2018年春季高考数学真题
2018年山东省春季高考数学真题
山东省 2018 年普通高校招生(春季)考试 数学试题参考答案
卷一(选择题,共 60 分)
一、选择题(本大题 20 个小题,每小题 3 分,共 60 分)
1 2 3 4 5 6 7 8 9 10 BDAACDBCBC 11 12 13 14 15 16 17 18 19 20 BAADDACCBA
(1)若函数 f(x)在区间( ,0)上单调递减,求实数 m 的取值范围;
(2)若 xR,都有 f(x)>0,求实数 m 的取值范围
27.(本小题
8
分)已知在等比数列
an
中,a2=
1 4
,a5=
1 32
。
(1)求数列an 的通项公式;
(2)若数列bn 满足 bn an n ,求bn 的前 n 项和 Sn.
30.(本小题 10 分)双曲线 x2 y2 =1(a>0,b>0)的左、右焦点分别是
a2 b2
F1,F2,抛物线 y2=2px(p>0)的焦点与点 F2 重合,点 M(2, 2 6 )是抛 物线与双曲线的一个交点,如图所示。 (1)求双曲线及抛物线的标准方程; (2)设直线 l 与双曲线的过一、三象限的渐近线平行,且交抛物线于 A,B 两点,交双曲线于点 C,若点 C 是线段 AB 的中点,求直线 l 的 方程.
其中,正确结论的序号是
.
(第 23 题图)
24.已知椭圆 C 的中心在坐标原点,一个焦点的坐标是(0,3),若点(4,0)在椭圆 C 上,则椭圆 C
的离心率等于
。
25.在一批棉花中随机抽测了 500 根棉花纤维的长度(精确到 1mm)作为样本,并绘制了如图所示的 频率分布直方图,由图可知,样本中棉花纤维长度大于 225mm 的频数是
2018年上海市春考数学试卷(含答案)
2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点到两个定点()0,1和()0,1-的距离之和等于4,则动点的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。
9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若是关于的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则的取值范围是__________;12、如图,在正方形ABCD 的边长为米,圆的半径为1米,圆心是正方形的中心,点、分别在线段AD 、上,若线段PQ 与圆有公共点,则称点在点的“盲区”中,已知点以1。
5米/秒的速度从出发向移动,同时,点以1米/秒的速度从出发向移动,则在点从移动到的过程中,点在点的盲区中的时长均为_____秒(精确到0。
山东省2018届高三普通高校招生春季考试数学试题
山东省2018年普通高校招生(春季)考试数学试题卷一一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1. 已知集合{,}M a b =,{,}N b c =,则M N 等于( )A .∅B .{}bC .{,}a cD .{,,}a b c2. 函数()11xf x x x =++-的定义域是( )A .(1,)-+∞B .(1,1)(1,)-+∞C .[1,)-+∞D .[1,1)(1,)-+∞3. 奇函数()y f x =的局部图像如图所示,则( )A .(2)0(4)f f >>B .(2)0(4)f f <<C .(2)(4)0f f >>D .(2)(4)0f f <<4. 不等式11g ||0x +<的解集是( )A .11(,0)(0,)1010-B .11(,)1010-C. (10,0)(0,10)- D .(10,10)-5. 在数列{}n a 中, 121,0a a =-=,21n n n a a a ++=+,则S a 等于()A .0B .1- C. 2- D .3-6. 在如图所示的平面直角坐标系中,向量AB 的坐标是( )A .(2,2)B .(2,2)--C. (1,1) D .(1,1)--7. 22(1)(1)1x y ++-=的圆心在( )A .第一象限B .第二象限 C. 第三象限 D .第四象限8. 已知,a b R ∈,则“a b >”是“22a b >”的( )A .充分不必要条件B .必要不充分条件C.允要条件 D .既不允分也不必要条件9. 关于直线:320l x y -+=,下列说法正确的是( )A .直线l 的倾斜角为60B .向量(3,1)v =是直线l 的一个方向向量C. 直线l 经过点(1,3)- D .向量(1,3)n =是直线l 的一个法向量10. 景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的面走到山顶后,接着从另一面下山,则不同走法的种数是( )A .6B .10 C. 12 D .2011. 在平面直角坐标系中,关于,x y 的不等式0Ax By AB ++>(0)AB ≠表示的区域(阴影部分)可能 是( )A .B . C. D .12. 已知两个非零向量a 与b 的夹角为锐角,则( )A .0a b ⋅>B .0a b ⋅< C. 0a b ⋅≥ D .0a b ⋅≤13. 若坐标原点(0,0)到直线sin 20x y θ-+=的距离等于22,则角θ的取值集合是( )A .{|,}4k k Z πθθπ=±∈ B .{|,}2k k Z πθθπ=±∈ C. {|2,}4k k Z πθθπ=±∈ D .{|2,}2k k Z πθθπ=±∈14. 关于,x y 的方程222(0)x ay a a +=≠,表示的图形不可能是( )A .B . C. D .15. 在5(2)x y -的展开式中,所有项的系数之和等于( )A .32B .-32 C. 1 D .-116. 设命题:53p ≥,命题:{1}{0,1,2}q ⊆,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧ C. p q ∧⌝ D .p q ⌝∨⌝17. 已知抛物线2(0)x ay a =≠的焦点为F ,准线为l ,该抛物线上的点M 到x 轴的距离为5,且||7MF =,则焦点F 到准线l 的距离是( )A .2B .3 C. 4 D .518. 某停车场只有并挂的8个停车位,恰好仝部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概半是( )A .514 B .1528 C. 914 D .6719. 己知矩形ABCD ,2AB BC =,把这个矩形分别以AB BC 、所在直线为轴旋转一周,所成几何体的侧面积分别记为12S S 、,则1S 与2S 的比值等于( )A .12 B .1 C. 2 D .420.若由函数sin(2)2y x π=+的图像变换得到sin()23y ππ=+的图像,则可以通过以下两个步骤完成:第一步,把sin(2)2y x π=+图像上所有点的横坐标变为原来的4倍,纵坐标不变:第二步,可以把所得图像沿x轴( )A .向石移3π个单位 B .向右平移512π个单位C. 向左平移3π个单位 D .同左平移512π个单位卷二二、填空题(本大题5个小题,每小题4分,共20分。
2018年上海卷春季高考真题数学试卷-学生用卷
2018年上海卷春季高考真题数学试卷-学生用卷一、填空题(1~6每小题4分,7~12每小题5分,共54分)1、【来源】 2018~2019学年10月上海闵行区上海市七宝中学高一上学期月考第1题2018年1月高考真题上海卷第1题4分不等式|x|>1的解集为.2、【来源】 2018年1月高考真题上海卷第2题4分计算:limn→∞3n−1n+2=.3、【来源】 2018年1月高考真题上海卷第3题4分设集合A={x|0<x<2},B={x|−1<x<1},则A∩B=.4、【来源】 2018年1月高考真题上海卷第4题4分若复数z=1+i(i是虚数单位),则z+2z=.5、【来源】 2018年1月高考真题上海卷第5题4分已知{a n}是等差数列,若a2+a8=10,则a3+a5+a7=.6、【来源】 2018年1月高考真题上海卷第6题4分已知平面上动点P到两个定点(1,0)和(−1,0)的距离之和等于4,则动点P的轨迹方程为.7、【来源】 2018年1月高考真题上海卷第7题5分如图,在长方体ABCD−A1B1C1D1中,AB=3,BC=4,AA1=5,O是A1C1的中点,则三棱锥A−A1OB1的体积为.8、【来源】 2018年1月高考真题上海卷第8题5分某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩.若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为.9、【来源】 2018年1月高考真题上海卷第9题5分设a∈R,若(x2+2x )9与(x+ax2)9的二项展开式中的常数项相等,则a=.10、【来源】 2020~2021学年上海徐汇区高一下学期期末第9题2018年1月高考真题上海卷第10题5分设m∈R,若z是关于x的方程x2+mx+m2−1=0的一个虚根,则|z|的取值范围是.11、【来源】 2018年1月高考真题上海卷第11题5分设a>0,函数f(x)=x+2(1−x)sin(ax),x∈(0,1),若函数y=2x−1与y=f(x)的图象有且仅有两个不同的公共点,则a的取值范围是.12、【来源】 2018年1月高考真题上海卷第12题5分2019~2020学年12月上海闵行区上海市七宝中学高二上学期月考第12题5分如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心是正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中.已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约为秒.(精确到0.1)二、选择题(每小题5分,共20分)13、【来源】 2018年1月高考真题上海卷第13题5分下列函数中,为偶函数的是().A. y=x−2B. y=x13C. y=x−12D. y=x314、【来源】 2018年1月高考真题上海卷第14题5分2019~2020学年广东深圳罗湖区深圳市美术学校高一下学期开学考试第7题5分如图,在直三棱柱ABC−A1B1C1的棱所在的直线中,与直线BC1异面的直线条数为().A. 1B. 2C. 3D. 415、【来源】 2018~2019学年10月上海宝山区上海市吴淞中学高三上学期月考第15题5分 2018年1月高考真题上海卷第15题5分记S n 为数列{a n }的前n 项和.“{a n }是递增数列”是“{S n }为递增数列”的( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16、【来源】 2018年1月高考真题上海卷第16题5分已知A 、B 为平面上的两个定点,且|AB →|=2.该平面上的动线段PQ 的端点P 、Q ,满足|AP →|⩽5,AP →⋅AB →=6,AQ →=−2AP →,则动线段PQ 所形成图形的面积为( ).A. 36B. 60C. 81D. 108三、解答题(第17题14分,第18题14分,第19题14分,第20题16分,第21题18分)17、【来源】 2018年1月高考真题上海卷第17题14分2017~2018学年上海嘉定区高一下学期期末第18题8分已知y =cosx .(1) 若f(α)=13,且α∈[0,π],求f(α−π3)的值. (2) 求函数y =f(2x)−2f(x)的最小值.18、【来源】 2018年1月高考真题上海卷第18题14分已知a ∈R ,双曲线Γ:x 2a 2−y 2=1.(1) 若点(2,1)在Γ上,求Γ的焦点坐标.(2) 若a=1,直线y=kx+1与Γ相交于A、B两点,且线段AB中点的横坐标为1,求实数k的值.19、【来源】 2018年1月高考真题上海卷第19题14分利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米.(1) 求抛物线的焦点到准线的距离.(2) 在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).20、【来源】 2020~2021学年上海杨浦区上海复旦大学附属中学高一上学期期末第20题16分2018年1月高考真题上海卷第20题16分设a>0,函数f(x)=11+a⋅2x.(1) 若a=1,求f(x)的反函数f−1(x).(2) 求函数y=f(x)⋅f(−x)的最大值(用a表示).(3) 设g(x)=f(x)−f(x−1).若对任意x∈(−∞,0],g(x)⩾g(0)恒成立,求a的取值范围.21、【来源】 2018年1月高考真题上海卷第21题18分若{c n}是递增数列,数列{a n}满足:对任意n∈N∗,存在m∈N∗,使得a m−c na m−c n+1⩽0,则称{an}是{c n}的“分隔数列”.(1) 设c n=2n,a n=n+1,证明:数列{a n}是{c n}的“分隔数列”.(2) 设c n=n−4,S n是{c n}的前n项和,d n=c3n−2,判断数列{S n}是否是数列{d n}的分隔数列,并说明理由.(3) 设c n=aq n−1,T n是{c n}的前n项和,若数列{T n}是{c n}的分隔数列,求实数a、q的取值范围.1 、【答案】(−∞,−1)∪(1,+∞);2 、【答案】3;3 、【答案】(0,1);4 、【答案】2;5 、【答案】15;6 、【答案】x24+y23=1;7 、【答案】5;8 、【答案】180;9 、【答案】4;10 、【答案】(√33,+∞) ;11 、【答案】(11π6,19π6];12 、【答案】4.4;13 、【答案】 A;14 、【答案】 C;15 、【答案】 D;16 、【答案】 B;17 、【答案】 (1) 1+2√66.;(2) −32.;18 、【答案】 (1) (±√3,0).;(2) √5−1.2;19 、【答案】 (1) 1米.4;(2) 9.59°.;(0<x<1).20 、【答案】 (1) f−1(x)=log21−xx;(2) 1.1+2a+a2;(3) (0,√2].;21 、【答案】 (1) 证明见解析.;(2) 不是,理由见解析.;(3) a>0且q⩾2.;。
山东省2018年普通高校招生(春季)考试 数学试题-答案
三 、解 答 题 (本 大 题 5 个 小 题 ,共 40 分 ) 26.(本 小 题 6 分 )
文
博 解:(1)函数f(x)=x2+(m -1)x+4的对称轴为x=-m2-1,……………………… (1分) 东 因为函数f(x)在区间(-∞,0)上单调递减,
所以-m2-1≥0,…………………………………………………………………………… (1分)
(2 7)2=(3 7)2+72-2×3 7×7×cos∠B,
解 得 cos∠B =277,
媒
传 所以sin∠B=
1-
æç2
7
ö2
÷
=
è7ø
21,… … … … … … … … … … … … … … … … … … … … … 7
(1 分 )
化 sin∠APB
=sin(180°-30°-
∠B
)=sin150°cos∠B
山东省2018年普通高校招生(春季)考试 数学试题答案及评分标准
卷 一 (选 择 题 ,共 60 分 )
一 、选 择 题 (本 大 题 20 个 小 题 ,每 小 题 3 分 ,共 60 分 )
题号
1
2
3
4
5
6
7
8
9 10
答案
B
D
A
A
C
D
B
C
B
C
题号
11 12 13 14 15 16 17 18 19 20
-cos150°sin∠B
=
1 2
27 ×7-
æ
ç
è
-
3ö÷ 2ø
×
文 721=5147,………………………………………………………………………………… (1分)
(完整版)2018山东春季高考数学试题
山东省2018年普通高校招生(春季)考试数学试题卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合M={a,b},N={b,c},则M N等于(A)∅(B){b} (C){a,c} (D){a,b,c}2.函数f(x)=的定义域是11-++xxx(A)(-1,+∞)(B)(-1,1)(1,+∞)(B)[-1,+∞)(D)[-1,1)(1,+∞)3.奇函数y=f(x)的局部图像如图所示,则(A)f(2)> 0 > f(4) (B)f(2)< 0 < f(4)(C)f(2)> f(4)> 0 (D)f(2)< f(4)< 04.不等式1+lg <0的解集是(A) (B)101,0()0,101(-101,101(-(C) (D)(-10,10))10,0()0,10(-5.在数列{a n}中,a1=-1,a2=0,a n+2=a n+1+a n,则a5等于(A)0 (B)-1 (C)-2 (D)-36. 在如图所示的平角坐标系中,向量的坐标是AB(A)(2,2) (B)(-2,-2)(C)(1,1) (D)(-1,-1)7.圆的圆心在()()22111x y++-=(A) 第一象限 (B) 第二象限(C) 第三象限 (D) 第四象限8.已知,则“”是“ ”的a b R∈、a b>22a b>(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件9.关于直线,下列说法正确的是:20,l x-+=(A)直线的倾斜角60° (B)向量=,1)是直线的一个方向向量l v lxy(第6题图)(第3题图)e ae i r(C)直线经过(1,) (D)向量=(1)是直线的一个法向量l n l 10.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走发的种数是(A) 6 (B) 10 (C) 12 (D) 2011.在平面直角坐标系中,关于x ,y 的不等式Ax+By+AB>0(AB ≠0)表示的区域(阴影部分)可能是12.已知两个非零向量a 与b 的夹角为锐角,则(A)0a b ⋅> (B )0a b ⋅< (C )0a b ⋅≥(D )0a b ⋅≤13.若坐标原点(0,0)到直线 的距离等于,则角θ的取值集合是(A) (B)(C) )(D)14.关于x,y 的方程 ,表示的图形不可能是15.在 的展开式中,所有项的系数之和等于(A )32 (B )-32 (C )1 (D )-116. 设命題p: 53,命題q: {1} ⊆{0, 1, 2},则下列命題中为真命題的是≥ (A) p ∧q (B) ﹁p ∧q (C) p ∧﹁q (D) ﹁p ∨﹁q17.己知抛物线x²=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M 到x 轴的距离为5,且|MF |=7,则焦点F 到准线l 的距离是(A) 2 (B) 3 (C) 4 (D) 518.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是 (A)(B) (C) (D)1452815149762,2k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭sin 0x y θ-+=()2220x ay a a +=≠,2k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭,4k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭2,4k k Z πθθπ⎧⎫|=±∈⎨⎬⎩⎭5(2)x y -19.已知矩形ABCD,AB= 2BC,把这个矩形分别以AB、BC所在直线为轴旋转一周,所围成几何体的侧面积分别记为S1、S2,则S1与S2的比值等于(A) (B) 1 (C) 2 (D) 42120.若由函数y= sin(2x+)的图像变换得到y=sin()的图像,则可以通过以下两个步骤完3π32π+x成:第一步,把y= sin(2x+)图像上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把3π所得图像沿x轴 (A)向右平移个单位 (B)向右平移个单位3π125π(C) 向左平移个单位 (D)向左平移个单位3π125π二、填空题(本大题5个小题,每小题4分,共20分。
(完整版)2018年春季高考数学真题
2018春季高考真题一、选择题1、已知集合M={a,b},N={b,c},则M∩N等于A、∅B、{b}C、{a,c}D、{a,b,c}2、函数f(x)=√x+1+xx−1的定义域是A、(−1,+∞)B、(−1,1)∪(1,+∞)C、[ −1,+∞)D、 [ −1,1)∪(1,+∞)3、奇函数y=f(x)的布局如图所示,则A、f(2)>0>f(4)B、f(2)<0<f(4)C、f(2)> f(4)>0D、f(2)<f(4)<04、已知不等式1+lg|x|<0的解集是A、(−110,0)∪(0,110)B、(−110,110)C、(−10,0)∪(0,10)D、(−10,10)5、在数列{a n}中,a1=-1 , a2=0,a n+2=a n+1+a n,则a5等于A、0B、−1C、−2D、−36、在如图所示的平面直角坐标系中,向量AB⃗⃗⃗⃗⃗ 的坐标是A、(2,2)B、(−2,−2)C、(1,1)D、(−1,−1)7、圆(x+1)2+(y−1)2=1的圆心在A、第一象限B、第二象限C、第三象限D、第四象限8、已知a、b∈R,则“a>b”是“2a>2b”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件9、关于直线l:x−√3y+2=0,下列说法正确的是A、直线l的倾斜角为60。
B、向量v=(√3,1)是直线l的一个方向向量C、直线l经过点(1,√3)D、向量n=(1,√3)是直线l的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A、6B、10C、12D、2011、在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是12、已知两个非零向量a与b 的夹角为锐角,则A、a∙b>0B、a∙b<0C、a∙b≥0D、a∙b≤013、若坐标原点(0,0)到直线x−y+sin2θ=0的距离等于√22,则角θ的取值集合是A、{θ|θ=kπ±π4,k∈Z} B、{θ|θ=kπ±π2,k∈Z}C、{θ|θ=2kπ±π4,k∈Z} D、{θ|θ=2kπ±π2,k∈Z}14、关于x,y的方程x2+ay2=a2(a≠0),表示的图形不可能是15、在(x−2y)2的展开式中,所有项的系数之和等于A、32B、-32C、1D、-116、设命题p:5≥3,命题q:{1}⊑{0,1,2},则下列命题中为真命题的是A、p∧qB、¬p∧qC、p∧¬qD、¬p∨¬q17、已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l距离是A、2B、3C、4D、518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A、514B、1528C、914D、6719、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于A、12B、1C、2D、420、若由函数y=sin(2x+π2)图像变换得到y=sin(x2+π3)的图像,则可以通过以下两个步骤完成:第一步,把y=sin(2x+π2)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴A、向右平移π3个单位B、向右平移5π12个单位C、向左平移π3个单位D、向左平移5π12个单位二、填空题21、已知函数f(x)={x 2+1,x>0−5,x≤0,则f[f(0)]的值等于。
高三数学-2018年高考(春考3套秋考29套全word版有详细
2018年高考题分章节汇编第六章 不等式一、选择题1.(2018年春考·北京卷·理8文8)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是( A )A .⎪⎭⎫⎢⎣⎡-23,2B .⎪⎭⎫ ⎝⎛-23,2C .⎪⎭⎫⎢⎣⎡-23,3D .⎪⎭⎫ ⎝⎛-23,32.(2018年高考·福建卷·理11)设b a b a b a +=+∈则,62,,22R 的最小值是( C )A .22-B .335-C .-3D .27-3.(2018年高考·重庆卷·理5)若x ,y 是正数,则22)21()21(xy y x +++的最小值是 ( C )A .3B .27 C .4 D .294.(2018年高考·福建卷·文5)下列结论正确的是( B )A .当2lg 1lg ,10≥+≠>x x x x 时且B .21,0≥+>x x x 时当C .xx x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 三、解答题1.(本小题满分13分)(2018年春考·北京卷·理19文19)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:)0(160039202>++=υυυυy . (1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(精确到1.0千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内? 本小题主要考查函数、不等式等基本知识,考查应用数学知识分析问题和解决问题的能力,满分13分.解:(Ⅰ)依题意,,83920160023920)1600(3920=+≤++=vv y)./(1.1183920,,40,1600max小时千辆所以上式等号成立时即当且仅当≈===y v vv(Ⅱ)由条件得,10160039202>++v v v整理得v 2-89v +1600<0, 即(v -25)(v -64)<0, 解得25<v <64.答:当v =40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时. 2.(本小题满分13分)(2018年春考·北京卷·理20)(文20少第(4)问) 现有一组互不相同且从小到大排列的数据:543210,,,,,a a a a a a ,其中00=a .为提取反映数据间差异程度的某种指标,今对其进行如下加工:记510a a a T +++= ,5nx n =,)(110n n a a a Ty +++=,作函数)(x f y =,使其图象为逐点依次连接点)5,,2,1,0)(,( =n y x P n n n 的折线.(1)求)0(f 和)1(f 的值;(2)设n n P P 1-的斜率为)5,4,3,2,1(=n k n ,判断54321,,,,k k k k k 的大小关系; (3)证明:当)1,0(∈x 时,x x f <)(;(4)求由函数x y =与)(x f y =的图象所围成图形的面积(用54321,,,,a a a a a 表示). 本小题主要考查函数、不等式等基本知识,考查逻辑思维能力、分析问题和解决问题的能力,满分13分. (Ⅰ)解:,0)0(500=++=a a a f,1)1(5050=++++=a a a a f(Ⅱ)解:,5,,2,1,511 ==--=--n a Tx x y y k n n n n n n因为a 1<a 2<a 3<a 4<a 5, 所以k 1<k 2<k 3<k 4<k 5.(Ⅲ)证明:由于f (x )的图象是连接各点)5,,1,0)(,( =n y x P n n n 的折线,要证明,),(,).4,3,2,1()(),10()(1时当事实上只需证明n n n n x x x n x x f x x x f -∈=<<<<xx x x x x x x x x x x f x x x x x f x x x x x f x x x x x f x f x f n n n n n n n n n n n n n n n n n n n n n n =--+--<--+--=+---=------------111111111111)()()()()()()(下面证明.)(n n x x f < 证法一:对任何n (n =1,2,3,4),.5)()(])5([)5()())(5()())](5([)(51511111111n n n n n n n n n n n n n x nT a a x f nT a a a a n a n a a n na n a a n a a n a a n a a n n a a =<++==+++++<-+++=-+++≤++-+++=++-+=+++ 所以证法二:对任何n (n=1,2,3,4).)(,,5)5(511)(511)]()()[(1)(,1.5)(51)()()(152145121552111201n n n n n n n n n n n n n n n n n n x x f x nn k k k y y y y y y y y y y k x nk k k y y y y y y y k <==--<+++-=-++-+--=--=≥=<+++=-++-+-=<+++++-综上时当时当(Ⅳ)解:设S 1为[0,1]上折线f (x )与x 轴及直线x =1所围成图形的面积,则.)(52221)()234(51101101)]()()([51)2222(101))((21))((21))((21))((21))((2154321542114321432132121154321455434432332122101101a a a a a a a a a S S x f y x y a a a a Ta a a a a a a a a a T y y y y y x x y y x x y y x x y y x x y y x x y y S ++++++--=-===++++=++++++++++=++++=-++-++-++-++-+=所围成图形的面积为与折线直线 3.(本小题共14分)(2018年高考·北京卷·理20)设)(x f 是定义在[0,1]上的函数,若存在],0[)(),1,0(**x x f x 在使得∈上单调递增,在[x *,1]上单调递减,则称)(x f 为[0,1]上的单峰函数,x *为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数)(x f ,下面研究缩短其含峰区间长度的方法.(Ⅰ)证明:对任意的),0(),()(,),1,0(,2212121x x f x f x x x x 则若≥<∈为含峰区间; 若)1,(),()(121x x f x f 则≤为含峰区间;(Ⅱ)对给定的r (0<r<0.5),证明:存在r x x x x 2),1,0(,1221≥-∈满足,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r ;(Ⅲ)选取2121),1,0(,x x x x <∈,由(Ⅰ)可确定含峰区间为(0,2x )或(1x ,1),在所得的含峰区间内选取23133,x x x x x 与或与由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,2x )的情况下,试确定321,,x x x 的值,满足两两之差的绝地值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)(Ⅰ)证明:设)(x f x 为*的峰点,则由单峰函数定义可知,],0[)(*x x f 在上单调递增,在]1,[*x 上单调递减.当)()()(,),,0(,)()(1221221x f x f x f x x x x x x f x f >≥≤<∉≥***从而则假设时, 这与),0(),,0(,)()(2221x x x x f x f 即所以矛盾∈≥*是含峰区间.当),()()(,),1,(,)()(2121121x f x f x f x x x x x x f x f >≥<≤∉≤***从而则假设时 这与)1,(),1,(,)()(1121x x x x f x f 即所以矛盾∈≤*是含峰区间. (II )证明:由(I )的结论可知:当f (x 1)≥f (x 2)时,含峰区间的长度为l 1=x 2; 当f (x 1)≤f (x 2)时,含峰区间的长度为l 2=1-x 1; 对于上述两种情况,由题意得⎩⎨⎧+≤-+≤,5.01,5.012r x r x ① 由①得1+x 2-x 1≤1+2r ,即x 2-x 1≤2r. 又因为x 2-x 1≥2r ,所以x 2-x 1=2r ,所以 x 2-x 1=2r. ② 将②代入①得 x 1≤0.5-r, x 2≥0.5+r. ③ 由①和③解得x 1=0.5-r, x 2=0.5+r.所以这时含峰区间的长度l 1=l 2=0.5+r ,即存在x 1 , x 2使得所确定的含峰区间的长度不大于0.5+r.(Ⅲ)解:对先选择的x 1, x 2, x 1 <x 2, 由(II )可知 x 1+x 2=1, ④在第一次确定的含峰区间为(0,x 2)的情况下,x 3的取值应满足 x 3+x 1=x 2 , ⑤由④与⑤可得⎩⎨⎧-=-=,21,11312x x x x 当x 1>x 3时,含峰区间的长度为x 1.由条件x 1-x 3≥0.02, 得x 1-(1-2x 1) ≥0.02, 从而x 1≥0.34.因此,为了将含峰区间的长度缩短到0.34,只要取 x 1=0.34, x 2=0.66, x 3=0.32. 4.(本小题满分12分)(2018年高考·江西卷·理17文17)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.。
2018年上海市高考数学试卷真题及答案(春考+夏考)
2018年上海市普通高等学校春季招生统一文化考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.不等式||1x >的解集为__________. 2.计算:31lim2n n n →∞-=+__________.3.设集合{|02}A x x =<<,{|11}B x x =-<<,则A B =__________.4.若复数z i i =+(i 是虚数单位),则2z z+=__________. 5.已知{}n a 是等差数列,若2810a a +=,则357a a a ++=__________.6.已知平面上动点P 到两个定点(1,0)和(1,0)-的距离之和等于4,则动点P 的轨迹为__________.7.如图,在长方形1111B ABC A C D D -中,3AB =,4BC =,15AA =, O 是11AC 的 中点,则三棱锥11A AOB -的体积为__________.第7题图 第12题图8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、 四辩.若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为__________.9.设a R ∈,若922x x ⎛⎫+ ⎪⎝⎭与92a x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项相等,则a =__________.10.设m R ∈,若z 是关于x 的方程2210x mx m -+=+的一个虚根,则||z 的取值范围是__________.11.设0a >,函数()2(1)sin()f x x x ax =+-,(0,1)x ∈,若函数21y x =-与()y f x =的图象有且仅有两个不同的公共点,则a 的取值范围是__________.12.如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲 区”中.已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为__________秒(精确到0.1)二、选择题(本大题共有4题,满分20分,每题5分)13.下列函数中,为偶函数的是( ) (A )2y x -= (B )13y x =(C )12y x-=(D )3y x =14.如图,在直三棱柱111AB A B C C -的棱虽在的直线中,与直线1BC 异面的直线条数为( ) (A )1 (B )2(C )3(D )415.记n S 为数列{}n a 的前n 项和.“{}n a 是递增数列”是“n S 为递增数列”的( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件(D )既非充分也非必要条件16.已知A 、B 为平面上的两个定点,且|2|AB =.该平面上的动线段PQ 的端点P 、Q , 满足||5AP ≤,6AB AP ⋅=,2AQ AP =-,则动线段PQ 所形成图形的面积为( ) (A )36(B )60(C )81(D )108三、解答题(本大题共有5题,满分76分,第17~19题每题14分,20题16分,21题18分)17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知cos y x =.(1)若3(1)f α=,且[0,]απ∈,求()3f πα-的值; (2)求函数(2)2()y f x f x =-的最小值.18. (本题满分14分,第1小题满分6分,第2小题满分8分) 已知a R ∈,双曲线222:1x y aΓ-=.(1)若点(2,1)在Γ上,求Γ的焦点坐标;(2)若1a =,直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.19.(本题满分14分,第1小题满分7分,第2小题满分7分)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米. (1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).图1 图2 图3 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)设0a >,函数1()12xf x a =+⋅.(1)若1a =,求()f x 的反函数1()fx -;(2)求函数()()y f x f x ⋅-=的最大值(用a 表示);(3)设()()(1)g x f x f x =--.若对任意(,0]x ∈-∞,)(()0g x g ≥恒成立,求a 的取值范围.21.(本题满分18分,第1小题满分3分,第2小题满分6分,第3小题满分9分)若{}n c 是递增数列,数列{}n a 满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +-≤-,则称{}n a 是{}n c 的“分隔数列”. (1)设2n c n =,1n a n =+,证明:数列{}n a 是{}n c 的“分隔数列”;(2)设4n c n =-,n S 是{}n c 的前n 项和,31n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq-=,n T {}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.参考答案一、填空题1.(,1)(1,)-∞-+∞2.33.(0,1)4.2 5.156.22143x y += 7.5 8.180 9.410.)3+∞ 11.1119(,]66ππ12.4.4二、选择题13.A14.C15.D16.B三、解答题17.(1)16+;(2)32-18.(1)(1,0),(1,0)-;(2. 19.(1)14;(2)9.59︒. 20.(1)121()log (01)x f x x x --=<<;(2)2112max y a a =++(0x =时取最值);(3)21.(1)证明略;(2)不是.反例:4n =时,m 无解;(3)02a q ≥>⎧⎨⎩.2018年上海市高考数学试卷2018.06一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 行列式4125的值为 2. 双曲线2214x y -=的渐近线方程为3. 在7(1)x +的二项展开式中,2x 项的系数为 (结果用数值表示)4. 设常数a ∈R ,函数2()log ()f x x a =+,若()f x 的反函数的图像经过点(3,1),则a =5. 已知复数z 满足(1i)17i z +=-(i 是虚数单位),则||z =6. 记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =7. 已知11{2,1,,,1,2,3}22a ∈---,若幂函数()a f x x =为奇函数,且在(0,)+∞上递减,则a =8. 在平面直角坐标系中,已知点(1,0)A -、(2,0)B ,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为9. 有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随 机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示) 10. 设等比数列{}n a 的通项公式为1n n a q -=(n ∈*N ),前n 项和为n S ,若11lim 2n n n S a →∞+=,则q =11. 已知常数0a >,函数2()2x x f x ax =+的图像经过点6(,)5P p 、1(,)5Q q -,若236p q pq +=,则a =12. 已知常数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为二. 选择题(本大题共4题,每题5分,共20分)13. 设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.B.C.D. 14. 已知a ∈R ,则“1a >”是“11a<”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件15. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若 阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边, 则这样的阳马的个数是( )A. 4B. 8C. 12D. 1616. 设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时 针旋转6π后与原图像重合,则在以下各项中,(1)f 的可能取值只能是( )A. B.C. D. 0三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 已知椭圆的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为 线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18. 设常数a ∈R ,函数2()sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[,]ππ-上的解.19. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为30030()180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩(单位:分钟) 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题: (1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间()g x 的表达式,讨论()g x 的单调性,并说明其实际意义.20. 设常数2t >,在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线2:8y x Γ=(0x t ≤≤,0y ≥),l 与x 轴交于点A 、与Γ交于点B ,P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP 的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标,若不存在,说明理由.21. 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意n ∈*N ,都有||1n n b a -≤,则称{}n b 与{}n a “接近”.(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,n ∈*N ,判断数列{}n b 是 否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,⋅⋅⋅,201200b b -中至少有100个为正数,求d 的取值范围.2018年上海市高考数学试卷答案一. 填空题1. 18,452118⨯-⨯=2. 2x y =±,22220442x x x y y y -=⇒=⇒=±3. 21,2721C = 4. 7,根据题意,(1)3f =,即2log (1)3a +=,∴7a = 5. 5,|17i |||5|1i |z -==+,或17i34i 1iz -==--+,∴||5z =6. 14,6732714a a a d +=+=,∴2d =,432a a d =+=,∴74714S a ==7. 1-,根据题意,a 与奇数相关,且0a <,∴1a =-8. 3-, 不妨设(0,)E t ,(0,2)F t +,∴(1,)AE t =,(2,2)BF t =-+,2(1)3AE BF t ⋅=+-, 即最小值为3- 9.15,总的情况为35C 种,符合题意的有5、2、2和5、3、1两种情况,∴概率为35215C =10. 3,011a q ==,1(1)1n n a q S q -=-,∴11(1)11lim lim (1)12n n n n n n S a q a q q q →∞→∞+-===--,∴3q = 11. 6,根据题意,61()()155f p f q +=-=,即22122p q pq ap aq +=++,去分母化简得, 2236p q a pq pq +==,∴236a =,∵0a >,∴6a =12.23+,构造单位圆如图所示,点11(,)A x y ,22(,)B x y ,cos ||||OA OBAOB OA OB ⋅∠==⋅121212x x y y +=,∴3AOB π∠=,所求的112222+的几何意义即A 、B 两点 到直线10x y +-=的距离之和,再设(cos ,sin )A θθ,则(cos(),sin())33B ππθθ++,∴112222+[1cos sin 1cos()sin()]332ππθθθθ≤--+-+-+=3333[2()cos ()sin ][26sin()](26)2322222θθθϕ-+--=++≤+=+∴最大值为23+. 或根据对称性,A 、B 两点关于y x =对称时,可取最大值二. 选择题13. 选C ,255a a =⇒=,∴P 到该椭圆的两个焦点的距离之和225a =14. 选A ,11(,0)(1,)a a <⇔∈-∞+∞,∴“1a >”是“11a<” 的充分非必要条件,故选A15. 选D ,如图所示,符合条件的面有4个,每个面对应 符合条件的顶点有4个,∴阳马的个数是4416⨯= 16. 选B ,A 选项,若(1)3f =,将点(1,3)依次旋转6π后可得到函数图像上的一些点, 由图可知,当1x =±、3±、0时,对应了两个y 值,不符合函数定义,∴(1)3f ≠. 同理,结合图像分析B 、C 、D 选项,只有B 选项符合函数定义,故选B三. 解答题17.(1)4PB =,2OB =,∴23PO =,……2分 底面积4S π=,∴体积1834233V ππ=⨯⨯=……6分 (2)取OA 中点N ,∴MN ∥OB ,∴异面直线PM 与OB 所成角大小即∠PMN ,……8分1MN =,4PO =,1ON =,PO ⊥ON ,∴17PN =,……11分∴tan 17PNPMN MN∠==,即arctan 17PMN ∠=,……13分 ∴异面直线PM 与OB 所成角大小为arctan 17……14分法二:以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,……7分 ∴(0,2,0)OB =,(1,1,0)M ,(0,0,4)P ,∴(1,1,4)PM =-,……10分 ∴2cos 6||||232OB PM OB PM θ⋅===⋅⨯,∴2arccos 6θ=,……13分 ∴异面直线PM 与OB 所成角大小为2arccos . ……14分18.(1)由()f x 为偶函数,∴()()f x f x -=,……2分 即22sin 22cos sin 22cos a x x a x x -+=+,∴0a =;……4分 (2)2()sin2cos 11424f a a πππ=+=+=,即a =……6分∴2()22cos 112cos212sin(2)16f x x x x x x π=+-+=++=++,……8分∴()1f x =-⇒sin(2)6x π+=……10分 ∴2264x k πππ+=-+或524k ππ+,k ∈Z ,……12分在区间[,]ππ-上解得1124x π=-,524x π=-,1324x π=,1924x π=……14分19.(1)根据题意,即()40f x >,……2分当030x <≤时,()3040f x =<,不满足题意;……3分当30100x <<时,180029040x x+->,化简得2659000x x -+>, 即(20)(45)0x x -->,∴45x >或20x <(舍),∴45100x <<,……5分综上,当45100x <<时,公交群体人均通勤时间少于自驾群体人均通勤时间;……6分 (2)由题意,()%()(1%)40g x x f x x =⋅+-⋅,……7分 当030x <≤时,()%30(1%)40g x x x =⋅+-⋅=14010x -, 由一次函数图像性质可知,()g x 在030x <≤时单调递减;……9分当30100x <<时,1800()%(290)(1%)40g x x x x x =⋅+-+-⋅=2113585010x x -+, 由二次函数图像性质可知,当(30,32.5)x ∈时,()g x 单调递减,当[32.5,100)x ∈时,()g x 单调递增;……11分综上,2140,03010()11358,301005010x x g x x x x ⎧-<≤⎪⎪=⎨⎪-+<<⎪⎩,在(0,32.5)上单调递减,在[32.5,100)上单调递增,……12分说明当自驾群体范围小于32.5%时,人均通勤时间随自驾群体的增加而减少; 当自驾群体占比为32.5%时,人均通勤时间最少;当自驾群体范围超过32.5%时,人均通勤时间随自驾群体的增加而增加. ……14分20.(1)曲线2:8y x Γ=的焦点即(2,0)F ,准线为2x =-,……2分 ∴根据抛物线性质,点B 到点F 的距离22BF B d x t =+=+;……4分(2)当3t =,∴(3,0)A ,∴1AF =,∵2FQ =,∴QA =Q ,……5分∴线段OQ 的中点为3(2,∵(2,0)F ,∴直线FP 方程为2)y x =-……6分 联立28y x =,∴23(2)8x x -=,整理得,2320120x x -+=,解得23P x =,……7分∴AQP 的面积112(3)(3)223AQP P S AQ x =⋅-=-=……8分(3)存在,已知(2,0)F ,设2(,)8n P n ,0n ≥,① 若228n =,则(2,4)P ,∵矩形FPEQ 中,FP FQ ⊥,FP FQ FE +=,∴(8,0)Q ,(8,4)E ,不在曲线2:8y x Γ=上,∴此情况不成立;……10分② 若228n ≠,则PF 的斜率2816PF n k n =-, ∵矩形FPEQ 中,FP FQ ⊥,∴1PF QF k k =-,即2168QF n k n-=,∴直线QF 为216(2)8n y x n -=-,当8t =时,Q 点纵坐标2216483(82)84Q n n y n n --=-=,∴2483(8,)4n Q n -,∴2(2,)8n FP n =-,2483(6,)4n FQ n-=,……12分 ∵矩形FPEQ 中,FP FQ FE +=,设(,)E E E x y ,∴(2,)E E FE x y =-,∴2248(4,)(2,)84E E n n FP FQ x y n++=+=-,得到2248(6,)84n n E n ++,……14分 ∵要使得点E 在Γ上,∴代入28y x =,22248()8(6)48n n n +=+,解得2165n =,∵0n ≥,∴5n =,即2(,55P . ……16分21.(1)数列{}n b 与{}n a 接近,由题意,11()2n n a -=,111()12n n n b a +=+=+,……2分 ∴1111()1()1()222n n n n n b a --=+-=-,∵n ∈*N 时,110()22n <≤,∴111()122n ≤-< 满足对任意n ∈*N ,||1n n b a -≤,∴数列{}n b 与{}n a 接近;……4分(2)∵11a =,22a =,34a =,48a =,又{}n b 与{}n a 接近,∴||1n n b a -≤, ∴[1,1]n n n b a a ∈-+,则1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,……6分 ∴当12[1,2]b b =∈时,M 中有12()b b 、3b 、4b 三个元素; 或233b b ==时,M 中有1b 、23()b b 、4b 三个元素; 当12b b ≠,23b b ≠时,M 中有1b 、2b 、3b 、4b 四个元素; ∴M 中元素的个数m 为3或4;……8分(3)∵||1n n b a -≤,∴[1,1]n n n b a a ∈-+,111[1,1]n n n b a a +++∈-+,∴111[2,2]n n n n n n b b a a a a +++-∈---+,即1[2,2]n n b b d d +-∈-+,n ∈*N ,……10分 ① 若2d ≤-,则10n n b b +-≤恒成立,不满足“至少有100个为正数”,不符;……12分② 若2d >-,令(1)nn n b a =+-,n ∈*N ,∴|||(1)|1n n n b a -=-=,……14分满足||1n n b a -≤,数列{}n b 与{}n a 接近,此时12(1)n n n b b d +-=--, 当n 为奇数时,12(1)20n n n b b d d +-=--=+>,……16分 ∴在21b b -、32b b -、⋅⋅⋅、201200b b -这200个数中, 至少存在21b b -、43b b -、⋅⋅⋅、200199b b -这100个数为正,故2d >-时,存在数列(1)nn n b a =+-()n ∈*N 满足题意,∴d 的取值范围即2d >-. ……18分。
高三数学-2018北京春季高考试卷——理科 精品
绝密★启用前2018年普通高等学校春季招生考试数 学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页.第Ⅱ卷3至9页. 共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21sin cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在函数2,cos ,sin ,2sin xtg y x y x y x y ====中,最小正周期为π的函数是 ( )A .x y 2sin =B .x y sin =C .x y cos =D .2xtg y =2.当132<<m 时,复数i m m z )1()23(-+-=在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ',c 分别表示上、下底面周长,l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径3.双曲线19422=-y x 的渐近线方程是( )A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 4.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为 ( )A .30°B .45°C .60°D .75° 5.在极坐标系中,圆心在),2(π且过极点的圆的方程为( )A .θρcos 22=B .θρcos 22-=C .θρsin 22=D .θρsin 22-=6.已知0)cos(,0)sin(>-<+πθπθ,则下列不等关系中必定成立的是 ( )A .22θθctgtg<B .22θθctgtg>C .2cos2sinθθ< D . 2cos2sinθθ>7.已知三个不等式:0,0,0>->->bda c ad bc ab (其中dc b a ,,,均为实数).用其中两 个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个 数是 ( )A .0B .1C .2D .38.两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一 个新长方体,在这些新长方体中,最长的对角线的长度是( )A .cm 77B .cm 27C .cm 55D .cm 2109.在100件产品中有6件次品. 现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .29416C CB .29916C CC .3943100C C - D .3943100P P -10.期中考试以后,班长算出了全班40个人数学成绩的平均分为M. 如果把M 当成一个同学的分数,与原来的40个分数一起,算出这个41个分数的平均值为N ,那么M:N 为 ( )A .4140B .1C .4041 D .2绝密★启用前2018年普通高等学校春季招生考试数 学(理工农医类)(北京卷)第Ⅱ卷(非选择题 共100分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 11.若)(1x f -为函数)1lg()(+=x x f 的反函数,则)(1x f -的值域是 .12.αααcos )30sin()30sin(︒--︒+的值为 .13.据某校环保小组调查,某区垃圾量的年增长率为b ,2018年产生的垃圾量为a 吨. 由此预测,该区下一年的垃圾量为 吨,2008年的垃圾量为 吨. 14.若直线30322=+=-+y x ny mx 与圆没有公共点,则m ,n 满足的关系式为 ;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有 个. 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)当10<<a 时,解关于x 的不等式212--<x x a a .16.(本小题满分13分)在△ABC 中,c b a ,,分别是C B A ∠∠∠,,的对边长. 已知c b a ,,成等比数列,且bc ac c a -=-22,求A ∠的大小及cBb sin 的值.17.(本小题满分15分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.A BCDSM18.(本小题满分15分)已知点A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线px y 22 上,△ABC 的重心与 此抛物线的焦点F 重合(如图).(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点M 的坐标; (3)求BC 所在直线的方程.19.(本小题满分14分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元. 该厂为鼓励销售商 订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就 降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数)(x f P 的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)20.(本小题满分14分)下表给出一个“等差数阵”:a表示位于第i行第j列的数.其中每行、每列都是等差数列,ija的值;(1)写出45a的计算公式;(2)写出ij(3)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.绝密★启用前2018年普通高等学校春季招生考试数学参考解答(理工农医类)(北京卷)一、选择题:本大题主要考查基本知识和基本运算. 每小题5分,满分50分. 1.A 2.D 3.A 4.C 5.B 6.B 7.D 8.C 9.C 10.B二、填空题:本大题主要考查基本知识和基本运算. 每小题4分,满分16分.11.),1(+∞- 12.1 13.5)1()1(b a b a ++ 14.3022<+<n m 2三、解答题:本大题共6小题,共84分. 解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查不等式的解法、指数函数的性质等基本知识,考查运算能力和逻辑思想能力. 满分13分.解:由10<<a ,原不等式可化为212->-x x .这个不等式的解集是下面不等式组①及②的解集的并集:⎩⎨⎧<-≥-;02012x x ① 或⎪⎩⎪⎨⎧->-≥-≥-.)2(12,02,0122x x x x ② 解不等式组①得解集}221|{<≤x x ,解不等式组②得解集}52|{<≤x x ,所以原不等式的解集为}521|{<≤x x 16.本小题主要考查解斜三角形等基本知识,考查逻辑思维能力、分析问题和解决问题的能力. 满分13分.解:(1)c b a ,, 成等比数列, .2ac b =∴ 又.,22222bc a c b bc ac c a =-+∴-=-在△ABC 中,由余弦定理得 2122c o s222==-+=bc bc bc a c b A , ︒=∠∴60A(2)解法一:在△ABC 中,由正弦定理得aAb B sin sin =.2360sin 60sin sin ,60,22=︒=︒=∴︒=∠=ca b c B b A ac b 解法二:在△ABC 中,由面积公式得.sin 21sin 21B ac A bc = .23s i n s i n ,s i n s i n ,60,22==∴=∴︒=∠=A c B b B b A bc A ac b 17.本小题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分15分. (1)证法一:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC.∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC. 证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC. 图1 ∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D , ∴BC ⊥平面SDC ,∴BC ⊥SC. (2)解法一:∵SD ⊥底面ABCD ,且ABCD 为正方形,∴可以把四棱锥S —ABCD 补形为长方体A 1B 1C 1S —ABCD ,如图2.面ASD 与面BSC 所成的二面角就是面ADSA 1与面BCSA 1所成的二面角,∵SC ⊥BC ,BC//A 1S ,∴SC ⊥A 1S ,又SD ⊥A 1S∴∠CSD 为所求二面角的平面角.在Rt △SCB 中,由勾股定理得SC=2,在Rt △SDC 中,由勾股定理得SD=1.∴∠CSD=45°.即面ASD 与面BSC 所成的二面角为45°.解法二:如图3,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一)(3)解法一:如图3,∵SD=AD=1,∠SDA=90°,∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA. ∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB.∴异面直线DM 与SB 所成的角为90°.解法二:如图4,取AB 中点P ,连结MP ,DP.在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP ,又,25)21(1,222=+==DP DM ∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力. 满分15分.解(1)由点A (2,8)在抛物线px y 22=上,有2282⋅=p ,解得p=16.所以抛物线方程为x y 322=,焦点F 的坐标为(8,0).(2)如图,由于F (8,0)是△ABC 的重心,M 是BC 的中点,所以F 是线段AM 的 定比分点,且2=FMAF 设点M 的坐标为),(00y x ,则02128,8212200=++=++y x , 解得4,1100-==y x ,所以点M 的坐标为(11,-4)(3)由于线段BC 的中点M 不在x 轴上,所以BC 所在的直线不垂直于x 轴.设BC 所 在直线的方程为).0)(11(4≠-=+k x k y由⎩⎨⎧=-=+xy x k y 32),11(42消x 得0)411(32322=+--k y ky , 所以ky y 3221=+. 由(2)的结论得4221-=+y y , 解得.4-=k 因此BC 所在直线的方程为),11(44--=+x y 即.0404=-+y x19.本小题主要考查函数的基本知识,考查应用数学知识分析问题和解决问题的能力. 满分14分.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为0x 个,则.55002.051601000=-+=x 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当1000≤<x 时,P=60;当550100<<x 时,5062)100(02.060x x P -=--=;当.51,550=≥P x 时 所以 ⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<==.550,51)(,550100,5062,1000,60)(x N x x x x x f P (3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<=-=.550,11)(,550100,5022,1000,20)40(2x x N x x x x x x x P L 当x =500时,L=6000;当x =1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.20.本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力. 满分14分.解:(1).4945=a(2)该等差数阵的第一行是首项为4,公差为3的等差数列;)1(341-+=j a j ;第二行是首项为7,公差为5的等差数列:)1(572-+=j a j ;……第i 行是首项为)1(34-+i ,公差为12+i 的等差数列,因此,.)12(2)1)(12()1(34j j i j i ij j i i a ij ++=++=-++-+=(3)必要性:若N 在该等差数阵中,则存在正整数i ,j 使得j j i N ++=)12(,从而).12)(12(12)12(212++=+++=+j i j j i N即正整数2N+1可以分解成两个不是1的正整数之积.充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为 两个不是1的奇数之积,即存在正整数k ,l ,使得),12)(12(12++=+l k N从而kl a l l k N =++=)12(,可见N 在该等差数阵中.综上所述,正整数N 在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整 数之积.。
2018山东春季高考数学试题经典版
山东省2018年普通高校招生(春季)考试数学试题卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合M={a,b},N={b,c},则M N 等于(A )∅ (B ){b} (C ){a,c} (D ){a,b,c} 2.函数f (x )=11-++x xx 的定义域是 (A )(-1,+∞) (B )(-1,1) (1,+∞) (B )[-1,+∞) (D )[-1,1) (1,+∞) 3.奇函数y=f (x )的局部图像如图所示,则(A)f (2)> 0 > f (4) (B)f (2)< 0 < f (4) (C)f (2)> f (4)> 0 (D)f (2)< f (4)< 04.不等式1+lg <0的解集是(A ) )101,0()0,101( -(B) )101,101(- (C) )10,0()0,10( - (D )(-10,10) 5.在数列{a n }中, a 1=-1,a 2=0,a n+2=a n+1+a n ,则a 5等于 (A )0 (B )-1 (C )-2 (D )-36. 在如图所示的平角坐标系中,向量AB 的坐标是 (A)(2,2) (B)(-2,-2)(C)(1,1) (D)(-1,-1) 7.圆()()22111x y ++-=的圆心在(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 8.已知a b R ∈、,则“a b >”是“ 22ab>”的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件 9.关于直线:20,l x -+=,下列说法正确的是(A)直线l 的倾斜角60° (B)向 量v =,1)是直线l 的一个方向向量xy(第6题图)(第3题图)(C)直线l经过(1,) (D)向量n=(1)是直线l的一个法向量10.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走发的种数是(A) 6 (B) 10 (C) 12 (D) 2011.在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是12.已知两个非零向量a与b的夹角为锐角,则(A)0a b⋅>(B)0a b⋅<(C)0a b⋅≥(D)0a b⋅≤13.若坐标原点(0,0)到直线的距离等于,则角θ的取值集合是(A) (B)(C) )(D)14.关于x,y的方程,表示的图形不可能是15.在的展开式中,所有项的系数之和等于(A)32 (B)-32 (C)1 (D)-116. 设命題p: 5≥3,命題q: {1} ⊆{0, 1, 2},则下列命題中为真命題的是(A) p∧q (B) ﹁p∧q (C) p∧﹁q (D) ﹁p∨﹁q17.己知抛物线x²=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF |=7,则焦点F到准线l的距离是(A) 2 (B) 3 (C) 4 (D) 518.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是 (A)145(B)2815(C)149(D)7622,2k k Zπθθπ⎧⎫|=±∈⎨⎬⎩⎭sin0x yθ-+=()2220x ay a a+=≠,2k k Zπθθπ⎧⎫|=±∈⎨⎬⎩⎭,4k k Zπθθπ⎧⎫|=±∈⎨⎬⎩⎭2,4k k Zπθθπ⎧⎫|=±∈⎨⎬⎩⎭5(2)x y-19.已知矩形ABCD ,AB= 2BC ,把这个矩形分别以AB 、BC 所在直线为轴旋转一周,所围成几何体的侧面积分别记为S 1、S 2,则S 1与S 2的比值等于(A)21(B) 1 (C) 2 (D) 4 20.若由函数y= sin(2x+3π)的图像变换得到y=sin(32π+x )的图像,则可以通过以下两个步骤完成:第一步,把y= sin(2x+3π)图像上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把所得图像沿x 轴 (A)向右平移3π个单位 (B)向右平移125π个单位 (C) 向左平移3π个单位 (D)向左平移125π个单位二、填空题(本大题5个小题,每小题4分,共20分。
2018年上海高三数学春考试卷(含答案)
2018年上海市春季高考数学试卷2018.01一、填空题1.不等式1x >的解集为____________2.计算:31lim2n n n →∞-=+____________3.设集合{}|02A x x =<<,{}|11B x x =-<<,则A B ⋂=____________4.若复数1z i =+(i 是虚数单位),则2z z+=____________5.已知{}n a 是等差数列,若2810a a +=,则357a a a ++=____________6.已知平面上动点P 到两个定点()1,0和()1,0-的距离之和等于4,则动点P 的轨迹方程为____________7.如图,在长方体1111ABCD A B C D -中,AB=3,BC=4,15AA =,O 是11A C 的中点,则三棱锥11A A OB -的体积为____________8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为____________(结果用数值表示)9.设a R ∈,若922x x ⎛⎫+ ⎪⎝⎭与92a x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项相等,则a =____________10.设m R ∈,若z 是关于x 的方程2210x mx m ++-=的一个虚根,则z 的取值范围是____________11.设0a >,函数()()()21sin f x x x ax =+-,()0,1x ∈,若函数21y x =-与()y f x =的图像有且仅有两个不同的公共点,则a 的取值范围是____________12.如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为____________秒(精确到0.1)二、选择题13.下列函数中,为偶函数的是()A.2y x -= B.13y x =C.12y x-= D.3y x=14.如图,在直三棱柱111ABC A B C -的棱所在的直线中,与直线1BC 异面的直线的条数为()A.1B.2C.3D.415.设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.已知A 、B 为平面上的两个定点,且2AB = ,该平面上的动线段PQ 的端点P 、Q ,满足5AP ≤,6AP AB ⋅= ,2AQ AP =-,则动线段PQ 所形成图形的面积为()A.36B.60C.72D.108三、解答题17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知cos y x =.(1)若()13f α=,且[]0,απ∈,求3f πα⎛⎫- ⎪⎝⎭的值;(2)求函数()()22y f x f x =-的最小值.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知a R ∈,双曲线222:1x y aΓ-=.(1)若点()2,1在Γ上,求Γ的焦点坐标;(2)若1a =,直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.19.(本题满分14分,第1小题满分7分,第2小题满分7分)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3⊥是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC AB 于C,AB=3米,OC=4.5米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01︒).20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)设0a >,函数()112xf x a =+⋅.(1)若1a =,求()f x 的反函数()1f x -;(2)求函数()()y f x f x =⋅-的最大值(用a 表示);(3)设()()()1g x f x f x =--.若对任意(],0x ∈-∞,()()0g x g ≥恒成立,求a 的取值范围.21.(本题满分18分,第1小题满分3分,第2小题满分6分,第3小题满分9分)若{}n c 是递增数列,数列{}n a 满足:对任意N n *∈,存在N m *∈,使得10m nm n a c a c +-≤-,则称{}n a 是{}n c 的“分隔数列”.(1)设2,1n n c n a n ==+,证明:数列{}n a 是{}n c 的分隔数列.(2)设4n c n =-,n S 是{}n c 的前n 项和,32n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq-=,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数,a q 的取值范围.参考答案一、填空题1.()(),11,-∞-⋃+∞ 2.3 3.()0,1 4.2 5.156.22143x y +=7.58.1809.410.3,3⎛⎫+∞ ⎪⎪⎝⎭11.1119,66ππ⎛⎤⎥⎝⎦12.4.4二、选择题13.A14.C15.D16.B三、解答题17.(1)16+;(2)32-18.(1))(),;(2)1219.(1)14;(2)9.59︒;。
高三数学-2018年春季高考题(上海)02018 精品
2018年上海市普通高等学校春季招生考试数学试题考试时间:2018.12.21——(15:00—17:00)一、 填空题(每小题4分,共48分) 1. 已知函数1)(+=x x f ,则)3(1-f = .2. 直线1=y 与直线33+=x y 的夹角为 .3. 已知点)cos ,(tan ααP 在第三象限,则角α的终边在第 象限 .4. 直线1-=x y 被抛物线x y 42=截得线段的中点坐标是 .5. 已知集合},2{R x x x A ∈≤=,}{a x x B ≥=且B A ⊆,则实数a 的取值范围是 .6. 已知z 为复数,则2>+z z 的一个充要条件是z 满足 .7. 若过两点)0,1(-A 、)2,0(B 的直线l 与圆1)()1(22=-+-a y x 相切,则a = . 8. 不等式)),0((1)20(lg cos 2π∈>x x 的解为 .9. 八名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第三、四名,则该大师赛共有 场比赛 .10. 若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的大小等于 . (结果用反三角函数值表示)11. 若函数],[,3)2(2b a x x a x y ∈+++=的图象关于直线1=x 对称,则=b .12. 设221)(+=xx f ,利用课本中推导等差数列前n 项和的公式的方法,可求得)6()5()0()4()5(f f f f f +++++-+- 的值为 .二、 选择题(每小题4分,共16分)13. 关于直线l b a ,,以及平面N M ,,下列命题中正确的是( ).(A) 若M b M a //,//,则b a // (B) 若a b M a ⊥,//,则M b ⊥(C) 若M b M a ⊂⊂,,且b l a l ⊥⊥,,则M l ⊥ (D) 若N a M a //,⊥,则N M ⊥14. 复数iim z 212+-=(i R m ,∈为虚数单位)在复平面上对应的点不可能位于( ). (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 15. 把曲线012cos =-+y x y 先沿x 轴向右平移2π个单位,再沿y 轴向下平移一个单位,得到的曲线方程是( ).(A) 032sin )1(=-+-y x y (B) 032sin )1(=-+-y x y (C) 012sin )1(=+++y x y (D) 012sin )1(=+++-y x y 16. 关于函数21)32()(sin )(2+-=xx x f ,有下面四个结论: (1) )(x f 是奇函数 (2)当2003>x 时, 21)(>x f 恒成立(3) )(x f 的最大值是23 (4) )(x f 的最小值是21-其中正确结论的个数为( ).(A) 1个 (B)2个 (C)3个 (D)4个三、 解答题(共86分) 17. (本题满分12分)解不等式组 ⎪⎪⎩⎪⎪⎨⎧>-+>+-.213,0862x x x x18. (本题满分12分)已知函数),0,0)(sin()(R x w A wx A x f ∈>>+=φ在一个周期内的图象如图所示,求直线3=y 与函数)(x f 图象的所有交点的坐标.1C 19. (本题满分14分,第一小题满分8分,第二小题满分6分)已知三棱柱111C B A ABC -,在某个空间直角坐标系中, 1A 1B}.,0,0{},0,0,{},0,23,2{1n AA m m m ==-= 其中0,>n m C(1) 证明:三棱柱111C B A ABC -是正三棱柱; A B (2) 若n m 2=,求直线1CA 与平面11ABB A 所成角的大小.20. (本题满分14分,第一小题满分7分,第二小题满分7分)已知函数.5)(,5)(31313131--+=-=x x x g x x x f(1) 证明)(x f 是奇函数;并求)(x f 的单调区间(2) 分别计算)2()2(5)4(g f f -和)3()3(5)9(g f f -的值,由此概括出涉及函数)(x f 和)(x g 的对所有不等于零的实数x 都成立的一个等式,并加以证明.21. (本题满分16分,第一小题满分4分,第二小题满分6分,第三小题满分6分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点.(1) 若椭圆C 上的点)23,1(A 到21,F F 两点的距离之和等于4,写出椭圆C 的方程;(2) 设K 是(1)中所得椭圆上的动点,求线段K F 1的中点的轨迹方程;(3) 已知椭圆具有性质:若N M ,是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为PN PM K K ,时,那么PN PM K K ⋅是与点P 位置无关的定值. 试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.22. (本题满分18分,第一小题满分4分,第二小题满分6分,第三小题满分8分)在一次人才招聘会上,有B A ,两家公司分别开出了它们的工资标准:A 公司允诺第一个月工资为1500元,以后每年月工资比上一年月工资增加230元;B 公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被B A ,两家公司同时录取.试问:(1) 若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资收入分别是多少? (2) 该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其它因素),该人应该选择哪家公司,为什么?(3) 在A 公司工作比在B 公司工作的月工资收入最多可以多多少元?(精确到1元),并说明理由.答案:一、1、4 2、3π3、二4、(3,2)5、2a ≤-6、Rez>1 7、4 8、(0,)2π 9、16 10、3arctan 811、6 12、二、13、D 14、A 15、C 16、A 三、17、(1,2)(4,5) 18、2(2(1))32kk k Z πππ+--∈ 19、(2)4π20、(1)在(0,),(,0)+∞-∞上都是增函数;(2)2()5()()0f x f x g x -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018春季高考真题
一、选择题
1、已知集合M={a,b},N={b,c},则M∩N等于
A、∅
B、{b}
C、{a,c}
D、{a,b,c}
2、函数f(x)=√x+1+x
x−1
的定义域是
A、(−1,+∞)
B、(−1,1)∪(1,+∞)
C、[ −1,+∞)
D、 [ −1,1)∪(1,+∞)
3、奇函数y=f(x)的布局如图所示,则
A、f(2)>0>f(4)
B、f(2)<0<f(4)
C、f(2)> f(4)>0
D、f(2)<f(4)<0
4、已知不等式1+lg|x|<0的解集是
A、(−1
10,0)∪(0,1
10
)B、(−1
10
,1
10
)
C、(−10,0)∪(0,10)
D、(−10,10)
5、在数列{a n}中,a1=-1 , a2=0,a n+2=a n+1+a n,则a5等于
A、0
B、−1
C、−2
D、−3
6、在如图所示的平面直角坐标系中,向量AB
⃗⃗⃗⃗⃗ 的坐标是
A、(2,2)
B、(−2,−2)
C、(1,1)
D、(−1,−1)
7、圆(x+1)2+(y−1)2=1的圆心在
A、第一象限
B、第二象限
C、第三象限
D、第四象限
8、已知a、b∈R,则“a>b”是“2a>2b”的
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
9、关于直线l:x−√3y+2=0,下列说法正确的是
A、直线l的倾斜角为60。
B、向量v=(√3,1)是直线l的一个方向向量
C、直线l经过点(1,√3)
D、向量n=(1,√3)是直线l的一个法向量
10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是
A、6
B、10
C、12
D、20
11、在平面直角坐标系中,关于x,y的不等式Ax+By+AB>0(AB≠0)表示的区域(阴影部分)可能是
12、已知两个非零向量a与b 的夹角为锐角,则
A、a∙b>0
B、a∙b<0
C、a∙b≥0
D、a∙b≤0
13、若坐标原点(0,0)到直线x−y+sin2θ=0的距离等于√2
2
,则角θ的取值集合是
A、{θ|θ=kπ±π
4,k∈Z} B、{θ|θ=kπ±π
2
,k∈Z}
C、{θ|θ=2kπ±π
4,k∈Z} D、{θ|θ=2kπ±π
2
,k∈Z}
14、关于x,y的方程x2+ay2=a2(a≠0),表示的图形不可能是
15、在(x−2y)2的展开式中,所有项的系数之和等于
A、32
B、-32
C、1
D、-1
16、设命题p:5≥3,命题q:{1}⊑{0,1,2},则下列命题中为真命题的是
A、p∧q
B、¬p∧q
C、p∧¬q
D、¬p∨¬q
17、已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l距离是
A、2
B、3
C、4
D、5
18、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是
A、5
14B、15
28
C、9
14
D、6
7
19、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于
A、1
2
B、1
C、2
D、4
20、若由函数y=sin(2x+π
2)图像变换得到y=sin(x
2
+π
3
)的图像,则可以通过以下两个步骤完成:第一步,把y=
sin(2x+π
2
)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴
A、向右平移π
3个单位B、向右平移5π
12
个单位C、向左平移π
3
个单位D、向左平移5π
12
个单位
二、填空题
21、已知函数f(x)={x 2+1,x>0
−5,x≤0
,则f[f(0)]的值等于。
22、已知θϵ(−π
2,0),若cosθ=√3
2
,则sinθ等于。
23、如图所示,已知正方体ABCD-A1B1C1D1 ,E,F分别是D1B,A1C上不重合的两个动
点,给出下列四个结论:
①CE||D1F ;②平面AFD||平面B1EC1;
③AB1⊥EF ;④平面AED||平面ABB1A1
其中,正确的结论的序号是。
24、已知椭圆C的中心在坐标原点,一个焦点的坐标是(0,3),若点(4,0)在椭圆C上,则椭圆C的离心率等于
25、在一批棉花中随机抽测了500根棉花纤维的长度(精确到1mm)作为样本,并绘制了如图所示的频率分布直方图,由图可知,样本中棉花纤维的长度大于225mm的频数是。
三、解答题
26、已知函数f (x )=x 2+(m −1)x +4,其中m 为常数。
(1)若函数f(x)在区间(-∞,0)上单调递减,求实数m 的取值范围;
(2)若∀x ∈R ,都有f (x )>0,求实数m 的取值范围。
27、已知在等比数列{a n }中,a 2=14, a 5=132。
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b n =a n +n ,求{b n }的前n 项和S n .
28、如图所示的几何体中,四边形ABCD 是矩形,MA ⊥平面ABCD ,NB ⊥平面ABCD ,且AB=NB=1, AD=MA=2。
(1)求证:NC||平面MAD ;
(2)求棱锥M -NAD 的体积。
29、如图所示,在△ABC 中,BC=7,2AB=3AC,点P 在BC 上,且∠BAP =∠PAC =30。
求
线段AP 的长。
30、双曲线x 2
a 2−y 2
b 2 =1 (a>0,b>0)的左、右焦点分别是F 1 ,F 2,抛物线y 2=2px(p >0)的焦点
与点F 2重合,点M (2,2√6)是抛物线与双曲线的一个交点,如图所示。
(1)求双曲线及抛物线的标准方程;
(2)设直线l 与双曲线的过一、三象限的渐近线平行,且交抛物线与A ,B 两点,交
双曲线于点C 。
若点C 是线段AB 的中点,求直线l 的方程。