分式复习课教案

合集下载

分式复习教案

分式复习教案

分式复习教案教案标题:分式复习教案教案目标:1. 复习和巩固学生对分式的理解和运用。

2. 帮助学生熟练掌握分式的加减乘除运算。

3. 提高学生解决实际问题时运用分式的能力。

教学内容:1. 分式的定义和基本概念。

2. 分式的化简和约分。

3. 分式的加减运算。

4. 分式的乘除运算。

5. 分式在实际问题中的应用。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具。

2. 学生准备教科书、笔记本和计算器。

教学过程:一、导入(5分钟)1. 教师通过提问和回顾上节课的知识,激发学生对分式的兴趣和回忆。

2. 提问:你们还记得分式的定义和基本概念吗?请举个例子。

二、知识讲解与示范(15分钟)1. 教师通过教学PPT或板书,对分式的定义和基本概念进行讲解,并给出示例进行说明。

2. 教师讲解分式的化简和约分的方法,并进行相关的示范演示。

三、练习与巩固(20分钟)1. 学生个别或小组完成一些基础练习题,巩固分式的化简和约分。

2. 学生进行分式的加减运算练习,教师进行讲解和指导。

3. 学生进行分式的乘除运算练习,教师进行讲解和指导。

四、拓展与应用(15分钟)1. 教师通过实际问题的讲解,引导学生将所学的分式知识应用到实际生活中。

2. 学生个别或小组完成一些实际问题的解答,教师进行讲解和指导。

五、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要继续巩固和复习的部分。

2. 学生进行自我评价和反思,教师进行必要的点评和指导。

教学延伸:1. 鼓励学生进行分式的综合运用,解决更复杂的实际问题。

2. 提供更多的分式练习题和挑战题,以满足学生的不同需求和能力水平。

教学评估:1. 教师通过课堂练习和个别辅导,对学生的掌握情况进行评估。

2. 教师可以设计小测验或作业,检验学生对分式的理解和运用能力。

教学反思:1. 教师应根据学生的实际情况,调整教学内容和教学方法,确保教学效果。

2. 教师应及时收集学生的反馈和意见,不断改进教学策略和方法。

分式复习教案(二)

分式复习教案(二)
【例3】解下列方程组
题型三:求待定字母的值
【例4】若关于 的分式方程 有增根,求 的值.
【例5】若分式方程 的解是正数,求 的取值范围.
提示: 且 , 且 .
题型四:解含有字母系数的方程
【例6】解关于 的方程
提示:(1) 是已知数;(2) .
题型五:列分式方程解应用题
练习:
1.解下列方程:
(1) ;(2) ;
例2分式方程的特殊解法
例3
例4分式方程求待定字母值的方法
例5
教后反思
备课专用稿纸
课题
分式复习教案(二)
主备教师
张华伟
备课时间
2012.2.29
课型
新授课
授课教师
授课时间
授课班级
八年级
教学目标
1.复习分式方程的概念以及解法;
2.复习分式方程产生增根的原因
3.复习分式方程的应用题
重点难点
重点:分式方程的应用。
难点:分式方程的应用。
教法学法
引导启发、讲练结合、归纳总结
教具学具
例3.若关于 分式方程 有增根,求 的值。
例4.若关于 的方程 有增根 ,求 的值。
课堂小结:
1.分式方程主要是看分母是否有外未知数;
2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.
3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.
板书设计
分式复习教案(二)
例1例6
投影仪
教学过程
时间
批注
教学过程:
题型一:用常规方法解分式方程
【例1】解下列分式方程
(1) ;(2) ;(3) ;
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验

《分式复习》教案

《分式复习》教案

《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。

2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。

3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。

二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。

四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。

教学资源:教材、PPT、练习题、实际问题案例。

教学时间:1课时。

六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。

2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。

3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。

4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。

七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。

初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。

(完整版)分式复习课教案

(完整版)分式复习课教案

分式复习课学案教学目标1. 理解分式定义,掌握分式有意义的条件。

2. 掌握分式的加减乘除运算及混合运算。

3. 掌握分式方程的解法,会列分式方程解决实际问题。

教学重点: 分式加减乘除混合运算及分式方程 教学难点:列分式方程解决实际问题 、预习作业1. 分式的概念:2. 分式的基本性质:(1) 分式的分子分母同乘(或除以)一个 _________________________ ,分式的值 _________ (2) 分子,分母的公因式,系数的 __________ 与各 ______ 因式的 __________ 的积(3) ___________________________________________ 各分式的最简公分母,各分母系数的_____________________________________________________ 与 _______ 因式 ____________ 的积 3•分式的运算法则:(1) 乘法法则 ____________________________________________ (2) 除法法则 ____________________________________________ (3) 分式的乘方 _____________________________________ (4) 加减法则同分母分式相加减 ____________________________________________ 异分母分式相加减 ____________________________________________(5) 分式加、减、乘、除、乘方的混合运算法则 __________________________________________mn“m 、n“・、nm n“a 、n(6) a a ________ (a )____ (ab) _________ a a _________ (_) ____b(7) 当n 是正整数时 a -n = ______________ ( __________ ) 4.解分式方程的步骤(1) ___________________________________________ 去分母,方程两边同乘 化成整式方程(1) 分式的定义:一般地 (2) 分式有意义的条件是 (3) 分式无意义的条件是 (4) 分式为零的条件是 A , B 是两个 ________ ,且 ___________ 不等于0 ___________ 等于0 ______ 不等于0,且 _____A中含有字母,那么-叫分式B等于0(2)解出整式方程的解(3) _____________________________________ 将整式方程的解代入进行检验,若不为零,则整式方程的解就是_______________________ ,若等于零,则这个解 ___________ 原方程的解(3)二、预习交流三、展示探究例1.填空1.下列代数式中:2x2xx 1-,2X1-------- 2 2va b x y a 1曰八卡砧若y, , ,, 是分式的有、a b x y x m yx 12 .当x满足时,分式(x 1)(x 2)有意义。

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

分式单元复习教案教师版

分式单元复习教案教师版

分式单元复习教案教师版一、教学目标1. 知识与技能:理解和掌握分式的概念、分式的运算规则、分式的性质和分式的应用。

2. 过程与方法:通过复习和练习,提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和坚持不懈的精神。

二、教学内容1. 分式的概念:复习分式的定义,理解分式的分子和分母的概念。

2. 分式的运算:复习分式的加减乘除运算规则,掌握分式的运算方法。

3. 分式的性质:复习分式的基本性质,如分式的符号变化、分式的乘除性质等。

4. 分式的应用:解决实际问题,如比例计算、溶液浓度计算等。

三、教学重点与难点1. 教学重点:分式的概念、分式的运算规则、分式的性质和分式的应用。

2. 教学难点:分式的运算规则的理解和应用,解决实际问题的方法。

四、教学方法1. 讲解法:教师对分式的概念、运算规则、性质等进行讲解,引导学生理解和掌握。

2. 练习法:学生通过练习题目的方式,巩固所学知识,提高解题能力。

3. 案例分析法:教师给出实际问题,学生分组讨论和解决问题,培养学生的团队合作意识。

五、教学准备1. 教学课件:制作课件,展示分式的概念、运算规则、性质等知识点。

2. 练习题目:准备分式的练习题目,包括基础题和提高题。

3. 教学工具:准备黑板、粉笔等教学工具。

六、教学过程1. 导入新课:通过复习问题和回顾已学过的分式知识,激发学生的学习兴趣。

2. 分式概念复习:讲解分式的定义,强调分子和分母的概念,举例说明。

3. 分式运算复习:复习分式的加减乘除运算规则,进行示例运算,让学生跟随。

4. 分式性质复习:讲解分式的基本性质,如符号变化、乘除性质等,并进行示例说明。

5. 分式应用复习:解决实际问题,如比例计算、溶液浓度计算等,引导学生应用所学知识。

七、课堂练习1. 基础练习:提供一些基础的分式运算题目,让学生独立完成,巩固运算规则。

2. 提高练习:提供一些综合性的分式运算题目,让学生思考和解答,提高解题能力。

分式复习教案(经典)

分式复习教案(经典)

分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。

对于一个分式来说:①当____________时分式有意义。

②当____________时分式没有意义。

③只有在同时满足____________,且____________这两个条件时,分式的值才是零。

(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。

(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。

将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。

(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。

通分的关键是确定几个分式的___________ 。

(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。

2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。

即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。

分式单元复习教案_教师版

分式单元复习教案_教师版

考点一:分式的基本概念及分式的运算(1)分式的概念:整式A 除以整式B ,可以表示成 AB 的形式,如果除式B 中含有字母,那么称 AB为分式.(2)分式有意义的条件:若B ≠0,则 A B 有意义;若B=0,则 AB无意义;(3)分式值为0的条件:若A=0且B ≠0,则 AB=0(4)分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.(5)约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分. (6)【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac ∙=,b c b d bda d a c ac÷=∙=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n,()nm mnaa=7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2(二)分式的基本性质及有关题型1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯= 9.分式的变号法则:bab a b a b a =--=+--=-- (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂. 2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正; (2)当x 为何值时,分式)1(35-+-x x为负;(3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+.【例4】已知:21=-x x ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xyy x -;(3)n m mn --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22; (4)112---a a a;(5)874321814121111x x x x x x x x +-+-+-+--;(6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ;(7))12()21444(222+-⋅--+--x xx x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432zy x ==,求22232z y x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x,试求N M ,的值.考点二、分式方程 【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 题型一:用常规方法解分式方程【例1】解下列分式方程 (1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a .题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-xx x x ;(2)3423-=--x x x ;(3)22322=--+x x x ;(4)171372222--+=--+x x x x xx(5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠; (2))(11b a xb b x a a ≠+=+.3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.考点三:分式方程的解法(1)定义:分母中含有未知数的方程叫做分式方程.(2)解法:解分式方程的关键是去分母(方程两边都乘以最简公分母,将分式方程转化为整式方程);解整式方程;验跟。

分式单元复习教案教师版

分式单元复习教案教师版

分式单元复习教案教师版一、教学目标1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质。

(2)掌握分式的化简、运算及应用。

(3)提高解决实际问题的能力。

2. 过程与方法:(1)通过复习分式的概念和性质,加深对分式知识的理解。

(2)运用分式的化简和运算方法,解决实际问题。

(3)培养学生的逻辑思维能力和创新能力。

3. 情感态度与价值观:(2)培养学生克服困难的意志,增强自信心。

(3)引导学生感受数学在生活中的应用,提高学习的积极性。

二、教学内容1. 分式的概念与基本性质(1)复习分式的定义及表示方法。

(2)掌握分式的分子、分母、分式值等基本概念。

(3)理解分式的基本性质,如分式的符号法则、分式的乘除法等。

2. 分式的化简(1)掌握分式化简的方法,如约分、通分等。

(2)学会运用分式的化简方法解决实际问题。

3. 分式的运算(1)掌握分式的加减乘除运算方法。

(2)学会运用分式的运算方法解决实际问题。

4. 分式方程的解法(1)理解分式方程的概念,掌握分式方程的解法。

(2)学会运用分式方程的解法解决实际问题。

5. 分式在实际问题中的应用(1)引导学生发现生活中的分式问题。

(2)学会运用分式知识解决实际问题,提高解决实际问题的能力。

三、教学重点与难点1. 教学重点:(1)分式的概念与基本性质。

(2)分式的化简与运算方法。

(3)分式方程的解法及实际应用。

2. 教学难点:(1)分式的化简与运算。

(2)分式方程的解法及实际应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究分式的概念与性质。

2. 运用案例分析法,让学生通过实际问题体会分式的应用。

3. 采用小组合作学习法,培养学生的团队协作能力。

4. 运用讲解法、示范法,指导学生掌握分式的化简与运算方法。

五、教学过程1. 导入新课:(1)复习分式的概念与基本性质。

(2)引入分式的化简与运算。

(3)提出分式方程及实际应用问题。

2. 自主学习:(1)让学生自主探究分式的化简与运算方法。

分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。

强调分式中的各个元素:分子、分母、分界线。

1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。

演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。

第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。

举例说明如何进行分式的加减运算,并强调通分的重要性。

2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。

演示如何进行分式的乘除运算,并提示约分的技巧。

第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。

举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。

3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。

强调求值时需要注意的问题:确保代入的变量值使分母不为零。

第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。

演示如何将实际问题转化为分式问题,并解决。

4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。

引导学生运用分式的知识解决实际问题,培养其应用能力。

第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。

强调学生需要掌握的分式计算的基本技能。

5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。

提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。

第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。

提供混合运算的例题,引导学生逐步解决复杂分式问题。

6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。

初中复习课分式教案

初中复习课分式教案

初中复习课分式教案教学目标:1. 学生能够掌握分式的定义、基本性质和运算法则;2. 学生能够灵活运用分式解决实际问题;3. 学生能够理解分式与整式的关系,并能进行相应的变形和化简。

教学内容:1. 分式的定义和基本性质;2. 分式的运算法则;3. 分式在实际问题中的应用;4. 分式与整式的关系及变形和化简。

教学过程:一、导入(5分钟)1. 复习分式的定义:分式是形如a/b的表达式,其中a和b是整式,b不为0。

2. 引导学生回顾分式的基本性质:分式的值不随分母的扩大或缩小而改变,分式的值不随分子的扩大或缩小而改变,分式的值不随分子的正负而改变。

二、分式的运算法则(15分钟)1. 复习分式的加减法:分式的加减法是将分式的分子进行相应的加减运算,分母保持不变。

2. 复习分式的乘除法:分式的乘除法是将分式的分子和分母进行相应的乘除运算。

3. 引导学生总结分式的运算法则:分式的加减法运算遵循相同的分母相加减,不同的分母先通分;分式的乘除法运算遵循分子相乘除,分母相乘除。

三、分式在实际问题中的应用(15分钟)1. 给出一个实际问题,如:一个长方形的长是宽的两倍,面积为24平方厘米,求长方形的面积。

2. 引导学生将实际问题转化为分式问题,如:设长方形的宽为x厘米,则长为2x厘米,面积为x*2x=2x^2平方厘米。

3. 引导学生运用分式解决实际问题,如:2x^2=24,解得x=6,所以长方形的宽为6厘米,长为12厘米。

四、分式与整式的关系及变形和化简(15分钟)1. 引导学生理解分式与整式的关系:分式可以看作是整式的一种特殊形式,整式可以通过乘以一个非零整数得到相应的分式。

2. 复习分式的变形和化简:分式的变形和化简是通过因式分解、约分、通分等操作实现的。

3. 给出一些分式的变形和化简题目,让学生独立完成,并进行讲解和解析。

五、总结与复习(10分钟)1. 引导学生总结本节课的重点内容:分式的定义、基本性质、运算法则、实际应用、与整式的关系及变形和化简。

八年级分式方程复习教案

八年级分式方程复习教案

八年级分式方程复习教案一、教学目标1. 知识与技能:使学生掌握分式方程的解法及应用,提高学生解决实际问题的能力。

2. 过程与方法:通过复习,让学生熟练掌握分式方程的解法,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

二、教学内容1. 分式方程的概念及其特点。

2. 分式方程的解法。

3. 分式方程在实际问题中的应用。

三、教学重点与难点1. 重点:分式方程的解法及应用。

2. 难点:分式方程在实际问题中的灵活应用。

四、教学方法采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与学习,提高学生的动手操作能力和解决问题的能力。

五、教学过程1. 复习导入:回顾分式方程的概念及其特点,引导学生回顾已学的解法。

2. 讲解演示:讲解分式方程的解法,并通过示例演示解题过程。

3. 练习巩固:布置适量练习题,让学生独立完成,检验学习效果。

4. 讨论交流:组织学生分组讨论,分享解题心得,互相学习。

6. 课后作业:布置课后作业,巩固所学知识。

教学评价:通过课堂表现、练习成绩和课后作业,评价学生的学习效果。

六、教学案例分析本节课以一个实际问题为例,让学生解决一个关于商品打折的分式方程。

例如:某商品原价为200元,商店进行如下打折活动:如果购买金额超过100元不足200元,则打9折;如果购买金额超过200元,则打8折。

已知该商品打折后实际支付了168元,求购买该商品的消费者实际购买了多少商品?七、教学策略1. 针对不同学生,给予个性化的指导,帮助其掌握分式方程的解法。

2. 通过小组合作,让学生在讨论中加深对分式方程解法的理解。

3. 利用信息技术辅助教学,例如使用数学软件或在线工具,帮助学生更直观地理解分式方程的解法。

八、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,包括提问、回答问题、小组讨论等。

2. 练习完成情况:检查学生完成练习的情况,包括正确率和解题思路。

《分式复习》教案

《分式复习》教案

《分式复习》教案教案编写者:教案编辑专员教学目标:1. 理解分式的概念,掌握分式的基本性质。

2. 掌握分式的运算规则,包括加减乘除。

3. 能够解决实际问题,运用分式进行合理计算。

教学重点:1. 分式的概念和基本性质。

2. 分式的运算规则。

3. 分式在实际问题中的应用。

教学难点:1. 分式的运算规则的理解和运用。

2. 解决实际问题时分式的合理运用。

教学准备:1. 教学PPT或者黑板。

2. 教学素材和实例。

教学过程:第一章:分式的概念与基本性质1.1 分式的概念教学内容:介绍分式的定义,解释分子和分母的概念。

教学方法:通过PPT展示分式的定义,引导学生理解分子和分母的关系。

教学活动:1. 向学生介绍分式的定义,解释分子和分母的概念。

2. 通过PPT展示分式的图形表示,帮助学生直观理解分式的含义。

3. 引导学生进行小组讨论,分享对分式的理解。

教学评估:通过小组讨论和学生的提问,了解学生对分式的理解程度。

1.2 分式的基本性质教学内容:介绍分式的基本性质,包括分式的符号规则、分式的乘法和除法。

教学方法:通过PPT展示分式的基本性质,引导学生进行实例分析和练习。

教学活动:1. 向学生介绍分式的基本性质,包括分式的符号规则、分式的乘法和除法。

2. 通过PPT展示分式的基本性质的实例,引导学生进行分析和练习。

3. 组织学生进行小组讨论,分享对分式基本性质的理解和运用。

教学评估:通过小组讨论和学生的提问,了解学生对分式的基本性质的理解程度。

第二章:分式的运算规则2.1 分式的加减法教学内容:介绍分式的加减法规则,解释同分母和异分母的分式加减法。

教学方法:通过PPT展示分式的加减法规则,引导学生进行实例分析和练习。

教学活动:1. 向学生介绍分式的加减法规则,解释同分母和异分母的分式加减法。

2. 通过PPT展示分式的加减法实例,引导学生进行分析和练习。

3. 组织学生进行小组讨论,分享对分式加减法的理解和运用。

教学评估:通过小组讨论和学生的提问,了解学生对分式的加减法的理解程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式复习课学案
教学目标
1.理解分式定义,掌握分式有意义的条件。

2.掌握分式的加减乘除运算及混合运算。

3.掌握分式方程的解法,会列分式方程解决实际问题。

教学重点:分式加减乘除混合运算及分式方程
教学难点:列分式方程解决实际问题
一、预习作业
1.分式的概念:
(1)分式的定义:一般地A ,B 是两个_______,且_____中含有字母,那么
B A 叫分式 (2)分式有意义的条件是___________不等于0
(3)分式无意义的条件是___________等于0
(4)分式为零的条件是________不等于0,且_________等于0
2.分式的基本性质:
(1)分式的分子分母同乘(或除以)一个__________________,分式的值_________
(2)分子,分母的公因式,系数的_________与各______因式的_________的积
(3)各分式的最简公分母,各分母系数的___________与_______因式___________的积
3.分式的运算法则:
(1)乘法法则________________________________________
(2)除法法则________________________________________
(3)分式的乘方_________________________________
(4)加减法则
同分母分式相加减_______________________________________
异分母分式相加减_______________________________________
(5)分式加、减、乘、除、乘方的混合运算法则___________________________________
(6)=n m a a ______ =n m )a (______ =n )ab (______ =÷n m a a _____ =n )b
a
(______ (7)当n 是正整数时=a
-n _____________ (_________)
4.解分式方程的步骤 (1)去分母,方程两边同乘________________________化成整式方程
(2)解出整式方程的解
(3)将整式方程的解代入___________________进行检验,若不为零,则整式方程的解就是_____________________,若等于零,则这个解__________原方程的解
二、预习交流
三、展示探究
例1.填空
1. 下列代数式中:x 2x 2,y x y x y x y x b a b a y x x -++-+--1
,,,21,22π,m 1a 是分式的有______________ 2.当x 满足__________时,分式1(1)(2)x x x -+-有意义。

当x=__________时,分式29
3
x x -+的值为零,当x 满足____________时,分式21
3x x +-值为正,当x 满足___________时,分
式|
1x |51x 2---无意义
例2.计算
(1)222212142144a a a a a a a a -++•÷--+-+ (2)ab a b a +-2÷4222a b a a ab --×a
b -1
(3)44622+--x x x ÷-2x x 4-12×31+x (4)2
42331q p 85q p 21⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----
例3.计算 计算:(1)221224a a a a +÷+--(
) (2)265(2)22x x x x -÷----
(3)
12)1(242+-----a a a a (4)
例4.解方程(1)
2
2
42
1
11
x x x
x x
-
+=
-+ (2 )
21
5
33
x
x x
-
=-
--
例5.先化简,再求值
1.
2.
3. 当
例6应用题
1.A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?
2.有一段公路急需抢修,此项工程原计划由甲工程队单独完成,需要20天,在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,求乙工程队单独完成这项工程需要多少天?
四、当堂检测
1.当x 取何值时,下列分式有意义?
(1)1x
21x -- (2)22671x x x --+
2.不改变分式的值,使分式2
312x x x x +---的分子、分母中最高次项的系数为正数。

3.计算:(1)22x xy y xy y x -•- (2)
25363458a b a b a b a b a b a b a b b a -------+-+-
4.某校八年级两个班各为玉树地震灾区捐款1800元。

已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%。

请你根据上述信息,就这两个班的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程。

5.如果34(1)(2)21x A B x x x x -=+
----,求实数A 、B 的值
6.已知:511=+y x ,求y
xy x y xy x +++-2232的值
7. 解方程(1)
114112=-+-+x x x (2)91232312-=--+x x x。

相关文档
最新文档