,即分子振动的波数与分子结构(内因)和所 处的化学环境(外因)有关。
例如:C-H键基频振动的计算值为2920 cm-1,而实测 值为2915 cm-1
c、基频峰与泛频峰
第二章 红外光谱分析(IR)
三、分子的偶极矩与峰强:
分子对称度高,振动偶极矩小,产生的谱带就弱;反之则强。如C=C,C-
C因对称度高,其振动峰强度小;而C=X,C-X,因对称性低,其振动峰强
度就大。峰强度可用很强(vs)、强(s)、中(m)、弱(w)、很弱
(vw)等来表示。
表10-1
摩尔消光系数(ε) >100 20~100 10~20 1~10 0~1
1、红外光谱的定义: 红外光谱又称分子振动转动光谱,属分子吸收
光谱。样品受到频率连续变化的红外光照射时,分子吸 收其中一些频率的辐射,分子振动或转动引起偶极矩的 净变化,使振-转能级从基态跃迁到激发态,相应于这些 区域的透射光强减弱,记录百分透过率T%对波数或波长 的曲线,即红外光谱。
主要用于化合物鉴定及分子结构表征,亦可用 于定量分析。
波谱解析红外光谱
四. 影响峰强的因素
1.峰强的表示方法:
纵坐标为百分透过率(T%), 横坐标为波数(ν, cm-1-); T%越大, 吸收峰越强; 峰强也可用摩 尔吸光系数(εa)表示:
T%=(I/I0 )×100% εa=1/(c×L)lg(T0/T) εa﹥100时, 很强峰(vs); εa=20~100时,强峰(s); εa=10~20时, 中强峰 (m); εa﹤1时,弱峰(w)
O
O
O
R C R' R C
C
1715
1690
1665
共轭效应使 电子离域,双键性 ,K
但在p-π共轭体系中,诱导效应与共轭效应常常同
时存在, 谱带的位移方向取决于哪一个作用占主
导地位, 例如,RCONH2、RCOR、RCOOR、 RCOCl中羰基的伸缩振动频率大小顺序。
共轭与诱导效应共存时的情况
(一). 内部因素
1.电子效应: 通过导致成键原子间电子杂
化状态与电子云分布发生 变化, 因而改变力常数而影 响相应谱带的位置。 (1).诱导效应(-I)一些极性共价键, 随着取代基电 负性的不同,电子密度发生变化, 引起键的振动谱带位移。
F>Cl>Br>I>OCH3>NHCOCH3>C6H6>H>CH3
*分子的能量: E分子=E移+E转+E振+E电子 E光子=hν光=ΔE振
*化学键的偶极矩与分子的偶极矩(μ): *红外光可分为三个区域:
近红外区(泛频区): 12500-4000 cm-1 (波 数ν-);
中红外区(基本振动区) : 4000-400 cm-1 远红外区(转动区) : 400-25 cm-1
2波谱解析-IR
如—C≡N 的特征吸收峰在2247 cm
-1处。
红外光谱的分区
由于基团的振动频率取决于原子质量(原子种类)和化学键力常数(化学键的 类型),因此不同化合物中的同种基团振动频率相近,总会出现在某一范围。
据此,可将红外光谱范围划分为: 特征谱带区(4000~1330cm-1,即2.5~7.5μm) 指纹区(1333~667cm-1,即7.5~15μm)
分子的振动形式
②变形振动
红外吸收光谱与分子结构关系
(1)基频峰
由基态(n=0)跃迁到第一振动激发态(n=1)时, 所产生的吸收峰称为基频峰
振动能级由基态(n=0)跃迁至第二(n=2), 第三(n=3),…,第n 振动激发态时,所产生 的吸收峰称为倍频峰
倍频 (2)泛频
组合频
红外吸收光谱与分子结构关系
①首先查对 ν
C= O
1840~1630cm
-1
(s)的吸收是否存在,如存在,则可
进一步查对下列羰基化合物是否存在: A.酰胺 查对 ν B.羧酸 查对 ν D.酸酐 查对 ν E. 酯 查对 ν ~3500cm (ms),有时为等强度双峰是否存在;
-1
N-H O- H
-1
3300~2500cm
C- H
波长与波 数的关系
红外光谱图的表示
红外光谱法的特点
(1)应用面广,提供信息多且具有特征性。 吸收峰位置,数目及其强度,可鉴定未知化合物的分子结构或确定其化学基团;依据吸收 峰的强度与分子或某化学基团的含量有关,可进行定量分析和纯度鉴定。 (2)不受样品相态的限制。 (3)样品用量少且可回收,不破坏试样,分析速度快,操作方便。 (4)现在已经积累了大量标准红外光谱图(如Sadtler 标准红外光谱集等)可供查阅。 (5)红外吸收光谱法的局限性:即有些物质不能产生红外吸收峰。此外,红外吸收光谱 图上的吸收峰有一些是不能做出理论上的解释的,因此可能干扰分析测定,而且,红外吸 收光谱法定量分析的准确度和灵敏度均低于可见、紫外吸收光谱法。
IR2
(三) 饱和烃的C-H和醛基C-H伸缩振动区 (3000-2700cm-1)
第二章 红外光谱
有机化合物波谱分析
第二章 红外光谱
有机化合物波谱分析
醛基IR中常有Fermi 共振的双谱带:
2800cm-1,2700cm-1 (但如分子中有其他的CH有时2800峰容 易被掩盖)(图2-32)
第二章 红外光谱
第二章 红外光谱
2) 内酯
有机化合物波谱分析
第二章 红外光谱
4. 酰氯
有机化合物波谱分析
第二章 红外光谱
5.羧酸
有机化合物波谱分析
游离羧酸羰基的νC=O 在1760cm-1左右,缔合的νC=O 17251700cm-1 左右,判断羧酸的特征峰为3200-2500cm-1 的宽峰。
第二章 红外光谱
OH CH 3CH 2CCH3 CH3
有机化合物波谱分析
2-methyl-2-butanol (CCl4)
OH
pheno l
o-cresol
OH
omethylphenol
第二章 红外光谱
6.醚
C-O-C
第二章 红外光谱
有机化合物波谱分析
第二章 红外光谱
酰胺的特征吸收带
有机化合物波谱分析
8.酰胺 酰胺的羰基伸缩振动通常都在1700cm-1以 下
第二章 红外光谱
伯酰胺
有机化合物波谱分析
第二章 红外光谱
仲酰胺
有机化合物波谱分析
第二章 红外光谱
叔酰胺
有机化合物波谱分析
第二章 红外光谱
有机化合物波谱分析
第二章 红外光谱
1)单取代末端双键:
有机化合物波谱分析
第二章 红外光谱
波谱分析-第二章 (红外光谱)(1)
v = 1303
5.1 (1 + 35.5) 1× 35.5
1/2 -1 cm = 2993
C—C C=C
k ~ 5 N· cm-1 k ~ 10 N· cm-1
= 1193 cm-1 = 1687 cm-1
C≡C
C—H
k ~ 15 N· cm-1
1/2
K (m1 + m2) 1 1/2 v = 1303 (K / u ) = m1m2 2πc
K:力常数,m1 和 m2 分别为二个振动质点的质量数
吸收频率随键的强度的增加而增加,随键连原子的质 量增加而减少。化学键力常数:单键—4~8 双键— 8~12 叁键—12~18 利用实验得到的键力常数和计算式,可以估算各种类 型的基频峰的波数
四
五 六
λ
10-8
10-6 10
10-4 400 800
10-2
100
102 cm nm um
γ射 线
X射 线
紫 外 光
可 见 光
红外光 IR 微波
无线电波
1 cm = 107nm
1cm = 104um
通常的红外光谱频率在4000~625cm-1之间,正是一般 有机化合物的基频振动频率范围,可以给出丰富的结构信息: 谱图中的特征基团频率可以指出分子中官能团的存在;全部 光谱图则反应整个分子的结构特征。除光学对映体外,任何 两个不同的化合物都具有不同的红外光谱。
(二)简偕振动
分子是由各种原子以化学键相互连接而生成。可以用 不同质量的小球代表原子,以不同强度的弹簧代表各种化
学键,它们以一定的次序互相连接,就成为分子的近似机 械模型。这样就可以根据力学定理来处理分子的振动。
有机化学中的红外光谱(IR)技术
有机化学中的红外光谱(IR)技术红外光谱(IR)技术是一种在有机化学中广泛应用的分析方法。
通过测量有机物分子中化学键振动引起的特定光谱吸收峰,科学家们可以确定化合物的结构和功能基团。
本文将详细介绍红外光谱技术在有机化学中的应用、原理和分析步骤。
一、红外光谱技术在有机化学中的应用红外光谱技术在有机化学领域中有着广泛的应用。
首先,它可以用于有机物的鉴定和验证。
红外光谱图谱中的特定吸收峰可以和已知物质的光谱数据进行比对,从而确定待测物质的结构和成分。
其次,红外光谱技术可以用于功能基团的鉴定。
不同的化学键和功能基团在红外光谱图谱中具有独特的吸收特征,这使得科学家们能够准确识别有机分子中存在的官能团。
此外,红外光谱技术还可以用于反应过程的监测和控制。
通过在反应过程中对产物和废物进行红外光谱分析,可以实时监测反应的进程,并对反应条件进行调节,以提高产率和选择性。
二、红外光谱技术的原理红外光谱技术是基于分子中化学键振动产生的光谱吸收现象。
当红外辐射通过待测物质时,分子中的化学键会因为固有的频率而吸收特定波长的红外光。
这些吸收峰的强度和位置与分子的结构和功能基团密切相关。
具体来说,红外光谱图谱中的吸收峰对应于不同类型的化学键振动。
例如,羰基(C=O)具有独特的吸收峰,可以帮助确定酮和醛的存在;氨基(N-H)具有特定的吸收峰,可以用于鉴定胺类化合物等。
三、红外光谱分析步骤在进行红外光谱分析前,需要准备样品并操作仪器。
以下是一般的分析步骤:1. 准备样品:将待测物质制备成固体样品或液体样品,尽量保持无水和无杂质。
2. 设置仪器参数:根据待测物质的性质和所需分析精度,调整红外光谱仪的参数,如波数范围和光谱分辨率。
3. 测量红外光谱:将样品放置在红外光谱仪的样品室中,以获得样品的红外光谱图谱。
通常需要多次测量取平均值以提高信噪比。
4. 数据分析:将所得的红外光谱图谱与参考库中的数据进行比对,并确定样品中存在的化学键和功能基团。
波普分析2 IR
红外光谱(振-转光谱):红外线可引起分子振动 能级的跃迁所形成的吸收光谱。(振动能级跃迁的 同时包含着转动能级的跃迁。)
在红外光谱中,通常以波长(um)或波 数(cm-1)为横坐标,吸收度(A)或百分 透过率为纵坐标,记录物质分子的吸收 曲线。P33 图2-1
εa >100时,示峰带很强,用vs表示; εa =20~100时,为强峰,用s表示; εa =10~20时,为中强峰,用m表示; εa <1时,为弱峰,用w表示。
红外光谱用于定性所指的峰强是每一峰 的相对强度。
5 决定峰强的因素 (1)振动过程中偶极矩的变化 基频峰的强度(除浓度影响以外)主要取决 于振动过程中偶极矩变化的大小。振动时, 偶极矩变化愈大,吸收强度愈大。
例:
O R C R'
R O
O C
c=o 1720cm-1
1680cm-1
1660cm-1
在p-π共轭体系中,诱导效应与共轭 效应常常同时存在。例如酰胺化合物。
同时存在I效应和C效应,吸收峰的位移方 向由影响较大的那个效应所决定。
O R C 1735 OR R
O C 1690 NR2 R
O C S-Ar
C、因振动量子数越大,振幅也随之加 宽,故势能曲线的能级间隔将越来越小。 D、从基态(V0 )跃迁到第一激发态 (V1 ) 时,将引起一个强的吸收峰, 叫基频峰;从基态直接跃迁到第二激发 态(V0→V2)时,则引起一个弱的倍频峰。
E、振幅超过一定值,化学键断裂,分子离解, 能级并在一起,势能曲线趋近于一条水平线, 这时的Emax等于离解能。 非谐振子的跃迁选律不局限于△V=±1 , 它可等于任何整数值: △V=±1 ,±2, ±3 ···,除△V=±1外,其余选律的跃迁几率 都很小,故谱带强度很弱,所以红外光谱中, 除了可以观察到很强的基频峰外,还可以看到 其他较弱谱带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双原子分子A-B→近似看作谐振子 两原子间的伸缩振动→近似看作简谐振动
简谐振动位能
U
1 2
K (r
re
)2
r 原子间实际距离 re 原子间平衡距离 K 化学键力常数(N / cm)
分子振动总能量
EV
(V
1) h
2
分子振动频率
V 分子振动量子数
V 0 ,1 ,2 ,3
最强 较
很
极弱 极弱
规律
1.k值与 成正比
• •
2.
k c=c
值与
>
k>
成c=反c比
k
c-c
v c= c
>v > c=c
v c-c
• 3.
v C-H > vc-c
>
v C-O>
vቤተ መጻሕፍቲ ባይዱ
> C-Cl
v> C-Br
v C-I
v C-H =2900cm -1
v O-H
=3600~3200cm-1
v N-H
=3500~3300cm-1
分子振动能级差 E振 V h
产生红外光谱前提 E振 EL L 红外光的照射频率 分子的振动频率
1 K 2
- 1307 K
其中 mA mB
mA mB
- 1307 K’ (适用于X-H型键)
- 1307 2K’(适用于X-Y型键)
M
*振动频率(ν)是键的力常数(K)及两 个原子(mA与mB)的质量的函数。
谱图解析——正己烷
在1375±10cm-1,是CH3对称弯曲振 动(也叫“伞”弯曲振动)吸收峰位 置,这个峰通常时很有用的,因为这 个峰比较孤立,比较环己烷的谱图, 最大的差异就是在环己烷谱图中没有 CH3基团的对称弯曲振动峰。
(二).多原子分子的振动类型
2. 分子振动自由度与峰数
*基本振动的数目称为振动自由度; 由N个原子构成的分子,其总自由度 为3N个。
✓ 例:
CC CH
例题: 由表中查知C=C键的K=9.5 9.9 ,令其为 9.6, 计算波数值。
v 1 1 k 1307 k 1307 9.6 1650cm1
2c
12 / 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
21:35:23
2. 非谐振子:
*真实分子并非严格遵守谐振子规律, 其 势能曲线不是抛物线。
(2) V0 V2或V3 :产生倍频峰谱带, 峰较弱。 ν0 2= 2ν(1-3Xe)
基频峰(0→1) 二倍频峰( 0→2 )
弱
三倍频峰( 0→3 ) 弱
四倍频峰( 0→4 ) 五倍频峰( 0→5 )
2885.9 cm-1 5668.0 cm-1
8346.9 cm-1
10923.1 cm-1 13396.5 cm-1
《波谱解析》
第二章 红外光谱 (IR)
学习要求:
1.了解红外光谱的基础知识: 红外光谱产 生的原因以及在IR谱中影响基团(官能团) 振动频率(ν)的一些因素。 2.掌握IR谱解析的重要区段及主要官能 团特征吸收频率。 3. 了解IR谱在有机结构分析中的应用。
第一节 基础知识
一. 红外光(800nm-400μm)与红外光谱(IR):
这些式子表明:双原子分子的振动频率 (波数)随着化学键力常数的增大而 增加, 同时也随着原子折合质量的 增加而降低。
表: 某些键的伸缩力常数(毫达因/埃)
✓ 例: CC
CC
CC
K 15N / cm K 10N / cm K 5N / cm
~ 2160cm1 ~ 1650cm1 ~ 1190cm1
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐 射不能引起共振,无红外活性。 如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红 外活性。
偶极子在交变电场中的作用示意图
21:35:23
二. 分子化学键的振动与能级:
(一). 双原子分子的振动:
*分子的能量: E分子=E移+E转+E振+E电子 E光子=hν光=ΔE振
*化学键的偶极矩与分子的偶极矩(μ): *红外光可分为三个区域:
近红外区(泛频区): 12500-4000 cm-1 (波 数ν-);
中红外区(基本振动区) : 4000-400 cm-1 远红外区(转动区) : 400-25 cm-1
谱图解析——正己烷
2872cm-1 处 是 CH3 的 对称伸缩振动峰,一 般波数范围为: 2872±10cm-1。
谱图解析——正己烷
在 2853cm-1 处 的 吸 收 峰 , 是 CH2 的 对 称 伸 缩 振 动 峰 ,一般这种振动峰的吸收 位置在:2853±10cm-1。
正己烷
在1455±10cm-1处,是CH2 的弯曲振动峰吸收值(也叫 剪刀振动)。
*由量子力学求得非谐振子的能级为:
E振=(V+1/2) ν- -(V+1/2)2Xe ν-
式中V:振动量子数, 其值可取0, 1, 2….
Xe:非谐性修正系数
ν- :谐振子的振动频率
3
*在常温下, 分子几乎均处于基态, 所以在红 外光谱中通常只考虑如下两种跃近: (1) V0 V1:产生基频峰谱带, 峰较强。 ν0 1= ν(1-2Xe)
红外光谱(IR):
红外光谱图: 纵坐标用吸收强度[吸光度A或透光率T(%) =(T/T0)%]表示 横坐标用波长λ( m )或波数ν=- 1/λ (cm-1)表示
有机化合物结构:可以用峰数,峰位,峰形,峰强来描述。
红外吸收光谱产生的条件
condition of Infrared absorption spectroscopy
• 4. 伸缩振动频率>弯曲振动频率
(二).多原子分子的振动类型
1. 振动类型 (分两大类) :
(1) 伸缩振动: 以ν表示, 又可分: 对称(νs) 不对称(νas)
(2) 弯曲振动:以δ表示, 又可为4种。 面内弯曲振动δ ip:剪式;平面摇摆 面外弯曲振动δ 0.0.p:扭曲;非平面摇摆
νas > νs> δ S > δ 0.0.p
亚甲基的振动模式:
谱图解析——正己烷
在 2962cm-1 处 的 峰 是 CH3 基 团的不对称伸缩振动。这种 不对称伸缩振动范围 2962±10cm-1 , 事 实 上 , 存 在两个简并的不对称伸缩振 动(显示其中一个)。
谱图解析——正己烷
在 2926cm-1 处 , 是 CH2 的 不 对 称 伸 缩 振 动峰,一般在 2926±10cm-1 范 围 内 。