八年级数学幂的运算测试题知识分享
幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册
专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。
部编数学八年级上册专题07幂的运算与整式的乘法之七大题型(解析版)含答案
专题07 幂的运算与整式的乘法之七大题型判断幂的运算、整式运算正确例题:(2023上·福建厦门·八年级校考期末)下列运算结果正确的是( )A .326a a a ×=B .()32628a a =C .()211a a a +=+D .()32a a a a+¸=【答案】B【分析】根据同底数幂乘法、积的乘方、幂的乘方以及整式的乘除运算法则进行判断即可.【详解】解:A 、33522a a a a +×==,故此选项计算错误,不符合题意;B 、()32628a a =,故此选项计算正确,符合题意;C 、()21a a a a +=+,故此选项计算错误,不符合题意;D 、()321a a a a +¸=+,故此选项计算错误,不符合题意;故选:B .【点睛】本题考查了幂的相关运算以及整式的乘除运算法则,熟练掌握相关运算法则是解本题的关键.【变式训练】1.(2023下·四川达州·七年级校考期末)下列计算正确的是( )A .5552x x x ×= B .325a a a +=C .2383()a b a b =D .4222()()bc bc b c -¸-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ×=,所以此选项错误;幂的运算【点睛】本题主要考查了积的乘方,解题的关键是熟练掌握积的乘方运算法则,准确计算.【变式训练】整式的四则混合运算【变式训练】【变式训练】多项式乘多项式【变式训练】1.(2023下·广东揭阳·七年级统考期末)先化简再求值:()()()()222213123x x x x x x -++---,其中3x =.【答案】3238133,45x x x -+-,【分析】根据单项式乘多项式,多项式乘多项式法则运算,再合并同类项,最后代入求值即可.【详解】解:()22(2)21(31)(23)x x x x x x -++---()32322226923x x x x x x x =-++---+32322226923x x x x x x x =-++-++-3238133x x x =-+-,当3x =时,原式3233831333=´-´+´-32789393=´-´+-45=.多项式乘多项式与图形面积【答案】2252a ab b --平方米,【分析】长方形的面积等于:方形面积﹣中间部分面积,化简出结果后,把【详解】解:(3S a =阴影2252a ab b --=(平方米),当6a =,4b =时,原式53664216=´-´-´1802432=--124=(平方米).【点睛】本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.【变式训练】1.(2023上·江西上饶·八年级校联考期末)如图,某小区有一块长为()23a b +米,宽为()2a b -米的长方形地块,管理部门规划了4块边长均为b 米的正方形空地用于栽种梅、兰、竹、菊,剩余地块将铺设草坪.(1)用含a ,b 的代数式表示铺设的草坪的面积.(结果化为最简形式)(2)若105a b ==,,预计每平方米铺设草坪的费用为30元,请预计铺设草坪所需要的费用.【答案】(1)()22447a ab b +-平方米(2)12750元【分析】(1)用长方形面积减去4个正方形面积即可得到答案;(2)根据(1)所求代入105a b ==,求出草坪的面积,进而求出对应的费用即可.【详解】(1)解:()()22324a b a b b +--22246234a ab ab b b =+---()22447a ab b =+-平方米,∴铺设的草坪的面积为()22445a ab b +-平方米;(2)解:当105a b ==,时,2222445410410575425a ab b +-=´+´´-´=平方米,∴铺设草坪所需要的费用为4253012750´=元.【点睛】本题主要考查了多项式乘法在几何图形中的应用,代数式求值,熟练掌握多项式乘以多项式的计算法则是解题的关键.2.(2023下·陕西榆林·七年级统考期末)如图,在某高铁站广场前有一块长为2a b +,宽为a b +的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b 的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当200a =,100b =时,求这两个长方形喷泉池的总面积.【答案】(1)2223a ab b ++;(2)22242a ab b -+;(3)20000.【分析】(1)根据长方形的面积列式并计算即可;(2)根据“长为2a b +,宽为a b +的长方形空地,两个长方形喷泉池及周边留有宽度为b 的人行通道”列式计算即可;(3)把200a =,100b =代入(2)中得到结果计算即可.【详解】(1)解:()()22223a b a b a ab b ++=++,答:该长方形空地的面积为2223a ab b ++.(2)()()223a b b a b b +-+-()()22a b a b =--22242a ab b =-+.答:这两个长方形喷泉池的总面积为22242a ab b -+.(3)当200a =,100b =时,这两个长方形喷泉池的总面积为222202220042001002041020002a ab b =´-´´+´-+=.即这两个长方形喷泉池的总面积为20000.【点睛】此题考查了列代数式、多项式乘法的应用、代数式的值等知识,根据题意正确列出代数式是解题的关键.多项式乘积中的规律性问题例题:(2023上·重庆永川·八年级统考期末)根据多项式乘法法则可得:()2222a b a ab b +=++;【答案】10【分析】根据“杨辉三角形”,计算出()5a b +,即可确定字母部分为【详解】解:根据“杨辉三角形”,可知()55a a b =+∴字母部分为32a b 的项的系数为10,【变式训练】1.(2023下·甘肃酒泉·七年级统考期末)观察下列各式()()2111x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-……(1)根据以上规律,则()()6543211x x x x x x x -++++++=______(2)若()1511x M x -×=-,则M =______(3)能否由此归纳出一般性规律:()()111n n x x x x --++++=L ______(4)由(3)直接写出结果:()()54322343a b a a b a b a b ab b -+++++=______(5)根据(3)求:3534222221+++++L 的结果.【答案】(1)71x -(2)()1413121x x x x +++++L(3)11n x +-(4)66a b -(5)3621-【分析】(1)根据题目中给出的式子总结规律,得出答案即可;(2)根据题目中给出的规律得出()()14131213111x x x x x x -+++++=-L ,即可得出答案;(3)根据规律得出结果即可;(4)由()()11a b a b -=---,根据题目中给出的规律得出结果即可;(4)用题目中提供的规律进行计算即可.【详解】(1)解:根据以上规律,可得()()654327111x x x x x x x x -++++++=-,故答案为:71x -;(2)解:根据以上规律,可得:若()1511x M x -×=-,则()1413121M x x x x =+++++L ,故答案为:()1413121x x x x +++++L ;(3)解:由所给算式可得规律为:()()11111n n n x x x x x -+-++++=-L ,故答案为:11n x +-;(4)解:∵()()11a b a b -=---,∴原式()()()5432234511a a b a b a a b b ab b =--++++-ëû+éù()()()()543223455432234511a a b a b a b ab b a a b a b a b b a b a b +++++-++++-+=-()()6611a b =---66a b =-;故答案为:66a b -;(5)解:根据以上规律可得:2343512222+++++L ()()353422122221=-+++++L 3621=-.【点睛】本题主要考查了规律探究,解题的关键是根据题干得出一般规律()()11111n n n x x x x x -+-++++=-L .一、单选题②()()23111x x x x -++=-;③()()324111x x x x x -+++=-;……【归纳】由此可得:()()121111n n n n x x x x x x --+-+++++=-L ;【应用】请运用上面的结论,计算:2023202220212222221++++++=K ( )A .202321-B .202421-C .20242D .202521-【答案】B【分析】根据所给规律求解即可.【详解】解:∵()()121111n n n n x x x x x x --+-+++++=-L ,∴()()202320222021220242122222121-×++++++=-K ,∴2023202220212202422222121++++++=-K .故选:B .【点睛】本题考查了多形式与多项式的乘法的规律问题,灵活运用规律求解是解答本题的关键.二、填空题【答案】5a b =/5b a=【分析】设左上角阴影部分的长为示阴影部分面积之差,可得x 变化,【详解】设左上角阴影部分的长为则右下角阴影部分的长为x a +三、解答题11.(2023下·江苏扬州·七年级统考期末)计算:(1)()()3642a a a a -×+×-(2)()()3x y x y -+【答案】(1)77a -(2)2223x xy y --【分析】(1)先计算积的乘方,再计算单项式乘单项式,最后合并同类项即可;(2)利用多项式乘多项式法则计算.【详解】(1)解:()()3642a a a a -×+×-()3468a a a a =-×+×778a a =-+77a =-;(2)解:()()3x y x y -+ 2233x xy xy y =+--2223x xy y =--.【点睛】本题考查积的乘方、单项式乘单项式、多项式乘多项式等知识点,解题的关键是熟练掌握各项运算法则并正确计算.12.(2023下·山西晋中·七年级统考期末)计算:(1)()322324a b ab a ׸(2)()()253x x +-.【答案】(1)422a b (2)2215x x --【分析】(1)先算幂的乘方和积的乘方,再计算单项式的乘除法;∵化简后不含2x 项和常数项,∴20a -=且120b -=,解得:212a b ==,.【点睛】本题考查了整式的混合运算一化简求值,绝对值和偶次方的非负性,平方差公式,准确熟练地进行计算是解题的关键.14.(2023下·山东烟台·六年级统考期末)已知()()43229323316A x x x x B x x =¸=-+--,.(1)求A 和B ;(2)若y 满足y B A -=,请用含x 的代数式表示y ;(3)在(2)的条件下,当10y =时,求()2225416x x y +--的值.【答案】(1)22932936A x xB x x =--=+-,(2)2188y x =-(3)25【分析】(1)利用多项式除以单项式法则得到A ,利用单项式乘以多项式法则即可得到B ;(2)把(1)中求得的A 和B 代入y A B =+即可得到答案;(3)把10y =代入(2)中关系式得218810x -=求得21x =,再整体代入即可得到答案.【详解】(1)解:()43222932932A x x x x x x =¸=----,,()23316936B x x x x =+-=+-;(2)由y B A -=,得到222932936188y A B x x x x x =+=--++-=-;(3)把10y =代入(2)中关系式得218810x -=,解得21x =.原式()2514110165361625=´+´--=+-=.【点睛】此题考查了整式的乘法和除法,代数式的求值,熟练掌握多项式除以单项式法则、单项式乘以多项式法则、整体代入是解题的关键.15.(2023下·辽宁沈阳·七年级统考期末)甲、乙两个长方形,其边长如图所示(0m >),其面积分别为1S ,2S .(1)用含m 的代数式表示:1S =______,2S =______;(结果化为最简形式)(2)用“<”、“>”或“=”填空:1S ______2S ;(3)若一个正方形的周长等于甲、乙两个长方形的周长之和,设该正方形的面积为3S ,试探究:3S 与()122S S +的差是否为定值?若为定值,请求出该值;如果不是,请说明理由.【答案】(1)265m m ++,268m m ++;(2)<(3)是,10【分析】(1)利用长方形的面积公式进行求解即可;(2)利用求差法可比较两个式子大小;(3)先求出正方形的边长,得到大正方形面积,再结合(1)列出相应的式子,进行运算即可.【详解】(1)解:()()215165S m m m m =++=++;()()224268S m m m m =++=++;(2)∵2212(65)(68)30S S m m m m -=++-++=-<,∴12S S <故答案为:<;(3)解:大正方形的边长为:2(1524)426m m m m m +++++++¸=+,大正方形面积为:223(26)42436S m m m =+=++,()222122 2(6568)42426S S m m m m m m +=+++++=++,()223122(42436)(42426)10S S S m m m m -+=++-++=.答:3S 与()122S S +的差为定值,值为10.【点睛】本题考查了多项式乘多项式,整式的加减,长方形和正方形的面积,熟练掌握运算法则是解题的关键.16.(2023下·黑龙江哈尔滨·六年级统考期末)阅读材料:我们知道,()424213x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则()()()()()()424213a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222265a b a b a b ---+-;(2)已知222x y -=-,求261215x y --的值;(3)已知21a b -=-,25b c -=,10c d -=-,求()()()22a c b d b c -+---的值.【答案】(1)()2a b -(2)27-(3)6-【分析】(1)把()2a b -提出了进行计算即可得;(2)()22612156215x y x y --=--,把222x y -=-代入进行计算即可得;(3)()()()()()()2222a c b d b c a b b c c d -+---=-+-+-,把21a b -=-,25b c -=,10c d -=-代入进行计算即可得.【详解】(1)解:()()()()()()22222265265a b a b a b a b a b ---+-=-+-=-.(2)解:()22612156215x y x y --=--,把222x y -=-代入得,原式()621527=´--=-.(3)解:()()()()()()222222a c b d b c a c b d b c a b b c c d -+---=-+--+=-+-+-把21a b -=-,25b c -=,10c d -=-代入得,原式()15106=-++-=-.【点睛】本题考查了多项式的变形和整体代入的思想,解题的关键是理解题意,掌握这些知识点.。
《幂的运算》练习题及答案
《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。
本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。
一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。
通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。
总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
初中数学幂的运算专题讲解及典型题练习(含答案)
初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
人教版八年级数学上册《幂的运算》专项练习题-附含答案
人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。
八年级上册数学幂的运算计算题
八年级上册数学幂的运算计算题在八年级数学课程中,幂的运算是一个重要的知识点。
幂的运算涉及到指数、底数的运算,也包括了幂的乘法、除法、幂的零次和一次运算等内容。
通过解决一些实际问题和计算题,可以更好地掌握和理解幂的运算方法,从而提高数学运算的水平。
1. 幂的乘法计算题1)计算:\[4^3 \times 4^2\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[4^3 \times 4^2 = 4^{3+2} = 4^5 = 1024\]2)计算:\[5^4 \times 5^6\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[5^4 \times 5^6 = 5^{4+6} = 5^{10}\]3)计算:\[(3^2)^3\]解析:根据幂的乘法法则,\((a^m)^n = a^{m \times n}\),所以\[(3^2)^3 = 3^{2 \times 3} = 3^6 = 729\]2. 幂的除法计算题1)计算:\[\frac{3^5}{3^2}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27\]2)计算:\[\frac{5^7}{5^4}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{5^7}{5^4} = 5^{7-4} = 5^3 = 125\]3)计算:\[\frac{(2^3)^5}{2^4}\]解析:根据幂的除法法则,\(\frac{(a^m)^n}{a^n} = a^{m \times n - n}\) ,所以\[\frac{(2^3)^5}{2^4} = 2^{3 \times 5 - 4} = 2^{15-4} = 2^{11}\]3. 幂的零次和一次计算题1)计算:\(5^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\(5^0 = 1\)2)计算:\(2^1\)解析:根据幂的一次法则,任何数的一次幂都是它本身,所以\(2^1 = 2\)3)计算:\((7^2)^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\((7^2)^0 = 1\)4. 理解幂的运算的重要性幂的运算在数学中有着非常重要的地位,它不仅在简单的计算题中有所体现,更在代数式的简化、方程的求解等更为复杂的数学问题中发挥着重要作用。
初二幂的运算经典练习题
初二幂的运算经典练习题幂运算是数学中一个非常常见且重要的概念,掌握幂运算的运算规则对于解题和应用数学知识都有很大的帮助。
本文将为大家带来一些初二幂的经典练习题,通过解答这些题目,帮助同学们巩固幂运算的相关知识。
1. 计算以下各式的值:(1) 2²(2) 5⁴(3) 9³(4) 0⁵(5) (-3)³解析:(1) 2² = 2 × 2 = 4(2) 5⁴ = 5 × 5 × 5 × 5 = 625(3) 9³ = 9 × 9 × 9 = 729(4) 0⁵ = 0(5) (-3)³ = (-3) × (-3) × (-3) = -272. 简化以下各式:(1) 3² × 3⁴(2) 4⁵ ÷ 4³(3) 2³ × 2⁷(4) (-5)⁴ × (-5)²解析:(1) 3² × 3⁴ = 3^(2+4) = 3⁶ = 3 × 3 × 3 × 3 × 3 × 3 = 729(2) 4⁵ ÷ 4³ = 4^(5-3) = 4² = 4 × 4 = 16(3) 2³ × 2⁷ = 2^(3+7) = 2¹⁰ = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1024(4) (-5)⁴ × (-5)² = (-5)^(4+2) = (-5)⁶ = (-5) × (-5) × (-5) × (-5) × (-5) ×(-5) = 156253. 计算以下各式的值:(1) 7⁸ ÷ 7²(2) (6²)³(3) (-2)⁴(4) 1³ × 1⁰解析:(1) 7⁸ ÷ 7² = 7^(8-2) = 7⁶ = 7 × 7 × 7 × 7 × 7 × 7 = 117649(2) (6²)³ = 6^(2×3) = 6⁶ = 6 × 6 × 6 × 6 × 6 × 6 = 46656(3) (-2)⁴ = (-2) × (-2) × (-2) × (-2) = 16(4) 1³ × 1⁰ = 1^(3+0) = 1³ = 1 × 1 × 1 = 14. 计算以下各式的值并简化结果:(1) (5 × 5)²(2) (2 × 9)³(3) (8 ÷ 4)⁵解析:(1) (5 × 5)² = 5² × 5² = 5⁴ = 5 × 5 × 5 × 5 = 625(2) (2 × 9)³ = 2³ × 9³ = 8 × 729 = 5832(3) (8 ÷ 4)⁵ = 2⁵ = 2 × 2 × 2 × 2 × 2 = 32通过以上的练习题,我们可以看到幂运算的计算过程相对简单,但是需要注意运算规则的灵活应用。
人教版八年级上册数学 幂的运算 同步练习
人教版八年级上册数学幂的运算同步练习知识点复习过关1.同底数幂相乘,底数指数:(m,n 都是正数)2.幂的乘方,底数,指数:(m,n 都是正数)3.积的乘方,等于把积的每一个因式分别,再把所得的幂:为正整数)n (底数可以是一个数或字母,也可以是一个单项式或多项式。
4.常用结论:⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n a −b n =a −b n n 为偶数−(a −b)n (n 为奇数)知识点分类练习知识点一同底数幂相乘1.计算:821010⨯=-x²×(-x)³=(a −b)2m ∙a −b 3=()()23x x -⋅-=−x ∙x 3=21n n n a a a a ++⋅⋅⋅=−∙−3=20093·2010(3)-=(a +b)2∙b +a 3=2.若已知3a =9,3b =27,则3a+b =.3.3,2==n m a a ,则n m a +=.4.计算:()()2322x y y x -⋅-.5.计算:(﹣x)3•x 2n﹣1+x 2n •(﹣x)2.6.若x m ·x 2=x 7,且y m ·y n =y 8,求m 和n 的值.7.已知:a 2·a 6=28,则a=知识点二幂的乘方1.计算:x m 2=(-a 4)3=(a 3)4=−x m 2∙x 3=a n+12=−a −b 34=[(a 2)3]4=[(-a)4]3=2.已知a x =2,a y =3.求:a 3x =a x+y =a 3x+2y =a 2x+y=3.若25m =,26n =,求22m n +的值.知识点三积的乘方1.计算_____)(3=xy 23)102(⨯=_________32)2(mn -=________3m +n 23=−x 3y 25=−2m +n 32=2.如果1211632-++=⨯x x x ,那么x 的值为.3.若()a a a m 239=,则m=.4.()a b b a b n m 3915=,则m=;n=.5.已知2×8n ×16n =222,求n 的值.6.已知2x+5y-4=0,求4x •32y 的值.。
初二数学幂的乘法练习题
初二数学幂的乘法练习题1. 概述在初二数学中,幂的乘法是一个重要的概念和技能。
本文将提供一些幂的乘法练习题,帮助学生巩固和提高他们在这方面的能力。
通过解答这些问题,学生将能够理解幂的乘法规则,并能够运用这些规则解决实际问题。
2. 简化幂的乘法(1) 计算: $2^3 \times 2^4$(2) 计算: $5^2 \times 5^3$(3) 计算: $(6^2)^3$3. 合并幂的乘法(1) 计算: $2^3 \times 2^5 \times 2^2$(2) 计算: $3^4 \times 3^2 \times 3^7$4. 幂的乘法的应用(1) 一个房间里有5排座位,每排有8个座位。
每个座位上都有一个苹果。
求房间里苹果的总数。
(2) 一辆公交车每天行驶5个小时,每小时行驶60公里。
求该公交车每天行驶的总里程。
5. 大数幂的乘法(1) 计算: $10^{10} \times 10^6$(2) 计算: $2^{12} \times 2^{15}$(3) 计算: $(7^3)^4$6. 幂的乘法与除法结合运用(1) 计算: $9^4 \div 9^2$(2) 计算: $5^3 \times 5^{-2}$(3) 计算: $2^7 \times 2^{-5} \div 2^2$7. 应用题(1) 一个正方形花坛边长为4米,每一边上铺了一层沙土,沙土的厚度为20厘米。
求铺上沙土的总体积。
(2) 高尔夫球运动员在练习场每天击打400个高尔夫球,每个球飞行的平均距离为300米。
求该运动员每天击打高尔夫球的总距离。
8. 总结通过解答这些幂的乘法练习题,学生不仅能够掌握幂的乘法的基本技能,而且能够将其运用于实际问题。
在日常生活和学习中,幂的乘法都有着广泛的应用。
因此,熟练掌握幂的乘法对于学生的数学学习和日常生活都具有重要意义。
通过不断练习和巩固,学生将能够更好地理解和运用幂的乘法规则。
初中数学幂的运算专题讲解及典型题练习(含答案)
n n a a a a a ⋅⋅⋅=个,“a 的n 次幂”或读作乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算一个数可以看作是这个数本身的一次方,例如.有理数幂的符号法则1120082007222222222⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=个个利用乘法交换律和结合律,把2007个2与12结合在一起相乘,利用互为倒数即可求出数2008)20072008122=⨯() 1111()m b ab =习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:20105(⨯-【解析】20105⨯553333(3⋅⋅⋅=⨯个34444444(4⋅⋅⋅=⨯个3355555(55⋅⋅⋅=⨯个256243125>>,55335>.解法二: 1.001>又10.019.998⨯∴9.99810【方法总结】11⨯=1.0011010.012.计算:20102010201020104(0.25)(1)1-+-+= .【答案】原式=201020102010201014()(1)111114-+-+=-++=. 3.若21(2)0a b ++-=,则20102009()a b a ++= .【答案】由题意知1020a b +=⎧⎨-=⎩ 得12a b =-⎧⎨=⎩,代入原式可求结果为:0.4.如果214,,2x y ==那么222x y -的值为 . 【答案】222112243122x y -=⨯-=. 5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下12米,第二次后剩下21142⎛⎫= ⎪⎝⎭米,第三次后剩下312⎛⎫ ⎪⎝⎭米,由此推下去,第n 次后剩下12n ⎛⎫ ⎪⎝⎭米.所以六次后剩下的木条为611264⎛⎫= ⎪⎝⎭(米). 6.计算:(1)321()(1)33-÷-; (2)232(3)-⨯-; (3)32221(0.2)(1).3(0.3)-⨯÷- 【答案】(1)29;(2)108;(3)0.002-. 7.(1)451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯. (2)()1452515213⨯-÷+-. (3)()3432322⎪⎭⎫ ⎝⎛-⨯-÷-. (4)()()()3428102-⨯---÷+-. (5)()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---. (6)()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-. 【答案】(1)225- (2)347- (3)11116 (4)20- (5)1114 (6)7224- 8.利用乘方的有关知识确定20076的末两位数字.【答案】9.已知“三角”表示运算“a b c -+”,“正方形”表示的运算是“d f g e -+-” ,试计算的值.【答案】原式=()()()199649551996281474116-+⨯-+-=-⨯=-.。
八年级数学幂的运算测试题
幂的运算一、选择题1.下列各式运算正确的是 ( )A .2a 2+3a 2=5a 4B .(2ab 2)2=4a 2b 4C 2a 6÷a 3=2a 2D .(a 2)3=a 52.若a m =2,a n =3,则a m +n 的值为 ( )A .5B .6C .8D .93.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是 ( )A .a 7B .a 8C .a 6D .a 34.下列计算正确的是 ( )A B .C .D .5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2;④(-a )6÷(-a )3=-a 3.其中,正确的有 ( )A .4个B .3个C .2个D .1个6.下列运算正确的是( )A .xy y x 532=+B .36329)3(y x y x -=-C .442232)21(4y x xy y x -=-⋅ D .333)(y x y x -=- 7.下列等式中正确的个数是( )①5510a a a += ②6310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=A .0个B .1个C .2个D .3个8、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c -n 2 D.n c 29.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -10.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -11.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)12.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 13.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b + C .2332223236a b a b a b -++D .232236a b a b -+二、填空题 1.计算:(-x 2) 4=____________. ()22433xy x y ⎛⎫-- ⎪⎝⎭=___________. 2 .(a +b )2·(b +a )3=________; (2m -n )3·(n -2m )2=________. 3 .(________)2=a 4b 2; ________×2n -1=22n +3 4 .若2m ·2·8=211,则m =________ 若2m+1=10,2n+2=12,则2m+n =________ 5 )83(4322yz x xy -⋅ =________. )312)(73(3323c b a b a -=________. 6 .如果一个三角形的底边长为2x 2y-y 2,高为6xy ,则这个三角形的面积是________• 7 单项式5x m y n 和-8xy m+1的积等于-40x 3y 4则m= n=三.用简便方法计算:(1)221(2)44⨯ (2)1212(0.25)4-⨯(3)、0.125 2004×(-8)2005 (4)、20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(5)、()5.1)32(2000⨯1999()19991-⨯ (6)、)1(1699711111-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛11四.先化简,再求值22(69)(815)2(3)x x x x x x x x -----+-,其中16x =-。
初二数学幂的乘方练习题目
初二数学幂的乘方练习题目2. 按指数进行计算的乘方练习题乘方是数学中常见的运算方法,通过使用指数的方式进行表示和计算。
对于初二数学学习者来说,掌握乘方运算是非常重要的。
本文将提供一些初二数学幂的乘方练习题目,通过这些题目,你可以巩固和提高自己在乘方运算方面的能力。
1. 计算下列乘方:(1) 3² = ?(2) 4⁴ = ?(3) 5⁰ = ?(4) 2³ × 2² = ?(5) (6²)² = ?2. 计算下列乘方并转化为正常形式:(1) 2⁵ = ?(2) 10⁻² = ?(3) (2³)⁻¹ = ?(4) (25⁻¹)² = ?3. 计算下列乘方的结果,结果保留一位小数:(1) 3.6² = ?(2) 8.2⁴ = ?(3) 0.5⁰ = ?(4) 1.5³ × 1.5² = ?(5) (4.1²)² = ?4. 在乘方的运算中,计算顺序是从左到右。
现在,计算下列乘方的结果:(1) 3²⁺¹ = ?(2) 4³⁻² × 4² = ?(3) 5⁰ + 3² × 2² = ?5. 计算下列乘方的结果:(1) (3 + 2)² = ?(2) (4 - 1)⁴ = ?(3) (5 × 2)² = ?(4) (3⁴)⁻² = ?6. 计算下列乘方,并进行数轴上的对比(将结果标在数轴上):(1) 2³和2⁻³(2) 4²和4⁻²(3) 1和1⁻⁵这些题目涵盖了初二数学乘方运算的基础知识和常见应用。
通过练习这些题目,你可以提高自己的计算能力和运用能力,并更好地理解乘方运算的概念和应用。
八年级上册数学幂的运算知识点和典型习题分类汇总附答案
第9讲 幂的运算❖ 基本知识(熟记,会推导,会倒过来写,要提问.) 1、运算顺序,乘方开方,再乘除,最后加减。
nm nma a a +=⋅2、同底数幂相乘【推导】:【推导】n m nmaa a -=÷3、同底数幂相除:【推导】4、0的任何非0次幂等于0)0( 00≠=n n, 5、0的0次幂没有意义6、任何不等于0的数的0次幂都等于1)0( 10≠=a a , n naa 1=-7、负指数:,其实就是取倒数!【物理上用!】 mnn m a a =)(8、幂的乘方:【推导】mm m b a ab =)(9、积的乘方:【推导】n n nb a b a =⎪⎭⎫⎝⎛10、商的乘方:【推导】❖ 基本计算训练 【同底数幂相乘】 1、计算下列各题 52x x ⋅(1)6a a ⋅(2)34)2()2()2(-⨯-⨯-(3)13+⋅m m x x (4)2、计算下列各题 b b ⋅5(1)32212121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)62-⋅a a (3)12+⋅n ny y (4)参考答案1、(17x );(27a );(3)256;(414+m x )2、(15b );(2641);(34-a );(413+n y )【同底数幂相除】 1、计算下列各题 28x x ÷(1)25)()(ab ab ÷(2)64xx (3)32-nn (4)2、计算下列各题 57-÷x x (1)88m m ÷(2)710)()(a a -÷-(3)35)()(xy xy ÷(4)3、计算下列各题431010-(1)32--yy (2)64nn (3)641010-(4)参考答案1、(16x );(233b a );(32-x);(35n )2、(112x );(2)1;(33a -);(422y x )3、(1710);(2y );(32-n );(41010-)【幂的乘方】 1、计算下列各题53)10((1)44)(a (2)2)(m a (3)34)(x -(4)2、计算下列各题33)10((1)23)(x (2)5)(m x -(3)532)(a a ⋅(4)参考答案1、(11510);(216a );(3ma2);(412x -) 2、(1910);(26x );(3mx 5-);(411a )【积的乘方】 1、计算下列各题 3)2(a (1)3)5(b -(2)22)(xy (3)43)2(x -(4)2、计算下列各题 4)(ab (1)321⎪⎭⎫ ⎝⎛-xy (2)32)103(⨯-(3)32)2(ab (4)参考答案1、(138a );(23125b -);(342y x );(41216x ) 2、(144b a );(23381y x -);(37107.2⨯-);(4)638b a【幂的运算综合】1、判断下面计算的对错,并把错误的改正过来。
35道精编计算题一次性学会八年级数学《整式乘法幂的运算》
幂的运算是数学中的基本概念,表示一个数多次相乘的运算。
幂由底数(base)和指数(exponent)组成,表示为a^b,其中a是底数,b是指数。
幂的性质有:1.相同底数幂的乘法:a^m*a^n=a^(m+n)。
即相同底数的幂相乘,底数不变,指数相加。
2.幂的乘方:(a^m)^n=a^(m*n)。
即一个数的指数幂再乘以指数,等于底数不变,指数相乘。
3.幂的除法:a^m/a^n=a^(m-n)。
即相同底数的幂相除,底数不变,指数相减。
接下来我们将用整式乘法运用这些幂的性质来解决一些计算题。
1.计算:(x^2+2x-1)*(x+3)。
首先将第一个整式展开,得到:x^3+2x^2-x。
将1中得到的展开式与x+3相乘,得到:(x^3+2x^2-x)*(x+3)=x^4+3x^3+2x^3+6x^2-x^2-3x=x^4+5x^3+5x^2-3x。
2.计算:(2a^3-3a+4)*(a^2+5)。
首先将第一个整式展开,得到:2a^5-3a^3+4a^2将2中得到的展开式与a^2+5相乘,得到:(2a^5-3a^3+4a^2)*(a^2+5)=2a^7+10a^5-3a^5-15a^3+4a^4+20a^2=2a^7+7a^5+4a^4-15a^3+20a^23. 计算:(4x^2 - 7xy + 3y^2) * (2x + y)。
首先将第一个整式展开,得到:8x^3 -14x^2y + 6xy^2将3中得到的展开式与2x + y相乘,得到:(8x^3 -14x^2y + 6xy^2) * (2x + y) = 16x^4 + 8x^3y - 28x^3y - 14x^2y^2 + 12x^2y^2 +6xy^3 = 16x^4 - 20x^3y - 2x^2y^2 + 6xy^34. 计算:(3m^2n - 5mn^3 - 2m) * (4mn - n^2 + 1)。
首先将第一个整式展开,得到:12m^3n - 20m^2n^3 - 8mn - 15mn^3 + 10m^2n - 10mn + 4m^2 - 5n^2m + 2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算测试
一、选择题(30分)
1.下列各式运算正确的是( )
A .2a 2+3a 2=5a 4
B .(2ab 2)2=4a 2b 4
C .2a 6÷a 3=2a 2
D .(a 2)3=a 5
2.若a m =2,a n =3,则a m +n 的值为 ( )
A .5
B .6
C .8
D .9
3.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是( )
A .a 7
B .a 8
C .a 6
D .a 3
4.计算25m ÷5m 的结果为 ( )
A .5
B .20
C .20m
D .5m
5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2
; ④(-a )6÷(-a )3=-a 3.其中,正确的有 ( )
A .4个
B .3个
C .2个
D .1个
6.下列运算正确的是( )
A .xy y x 532=+
B .36329)3(y x y x -=-
C .442232)21(4y x xy y x -=-⋅
D .333)(y x y x -=- 7.下列等式中正确的个数是( )
①5510a a a += ②6310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=
A .0个
B .1个
C .2个
D .3个
8.计算(a-b)n ·(b-a)n-1等于( )
A.(a-b)2n-1
B.(b-a)2n-1
C.+(a-b)2n-1
D.非以上答案
9.下列各式中计算错误的是( )
A .3422(231)462x x x x x x -+-=+-
B .
232(1)b b b b b b -+=-+ C .x x x +-=-22)22(x 21- D .342232(31)232
3x x x x x x -+=-+ 10.如图14-2是L 形钢条截面,它的面积为( )
A .ac+bc
B .ac+(b-c)c
C .(a-c)c+(b-c)c
D .a+b+2c+(a-c)+(b-c)
二、填空题(24分)
11.计算:()22433xy x y ⎛⎫-- ⎪⎝⎭
=___________. 12.(a +b )2·(b +a )3=________;(2m -n )3·(n -2m )2=________.
13.(________)2=a 4b 2;________×2n -1=22n +3
14.若2m ·2n ·8=211,则m =________.
15.已知9n+1﹣32n =72,则n=________
16.若a =9
99999
,b =990119,则a ________b . 17.若2m+1=10,2n+2=12,则2m+n =________
18.已知n 是大于1的自然数,则()
c -1-n ()1+-•n c 等于________ 三、解答题(66分)
19.(12分)计算:
(1)(-a 3)2·(-a 2)3; (2)-t 3·(-t )4·(-t )5;
(3)(p -q )4÷(q -p )3.(p -q )2; (4)(-3a )3-(-a )·(-3a )2
20.(8分)先化简,再求值:
①a 3·(-b 3)2+(-12ab 2)3,其中a =14,b =4。
②22(69)(815)2(3)x x x x x x x x -----+-,其中
16x =-。
21.(5分)如果a 2+a=0(a≠0),求a 2005+a 2004+12的值.
22. (5分)已知x 3=m ,x 5=n ,用含有m 、n 的代数式表示x 14.
23.(5分)已知整数a 、b 、c 满足2089431516a b c
⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,求a 、b 、c 的值.
24.(8分)(1)已知a 2m =16,a n =8,你能否求出代数式(a 3n -2m -33)2011的值?若能,请求出该
值;若不能,请说明理由.
(2)2m+1=10,2n+2=12,求2m+n
25.(8分)观察下面的计算过程,并回答问题.
56×5-3 =56×3
15=56÷53=56-3=53=56+(-3),
74÷7-2=74÷2
17=74×72=74+2=76=74-(-2). (1)上面两式的计算是否正确?
(2)根据上面的运算过程,你对于a m ·a n =a m +n (m 、n 均为正整数),a m ÷a n =a m -n (m 、n 均为
正整数,且m >n ,a ≠0)有没有什么新的认识?
(3)试用你得到的新认识来计算:①3-3×3-2;②87÷84.
26.(6分)我们知道:12<21,23<32.
(1)请你用不等号填空:34________ 43,45________54,56________65,67________76
,…
(2)猜想:当n>2时,n n+1_________(n+1)n ;
(3)应用上述猜想填空:20082009_________20092008.
27.(9分)阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,…,我们 发现,这列数从第二项起,每一项与它前一项的比值都是2,我们把这样的一列数叫做等比数 列,这个共同的比值叫做等比数列的公比。
(1)等比数列5,-15,45,…,的第4项是__________;
(2)如果一列数a 1,a 2,a 3,…,是等比数列,且公比是q ,那么据上述规定有21a q a =, 32a q a =,43
a q a =,所以a 2=a 1q ,a 3=a 2q=a 1q ·q=a 1q 2,a 4=a 3q=a 1q 2·q=a 1q 3,则a n =__________ (用a 1与q 的代数式表示)
(3)一个等比数列的第二项是10,第3项是20,求它的第一项和第四项。
Unit1 1. 任何人anyone
2. 在任何地方anywhere
3. 精彩的;绝妙的wonderful
4.很少;不多few
5.相当多;不少quite a few
6.最多;大多数的most
7.某事;某物something
8.没有什么;没有一件东西nothing
9.每人;人人everyone
10.当然of course
11.我自己;我本人myself
12.你自己;您自己yourself
13.母鸡hen
14.猪pig
15.似乎;好像seem
16.烦闷的;厌倦的bored
17.某人someone
18.日记;记事簿diary
19.有乐趣的;令人愉快的enjoyable
20.活动activity
21.决定;选定decide
22.尝试;设法;努力try
23.滑翔伞运动paragliding
24.给……的感觉,感受到 feel like
25.鸟bird
26.自行车bicycle
27建筑物building
28.商人trader
29.想知道;琢磨wonder
30.差异;差别difference
31.顶部;表面top
32.等侯;等待wait
33.伞;雨伞umbrella
34.湿的;下雨的wet
35.因为because of
36.在...下面;到...下面below
37.足够的;足够地;充分地enough
38.饥饿的hungry
39.如同;像...一样as
40.小山;山丘hill
41.鸭duck
42.不喜欢(的事物);厌恶(的事物) dislike
43.中央公园Central Park
44.黄果树瀑布Huangguoshu Waterfall
45.香港HongKong
46.马来西亚Malaysia
47.马来西亚人Malaysian
48.乔治市Georgetown
49.海墘街Weld
50.槟城山Penang
51.天安门广场Tian’anmenSquare
52.故宫博物the Palace
Unit2
53.家务劳动housework
54.几乎不;几乎没有hardly
55.曾经;在任何时候ever
56.几乎从不hardly ever
57.一次;曾经once
58.两倍;两次twice
59.因特网Internet
60.节目program
61.满的;充满的full
62.摇摆;秋千swing
63.摇摆舞swing dance
64.或许;大概;可能maybe
65.最小的;最少的least
66.至少at least
67.无用的东西junk。