配位聚合物的应用及其研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位聚合物在光电磁材料中的应用

姓名:吴娜学号:10207010

摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合成与应用方面的广阔前景作了展望。

关键词:配位聚合物;多功能材料;非线性光学;材料化学

引言:

配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。

材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2)分子化;(3)巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。

1 配位聚合物在光学材料中的应用

配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面[8]。

1.1光致发光和电致发光材料

当外界光照射到某些物质的时候,这些物质会发射出各种波长和不同强度的可见光,而当外界光停止照射时,这种发射光也随之消失,我们称这种发光现象叫光致发光( PL);当

物质在一定的电场下,被相应的电能所激发也能产生发光现象,我们称之为电致发光(EL)。发光的原因是由于分子吸收了某一特定波长的光而达到激发态,激发态是不稳定的中间态,当它通过辐射跃迁回到基态时,能量以分子荧光或磷光的形式释放,这时分子就表现出发光的性质。

.发光材料是有机电致发光器件中的核心部分,现代合成技术的发展已经使染料的发光范围可以通过分子的剪裁精细调节。经过20多年的深入研究,已经设计合成出系列的红色(R)、绿色(G)和蓝色(B)发光材料,一些性能优良的材料已经用于制备单色发光器件如八羟基喹啉铝(Alq3)等。某些有机化合物本身就有发光性质,但有些没有,通过与金属离子配位以后,有些原来不发光的有机化合物转变为能发光的配合物;有些原来发光很弱的有机化合物变成了强发光的金属有机配合物。这说明了金属离子通过了某种方式提高了有机配体的发光效率。这类有机化合物绝大多数是芳香族化合物,金属离子多为非过渡金属离子,如8 -羟基喹啉可以与许多二价、三价、四价金属离子生成配合物,羟基蒽酮染料和偶氮染料与Al3+、Be2+、Ga3+、Sc3+、In3+、Th4+、Zr4+和Zn2+等离子都能形成发光配合物。锌的有机配合物是有机薄膜电致发光(有机EL)器件中的重要材料,如Zn-甲亚胺配合物都具有较高的熔点,因而有助于EL器件的耐热性和提高器件的稳定性[9]。它的其它配合物如Zn(BTZ)2 (图1)显示了很强的荧光,并且可通过真空蒸镀形成非常好的无结晶薄膜,亮度很高,接近为白色发光。这是一种新型的RGB(Red-Green-Blue)发光材料[10]。对于有机EL器件应用于全色显示和背照明是极其有意义的,还有锌的羟基黄酮类配合物,它们也可以用作电致发光材料[11]。

.

图1. Zn(BTZ)2的结构

图2. TTA的结构

红色发光金属配合物中,主要有稀土铕配合物、金属卟啉配合物和金属钌配合物等。最早报道用于有机电致发光器件的稀土铕配合物是三价铕离子与三氟乙酰噻吩丙酮(TTA) (结构见图2)的二元配合物Eu(TTA)3。Kido等将Eu配合物作为客体发光材料掺杂到主体材料中,形成主客体结构[12]。在最佳条件下得到器件的起亮电压为6 V,最大亮度达到460 cd·m-2(16V)。这是目前Eu配合物EL材料中发光亮度最高的器件。

1.2 非线性光学材料

当光和物质相互作用时,会产生吸收、反射、散射和发光等和光的强度发生变化的效应其入射的频率(或能量)则没有变化。而在激光这类高强度的电磁场和物质相互作用时会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。能够起这种作用的物质我们称之为非线性光学材料。如二阶非线性光学材料,是指它能和入射的基频为ω的光波相互作用后产生频率为2ω的倍频光波. 随着科学高速发展而进入信息技术时代,非线性光学材料研究在现代激光技术、光学通讯、光子计算和动态成像等高新技术中都有广泛应用。第一篇报道金属有机化合物的非线性光学(NLO)性质的文章发表于1986年[13],从那以后,金属有机非线性光学材料的研究逐步展开,不断深入。总的发展过程是:由随机测试发展到有意识地进行分子设计;由测试粉末倍频效应发展到测试(或计算)分子二阶非线性系数β;由二阶非线性光学效应扩展到三阶效应;由借用有机非线性光学材料的分子设计理论逐步发展到总结金属有机化合物自身的结构与性能的关系。近年来,Marder等合成了一系列带二茂铁基团的吡啶季铵盐(如图3),其中当X-为碘阴离子时,化合物的粉末倍频效应为尿素的220倍[8],这是迄今为止金属有机化合物中粉末倍频效应最强的化合物。

图3. 二茂铁吡啶季铵盐

通过改变过渡金属的氧化状态(d电子数目)、几何构型及它们的顺磁反磁性可以改进这类化合物的非线性光学特性。目前已经对一系列有机金属分子的NLO系数和不同金属离子、配体成键方式和共轭性间的关系进行了研究。其中金属羰基化合物如:Cr (η6-C6H5X)(CO)3(X = H,OMe,NH2,COOMe),其中芳基作为给体通过d-π*反馈键而作为基态受体[14];金属茂烯类:一系列铁和钌的二茂铁作为给体,以共轭键联结不同受体的配合物呈现很高的β值[15];它们在UV和可见光区具有两个强吸收带。由EHMO计算表明能量最低的跃迁是MLCT带。而最高的能量的跃迁是具有一定金属成分的配体的π→π*

相关文档
最新文档