自动化过程控制实验指导书
自动化仪表与过程控制实验指导书教材
自动化仪表与过程控制实验指导书实验一位式控制一、实验目的1、了解简单控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:位式电磁阀、AI818智能调节仪一台、上水箱液位传感器、水泵1系统等)。
2、AI-818仪表的操作说明书和液位变送器的调试(一般出厂之前已调试好)方法。
三、实验系统流程图:四、实验原理本实验采用位式控制原理进行液位的范围控制,即,将液位控制在一定的上下限范围内。
水箱液位变送器输出信号,经AI-818仪表进行处理后与设定上下限水位值进行比较。
控制仪表内继电器触点状态,对位式电磁阀进行控制,以达到控制目的。
图1-1五、实验步骤1、按附图位式控制实验接线图接好实验导线。
2、将手动阀门1V2、1V10、V4、V5打开,其余阀门全部关闭。
3、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开仪表电源。
4、设置智能调节器参数,其需要设置的参数如下:(未列出者用出厂默认值)HIAL=30 (参考值)LOAL=20 (参考值)dHAL=9999dlAL=9999dF=0.5 (参考值)Ctrl=0Sn=33Dip=1 (参考值)dIL=0dIH=50Alp=2OP1=0具体请详细阅读调节器使用手册5、在控制板上打开水泵1、位控干扰。
6、在信号板上打开上水箱输出信号。
六、思考建议在什么样的情况下适合采用位式控制。
实验二电动阀支路单容液位控制一、实验目的1、了解简单过程控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:电动调节阀、AI818智能调节仪一台、上水箱及液位变送器、水泵1系统等)2、AI-818仪表的操作说明书,智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。
三、实验系统流程图:四、实验原理本实验采用仪表控制,将液位控制在设定高度。
Lab_act教师用实验指导书自控
前言前言自动控制理论的形成和发展经历了近半个世纪的历程。
现代数字计算机的迅速发展,为自动控制技术的应用开辟了广阔的前景。
自动控制技术的广泛应用不仅能够使生产设备或过程实现自动化,而且在人类征服大自然、探索新能源、发展空间技术和改善人民生活等方面都起着极其重要的作用。
“自动控制原理”是自动控制、自动化、电子技术、电气技术、精密仪器等专业教学中的—门重要专业基础课程。
实验作为感性认知的重要渠道构成教学环节中必不可少的一环。
上海埃威航空电子有限公司推出了爱迪克labACT自控/计控原理教学实验系统。
本公司隶属于航空工业总公司第615研究所,我们一贯以航空产品的要求来研制和生产产品,我们的口号是:“用户至上,质量第一,追求卓越,不断改进”。
爱迪克labACT自控/计控原理教学实验系统具有以下突出特点,有效地提高了实验系统的实验效果和性价比:1、采用模块式结构,可构造出各种型式和阶次的模拟环节和控制系统。
被控实验对象构建方便,含有9个放大器和一个比较器,0~999.9KΩ的直读式可变电阻和0~0.7uf的直读式可变电容。
标准实验部分只需使用短路套连接即可,直观且简化了实验操作和设备管理。
扩充环节可以灵活搭建多种不同参数的系统。
2、元器件的选用上,我们都采用了较高精度元器件。
例如放大器采用了高精度、低漂移的OP07,电阻选用0.5%精度,电容选用5%精度,使之实验结果更接近于理论值。
3、实验系统自带多种信号源,足以满足实验的要求。
有信号发生器、函数发生器、正弦波发生器,其中正弦波信号源采用幅度和频率较为稳定的ICL8038集成电路。
4、labACT自控/计控原理教学实验系统加了外接接口模块,可以容易的扩展外设接口。
(1)烤箱控制实验通道选用了铂电阻PT100作为检测传感器。
(2)电机驱动和检测通道。
(3)单回路可编程调节器通道。
(2路A/D输入、1路D/A输出、4路开关量输入、4路开关量输出)5、系统集成软件提供的虚拟示波器功能可实时、清晰的观察控制系统各项静态、动态特性.方便了对模拟控制系统特性的研究。
自动控制原理实验实验指导书
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
PLC实验指导书
PLC实验指导书1. 简介PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业自动化控制的设备。
本实验指导书旨在帮助学生了解PLC的基本原理和实际应用,提供一系列实验指导,帮助学生掌握PLC的使用方法。
2. 实验设备2.1 PLC主机:本实验使用模拟PLC主机。
具体型号为XXX。
2.2 输入模块:用于接收外部传感器的信号并输入给PLC主机。
具体型号为XXX。
2.3 输出模块:用于控制外部执行机构,如电动阀门、电机等。
具体型号为XXX。
3. 实验一:PLC基本控制原理3.1 实验目的:通过本实验,学生将了解PLC的基本控制原理,理解PLC工作的流程和信号的输入与输出。
3.2 实验内容:3.2.1 搭建实验电路:将PLC主机、输入模块和输出模块按照指导书上的电路图连接起来。
3.2.2 编写控制程序:使用PLC编程软件,编写一个简单的控制程序,使得当一个开关被按下时,某个输出模块输出高电平。
3.2.3 上载程序到PLC主机:将编写好的控制程序上载到PLC主机中,使其开始运行。
3.2.4 运行实验:按下开关,观察输出模块是否正常工作。
4. 实验二:PLC在自动化流水线中的应用4.1 实验目的:通过本实验,学生将了解PLC在自动化流水线中的应用,学会使用PLC进行自动化生产控制。
4.2 实验内容:4.2.1 搭建实验电路:按照指导书上的电路图,搭建一个模拟的自动化流水线系统,包括传送带、气缸等。
4.2.2 编写控制程序:使用PLC编程软件,编写一个控制程序,使得流水线能够按照一定的节奏,自动将产品输送到下一个工位。
4.2.3 上载程序到PLC主机:将编写好的控制程序上载到PLC主机中,使其开始运行。
4.2.4 运行实验:观察流水线系统是否按照预期工作,产品是否能够顺利地传送到下一个工位。
5. 实验三:PLC在温度控制系统中的应用5.1 实验目的:通过本实验,学生将了解PLC在温度控制系统中的应用,学会使用PLC进行温度的测量和控制。
过程控制实验指导书
过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。
该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。
整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。
本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。
本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。
实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。
装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。
2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。
3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。
4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。
5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。
6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。
系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。
自动控制原理实验指导书
自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。
2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。
3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。
二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。
三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。
图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。
自动化仪表与过程控制实验指导书
扰动 设定值 上水箱 电动阀 e
调节器 反馈值 上水箱 液位变送器 图1-2 五、实验步骤 1、按附图单容液位控制实验接线图接好实验导线和通讯线。
2、将控制台背面右侧的通讯口(在电源插座旁)与上位机连 接。 3、将手动阀门1V1、1V10、V4、V5打开,其余阀门全部关闭。 4、先打开实验对象的系统电源,然后打开控制台上的总电源, 再打开仪表电源。 5、整定参数值的计算 设定适当的控制参数使过渡过程的衰减比为4:1,整定参数 值可按下列“阶跃反应曲线整定参数表”。 表1 阶跃反应曲线整定参数表
再打开仪表电源。 5、设置智能调节器参数(可在仪表上直接设置,也可在计算机 上设置),其需要设置的参数如下:(未列出者用出厂默认值) (1)主调节器 SV=20 (参考值) dF=0.3 (参考值) CtrL=1 P=30 (参考值) I=60 (参考值) d=0 (参考值) Sn=33 Dip=2 (参考值) dIL=0 dIH=50 OP1=4 OPL=0 OPH=100 CF=0 Addr=2 run=1 (2)副调节器 dF=0.3 (参考值) CtrL=1 P=36 (参考值) I=15 (参考值) d=0 (参考值) Sn=32 Dip=1 (参考值) dIL=0 dIH=800 OP1=4 OPL=0 OPH=100 CF=8 Addr=1 run=1 具体请详细阅读调节器使用手册
dHAL=9999 dlAL=9999 dF=0.5 (参考值) Ctrl=0 Sn=33 Dip=1 (参考值) dIL=0 dIH=50 Alp=2 OP1=0 具体请详细阅读调节器使用手册 5、在控制板上打开水泵1、位控干扰。 6、在信号板上打开上水箱输出信号。 六、 思考建议 在什么样的情况下适合采用位式控制。
自动控制原理实验指导书(学生版)
编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。
自动控制原理实验指导书(11.09版)
河南机电高等专科学校《自动控制原理》实验指导书专业:电气自动化技术、计算机控制技术生产过程自动化技术等吴君晓编2008年9月目录实验一 (2)实验二 (4)实验三 (6)实验四 (8)实验五 (10)实验六 (12)实验七 (14)实验八 (15)实验九 (17)实验一建立MATLAB环境下控制系统数学模型一. 实验目的1.熟悉MATLAB实验环境,掌握MATLAB命令窗口的基本操作。
2.掌握MATLAB建立控制系统数学模型的命令及模型相互转换的方法。
3.掌握使用MATLAB命令化简模型基本连接的方法。
二、实验设备和仪器1.计算机2. MATLAB软件三、实验原理控制系统常用的数学模型有四种:传递函数模型(tf对象)、零极点增益模型(zpk对象)、结构框图模型和状态空间模型(ss对象)。
经典控制理论中数学模型一般使用前三种模型,状态空间模型属于现代控制理论范畴。
1.传递函数模型(也称为多项式模型)连续系统的传递函数模型为:在MATLAB中用分子、分母多项式系数按s的降幂次序构成两个向量:num = [ b0 , b1 ,…, bm ] ,den = [ a0 , a1 ,…, an]。
用函数tf ( )来建立控制系统的传递函数模型,其命令调用格式为:G = tf ( num , den )注意:对于已知的多项式模型传递函数,其分子、分母多项式系数两个向量可分别用G.num{1}与G.den{1}命令求出。
2.零极点增益模型零极点模型是是分别对原传递函数的分子、分母进行因式分解,以获得系统的零点和极点的表示形式。
式中,K为系统增益,z1,z2,…,z m为系统零点,p1,p2,…,p n为系统极点。
在MATLAB 中,用向量z,p,k构成矢量组[ z, p, k ]表示系统。
即z = [ z1, z2 ,…,z m ],p = [ p1, p2,…, p n ],k = [ k ],用函数命令zpk ( )来建立系统的零极点增益模型,其函数调用格式为:G = zpk ( z, p, k )3.控制系统模型间的相互转换零极点模型转换为多项式模型: G=zpk(G)多项式模型转化为零极点模型: G=tf(G)4.系统反馈连接之后的等效传递函数两个环节反馈连接后,其等效传递函数可用feedback ( )函数求得。
自动化过程控制实验指导书
一、过程控制仪表认识实验一、实验目的1、熟悉装置的具体结构、明确各部件的作用。
2、掌握常用传感器的工作原理及使用方法。
二、实验内容1、水箱本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。
实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。
整个装置的管道都采用铝塑管,以防止阀门生锈。
打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。
2、微型锅炉、纯滞后系统、热电阻本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。
热电阻为Pt100,三线制工作。
温度变送器内部已有内置电源,不能再接外加电源。
系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。
3、液位传感器本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。
压力变送器通电15分钟后,方可调整零点和量程。
使用的原则是:没通电,不加压;先卸压,再断电。
零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。
满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。
调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。
4、电动调节阀采用德国PS公司生产的PSL 202型智能电动调节阀。
调节阀由220V50HZ电源供电。
工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。
5、变频器采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。
内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。
罗克韦尔自动化,PLC,实验指导书_最新
罗克韦尔自动化实验室实验指导书大学项目部编著2017年2月本书是以罗克韦尔自动化公司在国内共建的七十余所实验室及实训室的设备为背景,结合各高校的实验指导与课程设计,循序渐进、言简意赅地介绍了ControlLogix控制系统、Studio5000、RSLinx、RSview、CCW、Micro800系统以及Powerflex变频器的基本使用方法。
本书大量的软件截图和组态界面通俗易懂地阐述了罗克韦尔自动化实验室相关产品的编程方法、实时数据交换技术、可视化平台、网络信息透明传输和无缝集成等。
本书分为上下两部分,第一章到第八章介绍了基于CCW软件和Micro800控制系统,辅以罗克韦尔自动化的其它相关产品的简单应用。
第九章至末尾是基于Sutdio5000软件、ControlLogix控制系统、CompactLogix 控制系统、辅以PowerFlex变频器等罗克韦尔自动化的其它相关产品的应用。
本书适用于高校作为提高学生实验和实训的课程教材以及企业培训机构针对罗克韦尔自动化实验室产品培训的技术手册。
―罗克韦尔自动化与中国大学共勉‖项目于1998年启动,该项目自成立以来,在支持中国科教事业、促进罗克韦尔自动化与中国教育界和产业界的合作,以及推动知识共享和技术交流等方面作出了积极的贡献,也得到了国家教育委员会、各个高校及企业界的高度赞赏和认同,并曾荣获国家教育部颁发的―捐资助学特殊贡献奖‖和中国自动化学会颁发的―ASEA 特殊贡献奖‖。
罗克韦尔自动化为在工业自动化及相关学科付出辛勤汗水并取得突出成绩的学生和教师提供年度奖学金和奖教金及优秀证书。
截止2015年底,罗克韦尔自动化共为各个高校合作伙伴捐赠了价值约1.5亿元人民币的设备,并提供奖学金、奖教金约1100万人民币。
相关的捐资助教活动还在持续不断地进行。
为了更好地帮助中国高校加强全面素质教育,提高学生的动手操作能力和运用知识技能解决实际问题的能力,应多数大学合作伙伴的要求,罗克韦尔自动化大学项目部以各个联合实验室为平台,围绕自动化专业与各实验室一起研讨实验课程的设置与开发,最终出版了《罗克韦尔自动化实验室实验指导书》,一方面帮助提高了各个高校的自动化教育水平,另一方面也为学生提供了良好的实际动手操作的技术资料,加强了学校自身的学术研究和开发能力。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
自控原理实验指导书_自动化
实验一 典型环节模拟研究1.1 实验目的1.熟悉并掌握TD-ACC +设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
1.2 实验设备PC 机一台,TD-ACC +实验系统一套。
1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1.比例环节 (P)(1) 方框图:如图1-1所示。
图1-1(2) 传递函数:K S Ui S Uo =)()( (3) 阶跃响应:)0()(≥=t Kt U O 其中 01/R R K =(4) 模拟电路图:如图1-2所示。
图1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
(5) 理想阶跃响应曲线:① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节 (I)(1) 方框图:如右图1-3所示。
图1-3(2) 传递函数:TSS Ui S Uo 1)()(=(3) 阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=(4) 模拟电路图:如图1-4所示。
图1-4(5) 理想阶跃响应曲线:① 取R0 = 200K ;C = 1uF 。
② 取R0 = 200K ;C = 2uF 。
3.比例积分环节 (PI)(1) 方框图:如图1-5所示。
图1-5(2) 传递函数:TSK S Ui S Uo 1)()(+= (3) 阶跃响应: )0(1)(≥+=t tTK t Uo 其中01/R R K =;C R T 0=(4) 模拟电路图:如图1-6所示。
图1-6(5) 理想阶跃响应曲线:①取R0 = R1 = 200K;C = 1uF。
②取R0=R1=200K;C=2uF。
4.惯性环节 (T)(1) 方框图:如图1-7所示。
自动化仪表与过程控制实验指导书.
自动化仪表与过程控制实验指导书电气自动化实验中心2009年3月实验一. DDZ-III型电动温度变送器的调校一.实验目的:1、了解DDZ-III型温度变送器(DBW-5500A)的结构接线情况,熟悉其使用方法,进一步理解其工作原理。
2、学会DBW-5500A热电阻温度变送器的零位与量程的调整,以及精度校验方法。
二.实验设备:1、DBW-5500A型温度变送器一台2、ZX-21型旋转式电阻箱一台3、0.5级电流表一台4、连接导线若干根5、螺丝刀一把三.实验接线:按下图方法进行接线,并将电阻箱阻值调整在100Ω,电流表量程接0-20mA 档。
mA四.实验内容:1、零点与量程的调整:根据仪表的温度测量范围,调整电阻箱,加入温度下限值所对应的电阻值,观察输出电流表的读数。
调整零点电位器,使变送器输出信号为4mA。
再调节电阻箱,加入温度上限值所对应的电阻值,调整量程电位器,使变送器输出信号为20mA。
并且反复多次调整,直到“零点”、“满量程”都符合要求为止。
2、线性测试:按表正行程法次序依次逐渐增加阻值,同时记录相应的输出电流,以完成正行程测试。
然后,按下表反行程法次序依次逐渐减少阻值,同时记录相应的输出电流,以完成反行程的测试。
结果如下:五.作图:实验二电动调节器的PID参数校正一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2)、研究系统分别用P、PI和PID调节器时的阶跃响应。
3)、研究系统分别用P、PI和PID调节器时的抗扰动作用。
4)、定性地分析P、PI和PID调节器的参数变化对系统性能的影响。
二、实验装置1)、TKGK-1型过程控制实验装置:PID调节器GK-04、变频器GK-07-22)、计算机及监控软件三、实验原理1、单容水箱液位控制系统图7-1、单容水箱液位控制系统的方块图图7-1为单容水箱液位控制系统。
这是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。
《工业自动化控制实训指导书》课程标准
电子电器应用与维修重点建设专业《工业自动化控制实训指导书》课程标准撰稿人:陈世宇校对人:来宾职业教育中心学校修订日期:2014年6月《工业自动化控制实训指导书》课程标准一、课程性质与任务本课程是中等职业学校电子技术类专业的一门专业核心教学与训练项目课程。
其任务是:使学生建立自动控制系统的基本概念,掌握自动控制系统分析、校正的基本方法,初步掌握系统实验技能。
为了适应职业教育侧重现场技术应用的特点,本课程突出了与实际应用方面相关的知识,减少了理论与计算方面的内容,为从事高新技术工作打下坚实的基础。
打破传统的以了解”掌握”为特征设定的学科型课程目标,从任、务与职业能力”分析出发,设定职业能力培养目标;变书本知识的传授为动手能力的培养,打破传统的以知识传授为主的教学方式,变为以工作项目”为主线,创设工作情景,结合职业资格鉴定,培养学生的实践动手能力。
二、课程教学目标通过本课程的学习和项目训练,使学生提高实际操作和现场调试方面的能力,本课程抛弃了自控理论中的数学抽象,尽量地给出自控系统的定性概念及常用典型系统的经验结论。
要求在理解有关自动控制系统的基本概念,建立控制系统数学模型的基础上,掌握并灵活运用时域法频率法进行系统分析及正确的性能分析。
掌握系统分析、校正的思路和方法,为日后控制系统的分析设计打下基础。
实验重点放在实际的恒值系统的控制实现上。
系统的调试过程中体现实际问题的解决能力。
具有清晰的系统概念,具有控制方法的软件实现能力,系统各个环节硬件的设计能力,总体调试能力是我们改革的宗旨。
三、教学内容结构模块一可编程控制器(PLC)模块二变频器模块三触摸屏模块四自动化生产控制系统模块五液压与气动自动化模块六控制系统综合实训典型自动化控制学习项目共六大实训项目,每个项目分相关知识和技能训练两部分,将相关知识和实践过程有机结合,力求体现“做中学”“学中做”的教学理念;紧紧围绕完成项目任务的需要来选择课程内容;课程教学内容源于企业岗位典型工作任务。
宁波工程学院 过程控制系统 CS4000DCS实验指导书 廖远江 201402(4次实验)
1)、h2(t)稳态值的渐近线h2(∞);
2)、h2(t)|t=t1=0.4h2(∞)时曲线上的
(2)用两点法和用切线对同一对象进行参数测试,它们各有什么特点?
一、实验目的
1)、熟悉双容水箱的数学模型及其阶跃响应曲线。
2)、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。
二、实验设备
CS4000型过程控制实验装置,PC机,DCS控制系统与监控软件。
三、实验原理
图2-1 双容水箱系统结构图
3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备
CS4000型过程控制实验装置,PC机,DCS控制系统与监控软件。
三、实验原理
图3-1为单回路上水箱液位控制系统。单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用DCS系统控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T,该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,其理论依据是:
化工仪表及自动化实验指导书
化工仪表及自动化实验指导书(过控装备与控制工程教研室)南昌大学环境与化学工程学院二0 一0 年五月本实验指导书系根据《过程装备控制技术与应用》课程及实验室已有设备而设置的实验内容编写的。
通过实验操作,使学生增强感性认识,加深对书本理论知识的理解,提高动手能力,熟悉和掌握仪表实验工作的一般方法,为将来的实验工作和科学研究打下基础。
实验要求在实验过程中,务必做到以下几点:1、实验前必须预习有关实验内容;2、进入实验室后,应首先认真听取实验介绍,以提高操作效率;3、熟悉并检查实验装置的组成部分及连线;4、按实验要求连接实验装置后,需经老师检查方可进行操作;5、实验过程中,应遵守实验室的规章制度,爱护设备。
在实验过程中未按操作步骤进行而造成仪器、设备、工具等损坏以及发生事故,待查明原因后,按学校有关规定予以赔偿;6、实验后,各小组须整理清点实验工具,并交老师核查;7、按实验具体要求,认真完成实验报告。
在做实验报告时应注意以下几点:1、明确实验目的;2、了解实验内容;3、熟悉实验装置;4、掌握实验方法;5、制定实验步骤;6、处理实验数据(数据准确、表格合理、图形清晰);7、得出实验结果;8、提出分析建议(注意现象,分析误差等原因)。
目录一、实验一弹簧管压力表的校验 (5)二、实验二热电偶与动圈仪表的配套使用 (7)三、实验三自动电子电位差计的校验 (10)四、实验四自动电子平衡电桥的校验 (12)五、实验五XMZ-102数显仪表的校验 (13)六、实验六XMZ-101数显仪表的校验 (14)七、实验七电容式差压变送器认识与校验 (15)实验一弹簧管压力表的校验一、实验目的:1、熟悉工业用弹簧管压力表的构造、工作原理及校验方法;2、掌握压力校验器的基本结构原理和操作方法。
实验设备1、手轮2、手摇泵3、活塞4、被校压力表5、6、7、针形阀8标准压力表9、贮油杯工作原理如图1所示:往油杯内注入传压工作介质(变压器油),打开针形阀 6,关闭针形阀5和7,逆时针方向旋转手轮 1,将工作介质吸入手摇泵内,然后关闭针形阀 6,打开针形阀5和7,顺时针方向旋转手 轮,使手摇泵内的活塞3移动所产生的压力经工作介质传递至压力表4和8上。
过程控制及仪表实验指导书
过程控制及仪表实验指导书过程控制系统及仪表实验指导书潘岩左利长沙理工大学电气与信息工程学院20XX年4月1目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验2第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。
如图1-1所示。
图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。
THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。
学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。
这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。
3第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是实验控制对象、实验控制台及上位监控PC机三部分组成。
工业自动化专业的控制实验指导书
自动控制原理实验指导书黄永华编莆田学院电子信息工程系2009年3月组成和使用使用注意事项实验一控制系统典型环节的模拟实验二一阶系统的时域响应及参数测定实验三二阶系统的瞬态响应分析实验四典型环节频率特性的测试(选做)实验五自动控制系统的动态校正(选做)组成和使用1.实验箱的供电实验箱的后方设有带保险丝管(1A)的220V单相交流电源三芯插座,另配有三芯插头电源线一根。
箱内设有四只降压变压器,为实验板提供多组低压交流电源。
2.—块大型(435mM 325mm单面敷铜印刷线路板,正面印有清晰的各部件及元器件的图形、线条和字符,并焊有实验所需的元器件。
该实验板包含着以下各部分内容:(1)正面左下方装有电源总开关一只,控制总电源。
(2)100多个高可靠的自锁紧式、防转、叠插式插座。
它们与固定器件、线路的连接已设计在印刷线路板上。
这类锁紧式插件,其插头与插座之间的导电接触面很大,接触电阻极其微小(接触电阻W 0.003 Q,使用寿命> 10000次以上),在插头插入时略加旋转后, 即可获得极大的轴向锁紧力,拔出时,只要沿反方向略加旋转即可轻松地拔出,无需任何工具便可快捷插拔,同时插头与插头之间可以叠插,从而可形成一个立体步线空间,使用起来极为方便。
(3)扫频电源采用可编程器件ispLSI1032 和单片机AT89C51设计而成,可在(4)直流稳压电源15Hz 〜80KHZ 的全程范围内进行扫频输出, 此外还有频标指示,亦可显示输出频率提供11档扫速,亦可选定点频输出。
扫频电源的使用见实验指导书附录。
提供一路±15V 和±5V 直流稳压电源, 信号源开关,就会有相应的电压输出。
在电源总开关打开的前提下,只要打开(5)信号源本实验箱的信号源包括两部分:阶跃信号发生器和函数信号发生器。
阶跃信号发生器: 阶跃信号发生器主要为本实验箱提供单位阶跃信号而设计 的。
当按下白色按钮时 ,输出一负的阶跃信号,其幅值约(-0.9V ~-2.45V )之间可 调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、过程控制仪表认识实验一、实验目的1、熟悉装置的具体结构、明确各部件的作用。
2、掌握常用传感器的工作原理及使用方法。
二、实验内容1、水箱本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。
实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。
整个装置的管道都采用铝塑管,以防止阀门生锈。
打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。
2、微型锅炉、纯滞后系统、热电阻本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。
热电阻为Pt100,三线制工作。
温度变送器内部已有内置电源,不能再接外加电源。
系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。
3、液位传感器本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。
压力变送器通电15分钟后,方可调整零点和量程。
使用的原则是:没通电,不加压;先卸压,再断电。
零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。
满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。
调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。
4、电动调节阀采用德国PS公司生产的PSL 202型智能电动调节阀。
调节阀由220V50HZ电源供电。
工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。
5、变频器采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。
内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。
外控:开关打到外控,按PU/EXT键,使EXT灯亮,按Run运行,按Stop停运。
内外控切换时,要注意按键和开关配合使用。
6、水泵采用丹麦格兰富水泵,扬程高达10米,噪音很低。
7、流量计流量计由流量传感器和转换器组成。
采用LDS-10S型电磁流量传感器,其流量为0—0.3立方米/秒,压力为1.6Mpa,4—20mA 标准输出,可与显示、记录仪表、积算器配套,避免了涡轮流量计非线性与死区大的缺点。
转换器采用LDZ-4型电磁流量转换器。
它为内置电源。
8、调节器采用上海万迅公司的AI全通用人工智能调节器。
708型为模糊控制器,818型为PID 控制器。
输入为1、2端子,输入为1—5V。
输出为7、8端子,输出为4—20mA。
主要功能是:接受反馈信号Vi,与给定Vs进行比较,得到偏差,并对偏差进行PID连续运算,通过改变PID参数,可改变控制作用。
内部参数的含义及其调整:HIAL:上限报警LoAL:下限报警dHAL:正偏差报警dLAL:负偏差报警dF:回差(死区、滞环)例:在加热控制中,仪表采用反作用调节,在采用位式调节或自整定时,假定给定值是700摄氏度,dF参数设置为0.5摄氏度。
当输出为接通状态时,温度大于700.5摄氏度时要关断。
当输出为关断状态时,温度低于699.5摄氏度时要接通。
Ctrl:控制方式当Ctrl=3表示:当整定结束后,仪表自动进入该设置,该设置下不允许从面板启动自整定参数功能。
以防止误操作重复启动自整定。
M5:保持参数M5定义为输出值变化5%时,控制对象基本稳定后测量值的差值。
5表示输出值变化量为5%。
同一系统的该参数一般会随测量值有所变化,应取工作点附近为准。
以电炉的温度控制为例,工作点为700摄氏度,假定输出保持为50%时,电炉温度最后稳定在700摄氏度,而55%输出时,电炉温度最后稳定在750摄氏度左右,则M5的最佳数值为:750-700=50该参数值主要决定调节算法中积分作用,值越小,系统积分作用越强。
P:速率参数类似于PID调节中的P,值越大,比例微分作用越强。
t:滞后时间Ctl:输出周期值在0.5—125秒之间。
它反映仪表运算调节的快慢。
当大于或等于5秒时,则微分作用完全消除。
当采用SSR或可控硅作为输出执行器件,控制周期可取0.5—2秒左右。
当采用继电器开关输出时,一般要大于等于4秒。
当仪表输出为线性电流或位置比例输出(直接控制阀门电机正反转)时,值小可使调节器输出响应较快,提高控制精度,但太小可能导致输出电流变化频繁,使得执行器动作频繁。
Sn:输入规格Sn=20:Cu50Sn=21:Pt100Sn=32:0.2—1.0VSn=33:1—5VdiP:小数点位置diL:输入下限显示值diH:输入上限显示值Sc:主输入平移修正该参数用于对输入进行平移修正。
例:假定输入信号保持不变,该值为10.0时,仪表测定温度为500.0摄氏度,则仪表的显示测定温度为510.0摄氏度。
仪表出厂时都进行了内部校正,该参数的数值应该设置为0。
oP1:输出方式oP1=4:表示4—20mA线性电流输出。
oPL:输出下限oPH:输出上限ALP:报警输出定义CF:系统功能选择CF=2:仪表有上电/给定值修改免除报警功能。
CF=8:允许外部给定(仅适用于AI—818型)Addr:通讯地址bAud:通讯波特率dL:输入数字滤波run:运行状态run=0:手动调节状态。
run=2:手动调节状态,并且禁止手动操作。
Loc:参数修改级别Loc=808,可设置全部参数及给定值。
EP1—EP8:现场参数定义9、牛顿模块:(需装驱动软件)采用台湾威达的采集模块。
7024型:D/A,4通道,4—20mA输出,必须串24V电源才能应用。
7017型:A/D,8通道,5V输入。
7520型:RS232—485通讯模块。
7043型:开关量输出,16通道,最大负载100mA。
10、PLC在这里和牛顿模块的作用相同。
11、组态王软件选用北京亚控公司的组态王软件。
能完成数据采集、流程控制、动画显示、报表输出、实时和历史数据的处理。
12、计算机控制时通讯接口的定义13、连接温度、液位、压力、流量测量单回路控制实际接线图。
二、双容液位控制实验一、实验目的通过实验掌握单回路控制系统的构成。
学生可自行设计,构成双容液位控制系统,并应用临界比例度法、阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用调节器仪表进行PID参数的自整定和自动控制的投运。
二、实验设备水泵、压力变送器、变频器、调节器(708型),主回路调节阀、上水箱、中水箱(上中水箱的容积比例为1:3)、中水箱液位变送器、调节器(708型)。
图1 二阶液位控制实验框图图2 调节器控制二阶液位控制实验流程图图3 双容液位控制(调节器接线)三、实验步骤1、将下水箱单闭环实验所用的设备,按系统框图接好实验线路。
2、接通总电源,各仪表电源。
3、将上水箱进水电磁阀V3、上水箱排水电磁阀、中水箱排水电磁阀和下水箱手动排水阀打开,其余阀门关闭。
4、设置调节器的参数。
6、使水泵Ⅰ在恒压供水状态下工作,观察计算机下水箱曲线的变化。
7、待系统稳定后,给定值(SP)加个阶跃信号,观察其液位的变化曲线。
8、再等系统稳定后,给系统下水箱加干扰信号(参考方法,改变被控水箱进、排水阀门),观察液位变化的曲线。
9、系统再次稳定后,给系统下水箱加干扰信号,观察上下液位变化的曲线。
10、曲线的分析处理,对实验的记录曲线分别进行分析和处理,结果记录于表3中。
表3 阶跃响应曲线数据处理记录表四、调节器的参数设置五、实验报告根据试验结果编写实验报告,并根据K、T、τ平均值写出广义的传递函数。
三、调节阀流量特性测试一、实验目的通过实验掌握调节阀特性曲线的测量方法,测量时应注意的问题,调节阀流量特性的求取方法。
二、实验设备水泵Ⅰ、变频器、压力变送器、主回路流量计、主回路调节阀、PLC、牛顿模块(输入、输出)。
图1 调节阀流量特性测试流程图2 调节阀流量特性测试系统框图三、实验步骤1、实验装置的认识,了解调节阀的工作原理,所在的位置及其作用。
2、将调节阀特性测试实验所用的设备,参照流程图和系统框图接线。
3、接通总电源、各仪表电源。
4、运行组态王,在组态王工程管理器界面中启动组态王实验6.0,点击实验选择按钮,选择调节阀特性测试。
5、点击特性测试和特性曲线按钮,开始调节阀特性测试实验。
6、点击u(k)的增/减键,开始测试调节阀的正向流量特性,直至u(k)=1000,再点击u(k)增/减键,停止调节阀正向特性测试。
7、点击u(k)增/减键,开始测试调节阀的反向流量特性直至u(k)=0,再点击u(k)增/减键,停止调节阀反向特性测试。
8、记录调节阀特性曲线。
四、实验报告根据试验结果编写实验报告,并且以电流作为横坐标、流量作为纵坐标,画出特性曲线图。
根据画出的特性曲线,判断阀体是快开特性、等百分比特性还是直线特性。
四、水箱液位和流量组成串级实验一、实验目的通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、副被控参数、主调节器、副调节器、主回路、副回路。
通过实验掌握串级控制系统的特点、串级控制系统的设计,掌握串级控制主、副控制回路的选择。
掌握串级控制系统参数整定方法,并将串级控制系统参数投运到实验中。
二、实验设备水泵Ⅰ、压力变送器、变频器、调节器(708型)、上水箱、上水箱液位变送器、调节器(708型)、主回路流量计、主回路流量变送器、主回路调节阀、调节器(818型)。
三、实验步骤1、选择控制系统的方案,上水箱液位和主回路流量。
2、选择主被控参数、副被控参数,打开上水箱进水电磁阀V3、上水箱排水电磁阀、中水箱手动排水阀。
图11 调节器控制串级控制系统的框图3、主副调节器,在恒压供水条件下工作,将上水箱和流量组成串级实验所用设备,按系统框图接好实验导线。
注意:818调节器作为副调节器使用,在Sn=32参数下,1-2端接1-5V输入,2-3端接0.2-1V输入(2为共地)。
图1 调节器控制串级控制系统的框图图2 流量液位串级(调节器接线)4、实验参数的整定,先自整定副回路流量系统。
待系统稳定后再整定主回路液位系统,最后串在一起整定。
待系统稳定后,上水箱液位给定值加个阶跃(幅度不要太大),观察流量和液位的曲线的变化,并保存此曲线。
5、稳定后,分别在主副回路加一个干扰信号,然后观察计算机上历史曲线的变化。
四、调节器的参数设置708调节器液位控制818调节器流量控制五、实验报告1、根据实验结果编写实验报告。
2、列表比较控制质量:。