晶体的典型结构类型 (2)
第一章晶体的结构
![第一章晶体的结构](https://img.taocdn.com/s3/m/8921202dbcd126fff7050bb8.png)
求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等
典型晶体结构类型
![典型晶体结构类型](https://img.taocdn.com/s3/m/3540dc50f242336c1eb95e8e.png)
非金属元素单质晶体的结构基元:第VI族元素
对于第V族元素:
每个原子周围共价单键个数为:8-5=3 其晶体结构是:原子之间首先共价结合形成 无限层状单元,层状单元之间借助范德华力结合 形成晶体
非金属元素单质晶体的结构基元:第V族元素
对于第IV族元素:
每个原子周围共价单键个数为:8-4=4 其中:C、Si、Ge皆为金刚石结构,由四面体 以共顶方式共价结合形成三维空间结构。
刚玉型:α-Fe2O3、Cr2O3、Ti2O3、V2O3、FeTiO3、 LiNbO3
(四)ABO3型结构
—— CaTiO3(钙钛矿)型结构
CaTiO3(钙钛矿)型:PbTiO3、BaTiO3……
在理想对称的ABO3型结构中,三种离子半径 有如下关系:
rA rO 2 rB rO
第二章 晶体结构与晶体 中的缺陷
典型结构类型
硅酸盐晶
金属单质晶体结构 非金属单质晶体结构
无机化合物晶体结构
一、金属单质晶体结构
同种元素组成的晶体称为单质晶体。 典型金属的晶体结构是最简单的晶体结 构。由于金属键的性质,使典型金属的晶体 具有高对称性,高密度的特点。常见的典型
非金属元素单质晶体的结构基元:第IV族元素
典型非金属元素晶体结构
(1)金刚石结构
金刚石结构:Si、Ge、灰锡α-Sn、人工合成的立方氮化硼BN……
(2)石墨结构
石墨型结构:人工合成的六方氮化硼BN……
三、无机化合物晶体结构(离子晶体)
根据数量关系(化学式):
AX型、 AX2型、 A2X3型、 ABO3型、 ABO4型、AB2O4型 根据密堆积形式: 面心立方紧密堆积 六方紧密堆积 常用分析方法: 坐标系法、密堆积法和多面体配置法
第二章晶体结构与常见晶体结构类型
![第二章晶体结构与常见晶体结构类型](https://img.taocdn.com/s3/m/34c6021e910ef12d2bf9e720.png)
对称就是物体相同部分有规律的重复。
对称不仅针对几何形态,还有更深和更广的含义,它包含了自然 科学、社会科学、文学艺术等各领域的对称性,如战争中的非对称 战略。
晶体对称的特点
1)由于晶体内部都具有格子构造,通过平移,可使相同质点重 复,因此所有的晶体结构都是对称的。
2)晶体的对称受格子构造规律的限制,它遵循“晶体对称定 律” 。
4 平行六面体(parallelepiped)
平行六面体:结点在三维空间的分布构成空间格子。 特点:任意三个相交且不在同一个平面的行列构成一个空间点阵。 根据基矢的不同选择可以得到不同的平行六面体。
计算由基矢构成的平行六面体点阵点数量时 必须考虑: (1)在平行六面体顶角上的点阵点时由8 个相邻平行六面体所共有的; (2)位于平行六面体棱上的点阵点是由4 个相邻平行六面体所共有的; (3)位于平行六面体面上的点阵点时2个 相邻平行六面体所共有的; (4)位于平行六面体内部的点阵点完全属 于该平行六面体。
1 结点(node):点阵中的点。 结点间距:相邻结点间的距离。
空间点阵几何要素(点线面)
2 行列(row) :结点在直线上的排列。 特点:平行的行列间距相等。
3 面网(net)
面网:由结点在平面上分布构成的平面。 特点:任意两个相交行列便可以构成一个面网。
面网密度:面网上单位面积内的结点数目。 面网间距:两个相邻面网间的垂直距离,平行面网间距相等。
三轴定向通式为[uvw],四轴定向通式为[uvtw], 晶向符号的确定步骤:
①选定坐标系,以晶轴x、y、z为坐标轴,轴单位分别是a、b和c; ②通过原点作一直线,使其平行于待标定晶向AB; ③在直线上任取一点P,求出P点在坐标轴上的坐标xa、yb、zc; ④xa/a:yb/b:zc/c=u:v:w应为整数比,去掉比号,以方括号括之,
第二章晶体结构与常见晶体结构类型第二讲
![第二章晶体结构与常见晶体结构类型第二讲](https://img.taocdn.com/s3/m/47ad9a623b3567ec112d8a23.png)
最紧密堆积原理: 晶体中各离子间的相互结合,可以看作是球
体的堆积。球体堆积的密度越大,系统的势能 越低,晶体越稳定。此即球体最紧密堆积原理。
适用范围:典型的离子晶体和金属晶体。
质点堆积方式:
根据质点的大小不同,球体最紧密堆积方式分为等径
球和不等径球两种情况。
等径球的堆积
最密堆积方 式
理论结构类型 实际结构类型 实际配位数
AgCl 0. 123+0.172=0.295
0.277 0. 018 0.715 NaCl NaCl
6
AgBr 0.123+0.188=0.311
0.288 0.023 0.654 NaCl NaCl
6
AgI 0.123+0.213=0336
0.299 0.037 0.577 NaCl 立方 ZnS
面心立方最紧密堆积 六方最紧密堆积
最紧密堆积中的空隙 不等径球的堆积
等径球质点堆积
等径球最紧密堆积时,在平面上每个球与6个球相接触, 形成第一层(球心位置标记为A),如图2-5所示。此时, 每3个彼此相接触的球体之间形成1个弧线三角形空隙, 每个球周围有6个弧线三角形空隙,其中3个空隙的尖角 指向图的下方(其中心位置标记为B),另外3个空隙的 尖角指向图的上方(其中心位置标记为C),这两种空 隙相间分布。
表2-6 无机化合物结构类型
化学式类型 结构类型举例实例来自AX 氯化钠型NaCl
AX2 金红石型
TiO2
A2X3 刚玉型 -Al2O3
ABO3 钙钛矿型 CaTiO3
ABO4 钨酸钙型 PbMoO4
AB2O4 尖晶石型 MgAl2O4
构成晶体的基元的数量关系相同,但大小不同,其 结构类型亦不相同。如AX型晶体由于离子半径比不同有 CsCl型、NaCl型、ZnS型等结构,其配位数分别为8、6 和4。
7第六章晶体讲义的典型结构类型
![7第六章晶体讲义的典型结构类型](https://img.taocdn.com/s3/m/4adbba8e312b3169a451a4da.png)
Cs+ 1/2 1/2 1/2
类似的晶体:CsBr,CsI, NH4Cl等
Cl-离子 Cs+离子
氯化铯晶体结构
闪锌矿型结构
化 学 式:β-ZnS
返回目录
晶体结构 空间格子
立方晶系,a=0.540nm;Z=4,3Li44L36P
立方面心格子,S2-离子呈立方最紧密堆积,位于 立方面心的结点位置,Zn2+离子交错地分布于
石墨与金刚石属同质多像变体。
• 可制作高温坩锅,发热体和电 极,机械工业上可做润滑剂等, 是多用途的材料。
• 同结构晶体:人工合成的六 方氮化硼(HBN)等 。
AX型晶体
NaCI型结构
矿物名称:石盐。
返回目录
化学式为:NaCI
CI- Na+
NaCl晶体的结构
氯化钠晶体结构
如何算出的?
结构描述:
7第六章晶体的典型 结构类型
第六章
矿物晶体典型结构类型
目录
• 第一节 结构的表征 • 第二节 结构类型 • 金刚石、石墨、石盐、氯化铯、
萤石、闪锌矿、刚玉、石英
• 1、结构的表征
返回目录
•
与晶体结构有关的因素有: 晶体化学组成,
晶体中质点的相对大小,极化性能。
•
并非所有化学组成不同的晶体,都有不同
结构表现:C原子组成层状排列, 层内C原子成六方环状排列,每 个碳原子与三个相邻的碳原子 之间的距离为0.142nm,层与层 之间的距离为0.335nm。
石墨晶体结构
键型:层内为共价键,层间为分子键, 还有自由电子存在-金属键。
性质:碳原子有一个电子可以在层内移 动,平行于层的方向具有良好的导电性 。石墨的硬度低,熔点高,导电性好。
几种常见的晶体结构 (2)
![几种常见的晶体结构 (2)](https://img.taocdn.com/s3/m/a0530e6fa0116c175e0e486e.png)
〔2〕晶面空间方位不同,但原子排列规律一样属于同一 晶面族用{hkl}表示。 {100}=〔100〕+〔010〕+〔001〕
〔3〕可以证明,如此确定的晶面指数=晶面法线方向和三 个坐标轴夹角的方向余弦之比。
注意:晶向和晶面指数的定义都涉及到坐标轴的选 取,或者选点阵原胞的基矢a1a2a3,或者选惯用晶胞 的三个边abc,当二者不一致时,比方体心立方和 面心立方情形,用两个坐标系定义出的晶向和晶面 指数是不一致的,使用时必须注意到它们的差异。 多数情况下,我们习惯使用惯用晶胞a,b,c做单位进 展的标注。
元素晶体也不都是简单晶格, 例如密堆六方〔hcp〕晶体Be, Mg,Zn,Gd等,它的基元包 A层 含 2个原子,虽是同种原子, 但它们的几何环境是不等价的, 从一个A层原子看上下两层原 B层 子的三角形,和从一个B层原 子看上下两层原子的三角形是 不同的。它是复式晶格,它的 A层 基元有2个原子。
具有hcp构造的元素晶体有:Be,Mg,Sc,Y,Ti,Zr,Zn,Cd
和大多数稀土金属Gd,Tb,Dy,Ho,Er,Tm,Lu
A4:金刚石构造〔Diamond)
金刚石晶胞中的原子位置, 有两种不同晶格位置。
000,0 1 1 , 1 0 1 , 1 1 0, 22 2 2 22
1 1 1,3 31,31 3,1 3 3, 444 444 444 444
那么晶向就用l1l2l3 来标志。
按照上述方法确定的简立方晶格的晶向如下图,
晶向指数和坐标系的 选取有关,OA的反方
001
向记做 100 ,由于 立方晶格的对称性, 沿立方边的6个晶向
100, 100 ,010, 010 ,001, 001
常见九种典型的晶体结构
![常见九种典型的晶体结构](https://img.taocdn.com/s3/m/617e389e680203d8ce2f24b5.png)
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)
构
氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。
从图可看出,[SZn4] 四面体([ZnS4] 四面体 也是一样)共角顶联成的 四面体基元层与[111]方 向垂直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位 多面体结构形式表达(S和Zn互换是一样的)。
(Fe3+(Fe2+Fe3+)2O4)。
当结构中四、八面体孔隙被A2+和B3+无序占据时, 叫混合尖晶石结构,代表晶相是镁铁矿(Fe, Mg)3O4。
具有尖晶石型结构的部分物质
Fe3O4 VMn2O4 NiAl2O4 NiGa2O4 Co3S4 TiZn2O4 γ-Fe2O3 LiTi2O4 CoAl2O4 MgGa2O4 NiCo2S4 VZn2O4 MnFe2O4 MnTi2O4 ZnAl2O4 MnGa2O4 Fe2SiO4 SnMg2O4 MgFe2O4 ZnCr2O4 Co3O4 ZnIn2S4 Ni2SiO4 TiMg2O4 Ti Fe2O4 CoCr2O4 GeCo2O4 MgIn2O4 Co2SiO4 WNa2O4 LiMn2O4 CuMn2O4 VCo2O4 CuV2S4 Mg2SiO4 CdIn2O4
晶体结构
![晶体结构](https://img.taocdn.com/s3/m/6548ad49312b3169a451a4b0.png)
山东大学材料科学基础
S2-: 0 0 0; 0 ½ ½; ½ 0 ½; ½ ½ 0 Zn2+: ¼ ¼ ¾; ¼ ¾ ¼; ¾ ¼ ¼; ¾ ¾ ¾
结构型式 离 子 堆 积 描 述 化学组成比 n+/n负离子堆积方式 正负离子配位数比CN+/CN正离子所占空隙种类 正离子所占空隙分数 立方ZnS型 1:1 立方最密堆积 4:4 正四面体 1/2
钙钛矿型结构中离子间关系如下: 设A位离子半径为rA,B位离子半径为rB,O2-半径为 ro, rA+ro=√2(rB+ro) 但是,实际测定发现,A、B离子半径有一定的变 动范围,可表示为: 2rA+2ro=t √2(rB+ro) 式中,t为容忍因子, t=0.77∽1.10
山东大学材料科学基础
A与B离子的电价不限于2价和4价,任意一对阳 离子半径适合于配位条件,且其原子价之和为6, 则它们可能取这种结构。 钙钛矿型化合物化学计量比可以是A2+B4+O3(如 BaTiO3和PbZrO3)或是A3+B3+O3(如LaGaO ,LaAlO ); 也可以A1+B5+O3(如KNbO ,NaWO )或A1+B2+O3(KNiF ); 混合形式如Pb(Mg Nb )O 和Pb(Sc Ta )O 也是可能的。
山东大学材料科学基础
Ti Ba
四方BaTiO3结构中离子的位置,Ti离子向上位移
山东大学材料科学基础
从立方到四方转变温度称为居里点。 对于纯BaTiO3居里点为130℃。除BaTiO3外,许多晶体 都有自发极化,大多数铁电体结构都有氧八面体,氧八 面体空隙越大,其中金属离子半径越小、电荷越大,则 晶体就越容易发生自发极化。 在钙钛矿化合物中,居里点转变温度变化很大。如 PbTiO3,较大的Pb2+取代Ba2+,Ti4+的八面体环境更为不 安定,立方-四方转变温度是490℃;而SrTiO3居里点 只有-55℃。这可以解释成,Sr2+比Ba2+小,使得氧八 面体也小,可以将Ti稳定在体心位置。实际上,居里点 可以在一个很宽的范围连续的变化,通过在BaTiO3和 PbTiO3(提高Tc)或SrTiO3(降低Tc)之间形成固溶体。
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/35b92a4e852458fb770b5668.png)
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3
由
v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn
•
v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)
常见的晶体结构
![常见的晶体结构](https://img.taocdn.com/s3/m/804ec74dad02de80d4d84024.png)
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数
。
电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体
典型晶体结构类型
![典型晶体结构类型](https://img.taocdn.com/s3/m/29db503830b765ce0508763231126edb6e1a765a.png)
典型晶体结构类型晶体结构是指晶体中原子、离子或分子的排列方式。
根据晶体中化学键和原子排列的性质,可以将晶体结构分为许多不同的类型。
下面将介绍一些典型的晶体结构类型。
1.离子晶体结构:离子晶体是由离子通过静电力相互作用形成的晶体。
其中,阳离子和阴离子通过离子键连接。
离子晶体的典型例子包括氯化钠(NaCl)和氧化铝(Al2O3)。
在这些晶体中,正离子在晶体中形成一个晶格,负离子在晶体中形成另一个晶格。
离子晶体结构稳定,具有高熔点和良好的电导性。
2.共价晶体结构:共价晶体是由共价键连接的原子或分子形成的晶体。
在共价晶体中,原子通过共用电子形成稳定的化学键。
典型的共价晶体结构包括金刚石、石英和硅晶体。
这些晶体具有高硬度、高熔点和良好的热导性。
3.金属晶体结构:金属晶体是由金属元素形成的晶体。
金属晶体的特点是原子间有大量自由电子可以运动,因此具有良好的导电性和导热性。
金属晶体结构可以分为紧密堆积结构和体心立方结构。
紧密堆积结构中,原子排列紧密,如铜和铝。
体心立方结构中,原子在晶格的每个球站的中心和每个面心站位的中心分别占据一个位置,如铁和钨。
4.分子晶体结构:分子晶体是由分子通过范德华力连接形成的晶体。
在分子晶体中,分子通过互相排列并通过弱范德华力相互作用形成3D晶体结构。
分子晶体具有较低的熔点和较弱的化学键。
典型的分子晶体包括蓝绿宝石和冰。
5.共价网络晶体结构:共价网络晶体是由每个原子通过共价键连接形成的大的晶体结构。
共价网络晶体具有非常高的熔点和硬度。
典型的共价网络晶体包括石墨和二硫化碳。
除了这些典型的晶体结构类型,还有许多其他类型的晶体结构,例如层状晶体、孔隙晶体和液晶体等。
每种晶体结构具有独特的性质和应用。
了解不同类型的晶体结构有助于我们理解晶体的性质,并在材料科学和工程中应用晶体材料。
晶体的结构类型和同构型化合物
![晶体的结构类型和同构型化合物](https://img.taocdn.com/s3/m/35088c9da48da0116c175f0e7cd184254b351b3f.png)
晶体的结构类型和同构型化合物晶体是由原子、离子或分子按照一定的规律排列而成的宏观物质,在自然界和人工合成中普遍存在。
晶体的结构类型和同构型化合物是研究晶体性质和应用的关键内容之一。
本文将就晶体的结构类型和同构型化合物进行详细探讨。
一、晶体的结构类型晶体的结构类型主要包括离子晶体、共价晶体、金属晶体和分子晶体等。
下面将分别介绍这几种晶体的结构特点。
1. 离子晶体离子晶体是由正负离子通过离子键相互作用形成的。
常见的离子晶体有NaCl、CaF2和ZnS等。
这种晶体的特点是具有高熔点和脆性,能导电,且易溶于极性溶剂。
2. 共价晶体共价晶体是由原子通过共价键相互连接而成的。
典型的共价晶体有金刚石和石英等。
这种晶体的特点是硬度大,熔点高,电导率低,且不易溶于常见溶剂。
3. 金属晶体金属晶体是由金属原子通过金属键相互连接而成的。
金属晶体具有高电导性、高延展性和高熔点等特点。
典型的金属晶体有铜、铝和铁等。
4. 分子晶体分子晶体是由分子通过范德华力相互作用而形成的。
常见的分子晶体有冰、纤维素和药物晶体等。
这种晶体的特点是熔点较低,硬度较小,不导电,且易溶于常见溶剂。
二、同构型化合物同构型化合物指的是具有相同化学组成但晶体结构不同的化合物。
同构型化合物的研究对于理解化合物结构与性质之间的关系具有重要意义。
下面将以硫化物和氧化物为例介绍同构型化合物。
1. 硫化物硫化物是一类重要的同构型化合物。
例如,FeS和CoS都具有类似的结构,都是正方晶系,但FeS的晶体结构中铁离子替代了一部分硫离子,而CoS的晶体结构中钴离子替代了一部分硫离子。
这种同构型化合物的存在使得它们在性质上有所不同,如磁性、导电性等。
2. 氧化物氧化物也是一类常见的同构型化合物。
以二氧化硅(SiO2)和二氧化锆(ZrO2)为例,它们都是由氧化物离子和金属离子组成的晶体。
二氧化硅和二氧化锆都具有类似的结构,但由于金属离子不同,导致它们的性质也不同,如硬度、熔点等。
晶体结构 (2)
![晶体结构 (2)](https://img.taocdn.com/s3/m/bf686c3783c4bb4cf7ecd1ce.png)
二、晶体常见题型
(一)晶体 化学式的确定
晶体中,每个 在NaCl晶体中 每个 +同时吸引着 6 个 晶体中 每个Na 同时吸引着__个 Cl-;每个 -同时吸引着 6 个Na+。 每个Cl 同时吸引着___个 晶体中,每个 在NaCl晶体中 每个 +周围与之等距离且最近的 + 晶体中 每个Na 周围与之等距离且最近的Na ___个 每个Cl 周围与之等距离且最近的Cl ___个 有12 个;每个 -周围与之等距离且最近的 -有12 个。
A.TiC B.Ti6C7 C.Ti14C13 D.Ti13C14
此题给出的是分子簇结构而非晶体结构,故只需数出原子的 此题给出的是分子簇结构而非晶体结构, 数目即可。 数目即可。
(二)晶体密度、粒子间距离的计算
右图为NaCl晶胞的结构示意图 。 它向三 晶胞的结构示意图。 [ 例 1 ] 右图为 晶胞的结构示意图 维空间延伸得到完美晶体。试回答: 维空间延伸得到完美晶体。试回答: (1)一个 )一个NaCl晶胞中有 8×1/8+6×1/2=4 个 晶胞中有 × + × = Na+,有 1+12×1/4=4 个Cl-。 + × / = (2)一定温度下 , 用 X射线衍射法测得晶胞的 ) 一定温度下, 射线衍射法测得晶胞的 边长为a 晶体的密度。 边长为 cm,求该温度下 ,求该温度下NaCl晶体的密度。 晶体的密度
C
计算晶胞中各原子数: 计算晶胞中各原子数: Y:1 : Ba:2 : Cu:8×1/8 +8×1/4 = 3 : × ×
均摊法是研究晶体结构的常用方法, 均摊法是研究晶体结构的常用方法,但要注意以 下题型: 下题型: 例:最近科学家发现一种由钛原子 和碳原子构成的气态团簇分子, 和碳原子构成的气态团簇分子,如 图所示。 图所示。顶角和面心的原子是钛原 子,棱的中心和体心的原子是碳原 则它的化学式是( 子,则它的化学式是( )
晶体结构(2)
![晶体结构(2)](https://img.taocdn.com/s3/m/8f77c754312b3169a451a4a8.png)
NaCl型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元 的数目: NaCl, 4个; Na和Cl离子的配位数都是6;
离子的分数坐标:
1 1 1 1 1 1 A为(0,0,0), ( , ,0), ( ,0, ), (0, , ) 2 2 2 2 2 2 1 1 1 1 1 1 B为( , , ), ( ,0,0), (0, ,0), (0,0, ) 2 2 2 2 2 2
称元素是4个3重旋转轴, 六方晶胞的特征对
称元素是1个6重旋转轴等。
根据特征对称元素及数目的不同,可将
晶胞分为7类,正好对应着7类不同的形状, 也就是7个晶系。见下图。
a a a
a a a
c
c a a
120o
a
a
立方
三方
六方
四方
c
c
a
c b
a b
b
a
正交
单斜
三斜
这7个晶系分为3个晶族,即高级晶族,指立 方晶系;中级晶系,包括六方、四方和三方3个 晶系;低级晶系,包括正交、单斜和三斜3个晶 系。 立方晶系有立方简单点阵P (立方P ) 、立方 体心点阵I (立方I ) 、立方面心点阵F (立方F );四 方晶系只有四方简单点阵P (四方P ) 、四方体心 点阵I (四方I ); 正交晶系有正交P 、正交I 、正交 F 、正交C (或侧心A和B); 单斜晶系有单斜P 、 单斜C ; 三方、六方、三斜都只有素格子。
平面正当格子 空间正当格子
(2)正当格子: 按选择的向量可将平面点阵划分成平面格子。 如果在划分平面格子时, 根据尽量使①平面格子 对称性高;②含点阵点少。这样得到格子称为正 当单位(或格子)。平面正当格子只有四种形状五 种形式, 即正方形格子、矩形格子、矩形带心格 子、六方格子和平行四边形格子。如下图:
2 《材料科学基础》第二章 晶体结构(下)
![2 《材料科学基础》第二章 晶体结构(下)](https://img.taocdn.com/s3/m/cf8e95ef551810a6f5248683.png)
思考题
Ca2+:000,½ ½ 0,½ 0 ½ ,0 ½ ½ F
-
:¼ ¼ ¼, ¾ ¾ ¼, ¾ ¼ ¾, ¼ ¾ ¾, ¾ ¾ ¾, ¼ ¼ ¾, ¼ ¾ ¼, ¾ ¼ ¼
思考题:
据晶体结构简要解释:
•为什么CaF2比NaCl容易形成弗仑克尔缺陷?
•为什么萤石结构中一般存在着负离子扩散机制?
了解
Al3+的分布原则符合鲍林规则:在同一层
和层与层之间, Al3+之间的距离应保持
最远。
空隙
α-Al2O3中的氧与铝的排列次序可写成: OAAlDOBAlEOAAlFOBAlDOAAlEOBAlFOAAlD……6层一个周期
Al3+的CN=6, Z=
O2-的CN= 4
2
属于刚玉型结构的晶体:
• 硅酸盐结构的特点:
2/3八面体间隙(A、B) 1/2八面体间隙(A) l/8四面体间隙(B) 全部立方体中心 1/2立方体中心
尖晶石
反尖晶石 纤锌矿 砷化镍 刚 玉 钛铁矿 橄榄石 氯化铯 萤 石 硅石型
二、硅酸盐晶体结构
1. 岛状结构
2. 组群状结构
3. 链状结构 4. 层状结构 5. 架状结构
•硅酸盐晶体的组成表征:
4:6:4AB2O4
4:6:4B(AB)O4 4:4MO 6:6MO 6:4M2O3 6:6:4ABO3 6:4:4A2BO4 8:8MO 8:4MO2 4:2MO2
1/8四面体间隙(A) 1/2八面体间隙(B) 1/8四面体间隙(B) 1/2八面体间隙(A、B) 1/2四面体间隙 全部八面体间隙 2/3八面体间隙
8
性质:硬度最高、极好的导热性、具半导体性能 与其结构相同的有硅、锗、灰锡、合成立方氮化硼等
第一章 金属的晶体结构-2
![第一章 金属的晶体结构-2](https://img.taocdn.com/s3/m/c6d5ae3c58fb770bf78a55b6.png)
h1 h2 h3
k1 k2 k3
l1 l2 0 l3
则三个晶面属于同一个晶带。
(5) 若hu+kv+lw=0,则晶向[u v w] 在晶面 (h k l)上。 (6) 在立方晶系中 [h k l] ⊥(h k l)
求(110)和(121)晶带面的晶带轴[uvw],根据
晶带定理可得,
晶带轴为:
2 2
,如{0 0 0}面
用间隙的内容解释γ-Fe溶碳能力大于α-Fe的原因?
四、晶向指数与晶面指数P13
能明确的、定量的表示晶格中任意两原子 间连线的方向或任意一个原子面。 能方便地使用数学方法处理晶体学问题。
晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。
1)
晶向指数
求法: 定原点 — 建坐标 — 求坐标— 化最小整数 — 加[ ]
1. 2.
3.
fcc与hcp相比,间隙尺寸相同,分布位置和数量不同。 fcc与bcc相比,fcc间隙数量少。
bcc与hcp相比,间隙尺寸不相同,数量相同。 虽然体心立方结构的致密度比面心立方结构的低,但它的间隙比较分 散,每个间隙的相对体积比较小,因此在体心立方结构中可能掺入杂 质和溶质原子的数量比面心立方结构的少。
正交晶系
d hkl
1 h k l a b c
2 2 2
立方晶系
d hkl
六方晶系
d hkl
a h k l
2 2
1
2
4 h 2 hk k 2 l 2 3 a c
上述公式仅适用于简单晶胞,对于复杂晶胞则要考虑原子链的影响 立方晶系
= < 100 >
典型晶体结构知识讲解
![典型晶体结构知识讲解](https://img.taocdn.com/s3/m/53f0ca8577a20029bd64783e0912a21614797f99.png)
(3)二氧化碳晶体 干冰晶体是一个立方面心结构,每8个CO2分
子构成立方体且再在6个面的中心又各占1个 CO2。 (见图已)。
(3)二氧化碳晶体 [思考];在每个CO2周围最近且等距离的CO2有 12 个 该晶胞相当于有 4 个CO2分子。
(4)金刚石晶体 每个C原子与4个C原子紧邻。由5个碳原子
晶体之所以具有规则的几何外形,是因其内部的 质点作规则的排列,实际上是晶体中最基本的结 构单元重复出现的结果。
我们把晶体中重复出现的最基本的结
构单元叫晶体的基本单位—— 晶胞
晶胞对组成晶胞的各质点(晶格点)的占 有率如何呢(以立方体形晶胞为例)?如果 是六棱柱形晶胞又如何?
晶胞对组成晶胞的各质点的占有率
1:晶体结构的想象;
(1)氯化钠晶体 氯化钠是一种简单立 方体结构,Na+、Cl-交 替占据立方体的顶点而 向空间延伸。(见图甲)。
(2)氯化铯晶体
[思考]: 在每个Cs+周围最近且等距离的Cl-有 8 个, 在每个Cl-周围最近且等距离的Cs+有 8 个, 在每个Cl-周围最近且等距离的Cl-有 6 个, 在每个Cs+周围最近且等距离的Cs+有 6个, 该晶胞相当于 4 个“CsCl”分子。
体心: 1
立
方 面心: 1/2
晶 胞
棱边: 1/4
顶点: 1/8
如图晶体的一个晶胞 中,有c粒子:12×1/4+1=4个,有d粒子: 8×1/8+6×1/2=4个,c:d=1:1,晶体的化学式 为cd或dc。
[例1] 有下列离子晶体空间结构示意图:(● 阳离子 ○阴离子)
以M代表阳离子,以N表示阴离子,写出各离子
晶体的组成表达式:A
第二章 晶体结构
![第二章 晶体结构](https://img.taocdn.com/s3/m/fe0cd004cc175527072208f1.png)
第二章晶体结构内容提要大多数无机材料为晶态材料,其质点的排列具有周期性和规则性。
不同的晶体,其质点间结合力的本质不同,质点在三维空间的排列方式不同,使得晶体的微观结构各异,反映在宏观性质上,不同晶体具有截然不同的性质。
1912年以后,由于X射线晶体衍射实验的成功,不仅使晶体微观结构的测定成为现实,而且在晶体结构与晶体性质之间相互关系的研究领域中,取得了巨大的进展。
许多科学家,如鲍林(Pauling)、哥希密特(Goldschmidt)、查哈里阿生(Zachariason)等在这一领域作出了巨大的贡献,本章所述内容很多是他们研究的结晶。
要描述晶体的微观结构,需要具备结晶学和晶体化学方面的基本知识。
本章从微观层次出发,介绍结晶学的基本知识和晶体化学基本原理,以奠定描述晶体中质点空间排列的理论基础;通过讨论有代表性的无机单质、化合物和硅酸盐晶体结构,以掌握与无机材料有关的各种典型晶体结构类型,建立理想无机晶体中质点空间排列的立体图像,进一步理解晶体的组成-结构-性质之间的相互关系及其制约规律,为认识和了解实际材料结构以及材料设计、开发和应用提供必要的科学基础。
2.1 晶体化学基本原理由于天然的硅酸盐矿物和人工制备的无机材料制品及其所用的原料大多数是离子晶体,所以在这一节主要讨论离子晶体的晶体化学原理。
一、晶体中键的性质(键性的判别)过去的教学中,以电子云的重要情况讨论键型。
Na-Cl认为是典型的离子键。
硅酸盐晶体中比较典型的结合键方式:Si-O Al-O M e-O (M代表许多碱、碱土金属)Me-O、Al—O键通常认为是比较典型的离子键,而Si-O键中Si-O键离子键、共价键成分相当。
为了方便,通常也认为是离子键。
那么键的成分是如何确定的?即通常如何判断键的类型呢?Pauling通过大量的研究发现,可以根据各元素的电负性差别判断键的类型(由于电负性反映元素粒子得失电子的能力)。
元素电子的电负性x=元素电子的电离能力I+元素原子的电子亲和能E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、硅氧四面体[SiO4]共顶角相连是稳定的, 但铝氧四面体[AlO4]共顶角相连却不稳 定,试用鲍林规则说明之。
2、具体说明晶体化学键类型与其配位数大 小之间的关系。
3、用不等大球体的紧密堆积原理说明氯化 钠晶体的结构方式。
4、说明离子极化对卤化银晶体结构的影响。
编辑ppt
1
第六章
7
配位多面体及其连接法
• 对结构比较复杂的晶体,用这种方 法。如对于硅酸盐的晶体结构常用。
• 而对于简单的晶体就不一定好用, 如氯化钠的晶体结构:
• Na+离子的配位数是6,构成Na-Cl八 面体,NaCl结构就是由Na-Cl八面体以共 棱方式相连而成的。
编辑ppt
8
结构类型
返回目录
(1) 金刚石晶体结构
1 2
0
1 2
1
,0 2
1 2
Na+:
00
1 2
,
1 2
00
,0
1 2
0,
1 2
1 2
1 2
2、球体堆积法
3、配位多面体及其联接方式描述法
编辑ppt
6
球体紧密堆积法
• 对于金属晶体和一些简单的离子晶体有用。
• 如氯化钠的晶体结构: Cl-离子按立方紧密堆积,Na+处于全部
的八面体空隙中。
编辑ppt
编辑ppt
石墨晶体结构
15
编辑ppt
16
键型:层内为共价键,层间为分子键, 还有自由电子存在-金属键。
性质:碳原子有一个电子可以在层内移 动,平行于层的方向具有良好的导电性 。石墨的硬度低,熔点高,导电性好。
石墨与金刚石属同质多像变体。
编辑ppt
17
• 可制作高温坩锅,发热体和电 极,机械工业上可做润滑剂等, 是多用途的材料。
于另一套这样的格子上,后一个格子与前一个格子相距1/2晶棱
的位移。
编辑ppt
22
CI-
Na+
NaCl结构〔NaCl6〕八面体的连接方式
编辑ppt
23
结点的坐标为: 4 CI— :000,1/2 1/2 0 ,1/2 0 1/2 ,0 1/2 1/2 4 Na+ :1/2 1/2 1/2,00 1/2 ,0 1/2 0 ,1/2 0 0 (5)立方面心格子CI-、 Na+各一套 (6)同结构晶体有:MgO、CaO、SrO、BaO、FeO、CoO
离子坐标: Cl- 000
Cs+ 1/2 1/2 1/2
类似的晶体:CsBr,CsI, NH4Cl等
编辑ppt
Cl-离子 Cs+离子
27
氯化铯晶体结构
编辑ppt
28
闪锌矿型结构
化 学 式:β-ZnS
返回目录
编辑ppt
29
晶体结构 空间格子
立方晶系,a=0.540nm;Z=4,3Li44L36P
结构类型。
•
而同一种化学组成,也可以出现不同的结
构类型。
编辑ppt
4
描述晶体结构需表述下列内容:
(1)晶系 (2)对称类型 (3)组成部分及键型 (4)配位数CN (5)晶胞中结构单元数目及位置 Z=? (6)格子形式
编辑ppt
5
描述晶体结构的三种方法
1、坐标法
Cl-: 000,
1 2
1 2
0,
化学式为:C
晶体结构为:立方晶系,a=0.356nm,3L44L36L29PC
空间格子: C原子组成立方面心格子,C原子位于立方面 心的所有结点位置和交替分布在立方体内的四个小立方体 的中心。
金刚石结构
编辑ppt
9
键型: 每个C原子周围有四个C, 碳原子之间形成共价键。
形成: 自然界、实验室
性质: 金刚石是硬度最大的矿物 具有半导体的性能和极好 的导电性。
立方面心格子,S2-离子呈立方最紧密堆积,位于 立方面心的结点位置,Zn2+离子交错地分布于
1/8小立方体的中心,即1/2 的四面体空隙中。
编辑ppt
30
1/2 的四面体空隙
编辑ppt
31
结构投影图:(俯视图)用标高来表示,0-底面; 25-1/4; 50-1/2; 75-3/4。
与金刚石结构相同的有:
硅、锗、灰锡(α-Sn)
合成的立方氮化硼(CBN)等。
编辑ppt
10
金刚石晶体结构
编辑ppt
11
常林钻石 158克拉
编辑ppt
12
课下练习
• 请用坐标法标出金刚石结构中所有 碳原子的位置。
• 查资料,画出立方氮化硼具体的晶 体结构。
• 总结超硬材料晶体结构特征。
编辑ppt
(2)Na+ CI—离子键,NaCI为离子晶体. (3)CN+= CN-=6
(4)--- CI—离子按立方最紧密堆积方式堆积, Na+离子充 填于全部八面体空隙。
--- Na+ 离子的配位数是6,构成Na--Cl八面体。NaCI
结构是由Na--Cl八面体以共棱的方式相连而成。
--- Na+ 离子位于面心格子的结点位置上,CI—离子也位
• 同结构晶体:人工合成的六 方氮化硼(HBN)等 。
编辑ppt
18
AX型晶体
NaCI型结构
矿物名称:石盐。
返回目录
编辑ppt
19
化学式为:NaCI
-
Na+
编辑ppt
20
NaCl晶体的结构
氯化钠晶体结构
编辑ppt
21
结构描述:
如何算出的?
(1)立方晶系,a=0.563nm,Z=4, 3L44L36L29PC
矿物晶体典型结构类型
编辑ppt
2
目录
• 第一节 结构的表征 • 第二节 结构类型 • 金刚石、石墨、石盐、氯化铯、
萤石、闪锌矿、刚玉、石英
编辑ppt
3
• 1、结构的表征
返回目录
•
与晶体结构有关的因素有: 晶体化学组成,
晶体中质点的相对大小,极化性能。
•
并非所有化学组成不同的晶体,都有不同
的结构,化学组成不同的晶体,可以有相同的
13
2.石墨结构
化学式:C
返回目录
编辑ppt
14
晶体结构:六方晶系(2H),L66L27PC
a= 0.246nm , c=0.670nm
三方晶系(3R),L33L23PC, c=1.004nm
结构表现:C原子组成层状排列, 层内C原子成六方环状排列,每 个碳原子与三个相邻的碳原子之 间的距离为0.142nm,层与层之 间的距离为0.335nm。
编辑ppt
24
思考题
• 在氯化钠晶体结构中有多少八面体空隙、 多少四面体空隙?如何计算?
编辑ppt
25
氯化铯型结构
返回目录
• 晶体化学:CsCl
• 晶体结构:立方晶系,a=0.411nm
•
Z=1
• 空间格子:CsCl是原始格子
氯化铯晶体结构 大球为Cl‾;小球为Cs+
编辑ppt
26
Cl-离子处于立方 原始格子的八个 角顶上,Cs+离子 位于立方体的中 心(立方体空隙) CN+=CN-=8, 单位晶胞中有一个 Cl-和一个Cs+ 配位多面体:在空间以共面形 式连接。