第五章典型环节

合集下载

典型环节与开环系统的频率特性

典型环节与开环系统的频率特性

第五章 线性系统的频域分析法
6.一阶微分环节和二阶微分环节
dr (t ) G s =Ts +1 c(t ) T r (t ) dt
C(s) G s = T 2 s 2 + 2 Ts 1 R(s)
2 d r (t ) dr (t ) 2 c(t ) T 2 T r (t ) 2 dt dt
传函典型环节表达式
第五章 线性系统的频域分析法
二 典型环节极坐标(Nyquist)图的绘制
1.放大环节(比例环节)
传递函数:G(s) K 频率特性: G( j) [G(s)]s j K Ke j 0 K j0
A( ) K ( ) 0
Im
放大环节的极坐标图是复 平面实轴上的一个点,它 到原点的距离为K。
第五章 线性系统的频域分析法
G(j0) 1 0
1 1 G j 45 2 T
G(j) 0 -90
不难看出,随着频率 ω=0→∞ 变化,惯性环节的幅值 逐步衰减,最终趋于 0 。相位的绝对值越来越大,但 最终不会大于90°,其极坐标图为一个半圆。
Im

s
实际微分环节实现电路
第五章 线性系统的频域分析法
4.积分环节
1 1 G s = c t r t dt Ti s Ti 特点:输入消失后输出仍具有记忆功能。
dt
0
t
实例:电动机角速度与角度间的关系,物体行驶距离 与物体速度间的关系,模拟计算机中的积分器等。
特点:含一个储能元件,对突变的输入不能立即跟 随,输出无振荡。
0.63
第五章 线性系统的频域分析法
3.微分(超前)环节

自动控制原理第五章

自动控制原理第五章

KT j 1 2T 2
0 : U(0) K
V (0) 0
1: T
:
U(1) K T2
U() 0
V(1) K T2
V() 0


K

0.707K
V(ω)
K/2 K


U(ω)
-K/2

10
3 由零、极点分布图绘制
1)在[s]上标出开环零极点;
G( j ) K K / T 1 jT j 1 / T
低频段 1
T
L( ) 20lg A( ) 20lg () arctgT 0
10
高频段
1
T
20lg A() 20lgT ( ) arctgT 900
转折频率 1
T
20lg A( ) 20lg 2 3.01 0db
( ) arctgT 450
15
20 0 -20 -40 -60 90 45 0 -45 -90
3) 振荡环节
1
G(s) (s / n )2 2 (s / n ) 1
n
1 T
0
4) 一阶微分 G(s) Ts 1 (T>0)
0 1
5) 二阶微分 G(s) (s / n )2 2 (s / n ) 1 (n 0, 0 1)
6) 纯滞后环节 G(s) e s
19
5-3-2 最小相位典型环节的频率特性
0.01
0.1
T
10
T




0.1
1/T1
10
T 0.1 () arctg0.1 5.70
T 1 ( ) arctg10 84.30

控制系统的典型环节

控制系统的典型环节

登录注册主页关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们您当前的位置:主页> 控制理论教学> 控制理论教程> 第二章> 2.3习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题第一章自动控制的基本概念第二章控制系统的数学描述第三章控制系统的时域分析第四章控制系统的频域分析第五章过程控制2.3 控制系统的典型环节2.3 控制系统的典型环节自动控制系统是由不同功能的元件构成的。

从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。

在对控制系统进行分析研究时,我们更强调系统的动态特性。

具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。

所以,环节是按动态特性对控制系统各部分进行分类的。

应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。

这些环节成为典型环节或基本环节。

经典控制理论中,常见的典型环节有以下六种。

2.3.1 比例环节比例环节是最常见、最简单的一种环节。

比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系(2.24)比例环节的传递函数为(2.25)式中K为放大系数或增益。

杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。

例10 图2.10 是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻,为反馈电阻。

我们现在求取这个电路的传递函数。

解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是(2.26)按传递函数的定义,可以得到(2.27)式中,可见这是一个比例环节。

如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。

阶跃信号是这样一种函数(2.28)式中为常量。

当时,称阶跃信号为单位阶跃信号。

阶跃输入下比例环节的输出如图2.11 所示。

比例环节将原信号放大了K倍。

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

北航机电控制工程基础(自动控制原理)第五章2-典型环节频率特性

北航机电控制工程基础(自动控制原理)第五章2-典型环节频率特性

北京航空航天大学
二、积分环节 Integral links 1、伯德图
机电控制工程基础
K G (s) s
Fundamentals of Mechatronic Control Engineering
K G ( j ) j
K A( )
K ( ) 0 arctan j 0 2
幅值
机电控制工程基础
袁松梅教授 Tel:82339630
下半个圆对应于正频率部分,而上 半个圆对应于负频率部分。
Email:yuansm@
北京航空航天大学
四、振荡环节Oscillation link 2、伯德图 讨论 0
机电控制工程基础
1 时的情况。当K=1时,频率特性为:
K Kn G( s ) 2 2 2 T s 2Ts 1 s 2 n s n 2
G( s) K , G( j ) K
相频特性: ( )
1、伯德图
幅频特性:A( ) K ;
0

L( ) / dB
20log K 20log K 20log K
K 1
对数幅频特性:
K 1 lg
0 K 1
( )
180
0 L( ) 20 lg K 0 0
1.0 -45 100 -89.4
1 1 当 0时, (0) 0;当 时, ( ) ;当 时, () 。 T T 4 2
当时间常数T 变化时,对数幅频特性和对数相频特性的形状都不变,仅仅是根据转折 频率1/T 的大小整条曲线向左或向右平移即可。而当增益改变时,相频特性不变,幅 频特性上下平移。
K P ( ) 1 T 2 2 KT Q ( ) 1 T 2 2 Q ( ) T P( )

自动控制原理第五章

自动控制原理第五章

•表5-1 RC网络的幅频特性和相频特性数据

A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196

0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图

第五章 频率法

第五章 频率法

2
2 G ( j ) arctan 2 2 1
二阶微分的极坐标图
二阶微分的Bode标图
7.时滞环节(延迟环节)
G( s) e
r (t )
s
s
G( j ) e
j
r(t)
y (t )
t
0 y(t) t 0
e
时滞环节极坐标图
| G( j ) || e j | 1


8.非最小相位环节
1 G( s) Ts 1 1 G( j ) jT 1
பைடு நூலகம்
1 一个正实数极点 T
| G ( j ) |
1
2T 2 1
G ( j ) 180 arctan T
U( )=
1 T 1
2 2
T V( )= 2 2 T 1
-0.5
非最小相位环节Bode图
1 G( s) s 1
相角裕度
G( j ) H ( j )与单位圆相交的角频率计为c 剪切频率
| G( jc ) H ( jc ) | 1
Im
-1
0
1 Re
0
c
G( jc ) H ( jc ) 180
G( j ) H ( j )
2T 1 180 arctan 2 2 , 1 2T 2 0 T 1 T
低频与高频渐进对数幅频特性
低频段 1 T , T 1
20 lg (1 2T 2 ) 2 (2T ) 2 20 lg1 0dB 0dB的水平线
高频段 1 T , T 1
G( j ) H ( j )
1 幅值裕度 K g | G ( j g ) H ( j g ) |

自动控制原理(胡寿松版)完整第五章ppt课件

自动控制原理(胡寿松版)完整第五章ppt课件

-20
φ (ω )
ω=0.1 L(ω )=20lg0.1=-20dB 90
对数相频特性:φ (ω )=90o 0 0.1
1
10ω
第二节 典型环节与系统的频率特性
4).惯性环节
G(s)=Ts1+1
G(ωj
)=

1 T+1
(1) 奈氏图
A(ω
)=
1 1+(ω T)2
φ (ω )= -tg-ω1 T
取特可殊以点证:绘明ω制:=0奈氏图近似方I法m : AA图心半A点(ω(ω(是 , 圆ω,))=以 以 。惯=)0然=根ωω0(1性.171==/后据0/环2∞27为T将幅1节φ,jφo半φ它频的(ω)(ω径为(ω奈们特))=的圆)=氏平-性=09-o0滑4和o5连o相ω接频起∞特来0性-。求45ω=出T1特殊ω1=0Re
5)二阶微分环节 s 2 /n 2 2s /n 1(n 0 ,0 1 )
6)积分环节 1 / s
7)微分环节 s
第二节 典型环节与系统的频率特性
(2)非最小相位系统环节
1)比例环节 K (K0)
2)惯性环节 1/( T s1 ) (T0) 3)一阶微分环节 Ts1 (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
第一节 频率特性
系统输入输出曲线 定义频率特性为:
r(t) c(t)
r(t)=Asinωt
G(ωj )
=|G(jω)|e j G(jω) =A(ω )e φj (ω )
A 0
幅频特性: t A(ω )=|G(jω)|
G(jω)
A G(jω )
相频特性: φ (ω )= G(jω)

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )

1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

第五章线性系统的频率分析法

第五章线性系统的频率分析法
5.1 频率特性
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解

自动控制原理 第五章 第一讲 典型环节和开环频率特性

自动控制原理 第五章 第一讲 典型环节和开环频率特性

对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 尼柯尔斯曲线): 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
5.2 典型环节和开环频率特性
• 典型环节 • 典型环节的频率特性 • 最小相角系统和非最小相角系统
L(ω ) = −20 lg 1 + ω 2T 2
ω<<1/T, L(ω)≈-20lg1=0 ω>>1/T, L(ω)≈-20lgωT =-20(lgω-lg1/T)
(dB) 20 0 0.1 1/T -20 (o) 90 0 0.1 -90 1 10 ω 1 20dB/dec 10 ω -20dB/dec
幅频特性相同, 幅频特性相同,但相频特性符号相反 。 •最小相角系统的幅频特性和相频特性一一对应,只要根据其对 最小相角系统的幅频特性和相频特性一一对应, 数幅频曲线就能写出系统的传递函数 。 L(dB)
L(dB) 20 10 -20 ω L(dB) -20 100 50 -40 ω -40 -20 ω 2 ω1 ωc ω -40
典型环节
•比例环节:G(s)= K 比例环节: ( ) •惯性环节: G(s)= 1/(Ts+1),式中T>0 惯性环节: ( ) ,式中 •一阶微分环节: G(s)= (Ts+1),式中 一阶微分环节: ( ) ,式中T>0 •积分环节: G(s)= 1/s 积分环节: ( ) 微分环节: ( ) •微分环节: G(s)= s •振荡环节: G(s)= 1/[(s/ωn)2+2ζs/ωn+1]; 振荡环节: ( ) 式中ω , 式中 n>0,0<ζ<1 二阶微分环节: ( ) •二阶微分环节: G(s)= (s/ωn)2+2ζs/ωn+1; 式中ω , 式中 n>0,0<ζ<1

自动控制原理 第五章(第二次课)

自动控制原理 第五章(第二次课)
K G ( jω ) = j ω (T1ω j + 1)( T 2ω j + 1)
Im
Re
0
ω
1型系统 0+
中国矿业大学信电学院 常俊林
autocumt@
10
5-4 系统开环频率特性的绘制
自动控制原理
K 例题2: 的幅相曲线。 例题 :绘制 G(S) = 的幅相曲线 (T1S +1)(T2S +1)
G ( jω ) = K (τ 1 j ω + 1)( τ 2 j ω + 1) L (τ m j ω + 1) ( j ω ) (T1 j ω + 1)( T 2 j ω + 1) L (T n −ν j ω + 1)
ν
自动控制原理
n>m
ν=1,I型系统 = , 型系统 起点: 起点 ω → 0+
5-4 系统开环频率特性的绘制
自动控制原理
− K (T1 + T2 )ω − K (1 − T1 T2 ω 2 ) + G ( jω ) = j 2 2 2 2 2 2 2 2 ω (T1 ω + 1)(T2 ω + 1) ω (T1 ω + 1)(T2 ω + 1)
求与实轴交点: 求与实轴交点:
5-2 典型环节的频率特性 8 不稳定惯性环节
1 , 传递函数 G ( S ) = TS − 1 (T > 0 )
自动控制原理
1 1 = e j −(π − arctgTω ) 频率特性 G ( jω ) = Tωj − 1 T 2ω 2 + 1
ω =0
ω =∞
A(0) = 1; ϕ (0) = −180o A(∞) = 0; ϕ (∞) = −90o

自动控制原理第五章PPT课件

自动控制原理第五章PPT课件

s (1 0 .1 s)
s1 0 .1 s
比例环节
一阶微分环节
积分环节
惯性环节
.
23
非最小相位环节 :开环零点、极点位于S平面右 半部分
➢ 比例环节:-K
➢ 惯性环节:1/(-Ts+1),式中. T>0
24
最小相位系统与非最小相位系统
除比例环节外,非最小相位环节和与之对应的最小相位环节的区别在于开环零极点的 位置,非最小相位环节对应于s右半平面开环零点或极点,而最小相位环节对应于s左半 平面开环零点或极点。
• 对于不稳定系统则不可以通过试验方法来确定,因 为输出响应稳态分量中含有由系统传递函数的不稳
定极点产生的发散或震荡分量。
.
8
线性定常系统的传递函数为零初始条件下,输出与输入的拉氏变换之比
其反变换为
G(s)= C(s) R(s)
g(t) 1 jG(s)estds
2 j j 式中位于G(s)的收敛域。若系统稳定,则可取零,如果r(t)的傅氏变换 存在,可令s=j,则有
d () 是 关 于 的 奇 函 数 。
.
5
.
6
因而
1
G (j) c b 2 2 ( () ) d a 2 2 ( () ) 2 ,
G (j) a r c ta n b ()c () a ()d () a ()c () d ()b ()
G ( j )c a (( )) jjd b ( ( ) )G (j )ej G (j)
Tddut0u0ui
TRC
uo t
取拉氏变换并带入初始条件uo0
1
1 A
U o ( s ) T s 1 [ U i( s ) T u o 0 ] T s 1 [ s 2 2 T u o 0 ]

5-2(1) 典型环节的频率特性

5-2(1) 典型环节的频率特性
∵ 幅频特性
A( )
1
2 2 2 2 (1 2 ) 4 2 n n
相频特性
n ( ) arctg 2 1 2 n
2
其中,对于相频特性
2 n 当: n 时, ( ) arctg 2 1 2 n
当: n 时, ( ) 180 arctg
L(ω )
j
ω =∞ ω ωn 0
20 0 φ(ω ) 1 ω =0 180° 0 (b)
[40] ωn ω
ω
( a)
二阶微分环节的频率特性曲线图
8. 延迟环节 (教材P204)
传递函数 G(s)
频率特性
G( j) e j A() e j ( )
e
s
(1) 幅相曲线: (教材P204图5-25) 幅频特性 A(ω)= 1 相频特性 φ(ω) = -ωτ(rad)= - 57.3ωτ (°) (2) 对数频率特性曲线(Bode图): 1) 对数幅频特性 L(ω)=20lgA(ω)= 0 2) 对数相频特性:φ(ω) = -ωτ(rad)=-57.3ωτ(°)
ω →0
0
(a) 微分环节的幅相曲线
(2) 对数频率特性曲线(Bode图):
∵ 对数幅频特性 L(ω)=20lg∣G(jω)∣ = 20lgω 对数相频特性 φ(ω) = 90° ∴ 微分环节的Bode图如图(b)所示。
L(ω)
20
0
20dB/dec 1 10
φ( ω ) 90° 0
ω
ω
(b) 微分环节的Bode图
r n 1 2 2
1 M r A(r ) 2 1 2 2 0 2
显然
对于不同的系统阻尼,振荡环节的谐振峰值Mr,谐振频率ωr不同, 参见教材P195-196分析。

机械控制理论基础(第五章 系统的频率特性)

机械控制理论基础(第五章 系统的频率特性)

Imaginary Axis
Phase (deg)
-45 -90 -135 -180 -2 10
-1 0 1 2
-2
-1
0 Real Axis
1
2
3
10
10 Frequency (rad/sec)
10
10
第五章 系统的频率特性 §5-2 典型环节的频率特性图
7.
二阶微分环节
传递函数: G( s) T 2 s 2 + 2Ts + 1 频率特性:
频率特性的求取:已知系统传递函数G(s),令
s=jw代入,即得
第五章 系统的频率特性 §5-1频率特性
例:已知系统传递函数G(s) = K/(Ts+1),求系统
的频率特性及对正弦输入Asinwt的稳态响应
解:系统的频率特性G(jw) = K/(jTw+1)
当r(t) = Asinwt时
Bode Diagram 0 -5
Magnitude (dB)
-10 -15 -20 -25 -30 0
渐近线 转角频率
渐近线
Phase (deg)
-45
-90 -1 10
10 10 Frequency (rad/sec)
0
1
10
2
第五章 系统的频率特性 §5-2 典型环节的频率特性图
3.
一阶微分环节
在初步设计和分析中,能满足要求; ③ 可以利用样板方便地画出准确的对数幅频特性和对 数相频特性曲线; ④ 从试验得出的对数频率特性曲线能够简便地确定系 统(元件)的传递函数; ⑤ 可以在很宽的频率范围内研究系统。
第五章 系统的频率特性 §5-2 典型环节的频率特性图

自动控制原理第五章--频率法

自动控制原理第五章--频率法
G(s) s G(s) 1 Ts
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac

典型环节的频率特性

典型环节的频率特性

第五章频率域方法典型环节的频率特性用频率法研究控制系统的稳定性和动态响应,是根据系统的开环频率特性进行的,而控制系统的开环频率特性通常是由若干个典型环节的频率特性组成的,如直流电机的传递函数为()(1)mm K G s s T s =+可以将该传递函数分解为三个典型环节的乘积,分别是mK 放大环节:1s积分环节:11m T s +惯性环节:掌握好典型环节的频率特性,就能方便地得出系统的开环频率特性。

一、比例环节(放大环节)幅频特性()A Kω=相频特性()0ϕω︒=对数幅频特性()20lg L Kω=Kj()G s K =幅相特性曲线(K>0)(Nyquist 曲线)对数频率特性曲线(K>1)(Bode 图)典型环节的频率特性20lg K/dBL ϕω2π−ω(j )G Kω=AAKϕ2π−ϕω幅频、相频特性曲线(K>0)二、积分环节1()G s s =幅频特性1()A ωω=相频特性()2πϕω=−j2π−ω=ω∞幅相特性曲线(Nyquist 曲线)1()20lg20lg L ωωω==−对数幅频特性对数幅频特性曲线是斜率为-20分贝/十倍频程的直线,该直线在弧度/秒处与零分贝线相交。

1ω=1(j )j G ωω=AAϕ2π−ϕω幅频、相频特性曲线/(rad/s)ω对数频率特性曲线(Bode 图)20dB/dec−/dBL o /()ϕ三、惯性环节(一阶系统)1()1G s Ts =+幅频特性21()()1A T ωω=+相频特性()arctan T ϕωω=−幅相频特性曲线(Nyquist 曲线)j=1/Tω=ω∞=0ωω1-45︒1(j )1+j G T ωω=Aϕ90︒−ϕω145︒−1TA幅频、相频特性曲线对数频率特性曲线(Bode 图)T ω/dBL o /()ϕ2()20lg ()1L T ωω=−+对数幅频相频特性()arctan T ϕωω=−3(dB)L =−45ϕ︒=−当频率时1T ω=2()20lg ()1L T ωω=−+对数幅频()20lg 20lg 20lg L T Tωωω≈−=−−转折频率:1=Tω当频率时1T ω<()20lg10 (dB)L ω≈=当频率时1T ω>惯性环节(一阶系统)1()1G s Ts =+1(j )1+j G T ωω=对数频率特性曲线(Bode 图)T ω 20dB/dec−对数幅频渐近特性曲线3(dB)−dBL /o /()ϕ四、振荡环节(二阶系统)222()2nn nG s s s ωζωω=++2221()[1()][2()]n n A ωωωζωω=−+22()()arctan 1()n n ζωωϕωωω⎛⎫=− ⎪−⎝⎭/nωωA=0ζ=0.2ζ=0.5ζ=0.7ζ=1ζ/nωωo /()ϕ(0) 1 ()1(2) ()0n A A A ωζ==∞=()0d A d ωω=212m nωωζ=−令,得20<<2ζ⎛⎫ ⎪ ⎪⎝⎭(0)0 ()2 ()=n ϕϕωπϕπ==−∞−21()21m m A A ωζζ==−幅频、相频特性曲线(0, 0)n ζω≥>当时,,当时无峰值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K 100时, L 40dB
L( ) 20 lg A 20 lg K

20lg K
注意: 1、两张图. 2、横坐标对齐.
2018/8/15
第五章 频率法
36
2.积分环节频率特性
1)传递函数 2)频率特性
X c ( s) 1 W ( s) X r ( s) s
与幅频特性相同。
表示相位移 的均匀 分度,单位:弧度或度。


(rad/s)
900
2018/8/15
第五章 频率法
30
注意:
对数幅频特性和对数相频特性(两张图)
和起来称为对数频率特性,又称为Bode
图。
2018/8/15
第五章 频率法
31
3. 对数幅相特性(尼氏图)
将对数幅频特性和对数相频特性绘在一个平


熟练掌握系统稳定裕量的物理含义和计算方法;
建立开环频率特性和系统性能指标之间的对应关系, 能够定性地分析系统的性能;
第五章 频率法 6
2018/8/15
5.1 频率特性的基本概念
1. 频率特性
给稳定的线性系统输入一个正弦信号,系统的稳态
输出也是一个与输入信号同频率的正弦信号,其幅值
和相位随输入信号频率的变化而变化。 输出
W ( j)U I
1/ R 传递函数: W ( s ) 1 Ts
I (s) W (s)U (s)
W ( j ) W ( s )
2018/8/15
s j
第五章 频率法
12
X c ( j ) 频率特性: W ( j ) A( )e j ( ) X r ( j )
φ(ω)为复数频率特性的辐角或相位,即相频特性。
2018/8/15 第五章 频率法 23
当 : 0 变化时,矢量W j 终端所描绘的曲线称为 该环节的幅相频率特性 或奈氏图。
2018/8/15 第五章 频率法 24
2. 对数频率特性( Bode图)
在半对数坐标中,表示频率特性的对数幅值 20lgA(ω)与对数频率lgω,相角()与对数频率 lgω之间关系的曲线图称为对数频率特性或Bode图。
第5章
频率法
频域分析法: 用频率响应(特性)来分析系统的方法。 Frequency Domain Response Analysis
二〇一五年十一月
2018/8/15 第五章 频率法 1
时域分析法——解析分析法
1)以单位阶跃响应为基础的分析方法。具有直观、明确 的物理意义。 2)对于高阶或较为复杂的系统难以求解和定量分析。 3)是一种基于数学模型(传递函数)的分析方法。 4)参数的全局特征不明显。在某一参数连续变化对系统
2018/8/15
第五章 频率法
8
例5.1 R-L串联回路
正弦输入 u U sin t
同频输出 i I sin t
U e jt U
Z R j L
U I R j L U R 2 ( L) 2 e j ( t )
arctan
• 用频率法分析控制系统的稳定性
• 系统暂态特性和开环频率特性的关系 • 闭环系统频率特性 • 系统暂态特性和闭环频率特性的关系
2018/8/15 第五章 频率法 5
学习重点

了解频率特性的基本概念,掌握不同的表示方法; 了解典型环节的频率特性; 熟练掌握波德图和奈氏图的绘制方法; 理解和掌握奈氏稳定判据,会用奈氏判据判断系统 的稳定性;
一般不考虑0.434这个系数,而只用相角位移本身。 通常将对数特性绘在以10为底的对数坐标中,则
dB ( ) ( ) 或 rad
L( ) 20 lg A( )
例如 A( )=1,
对数幅频特性
对数相频特性
则L 0dB
A( )=10, 则L 20dB A( )=100,则L 40dB
j1
Wk j WW 1 2 Wn A 1A 2 A n1 2 n
L L1 Ln ,
2018/8/15
1 n
第五章 频率法 29
对数相频特性:
横坐标:
纵坐标:
( )
180 0 900 0.1 1 10 100
A() W ( j)
X c ( s) 传递函数: W (s) X r ( s)
( ) W ( j )
频率特性与传递函数之间的关系:
W ( j ) W ( s )
2018/8/15
s j
第五章 频率法 16
微分方程
时域 复数域 频域
线性定常系统的数学模型
传递函数 频率特性 微分 方程
物理意义: 给出了不同频率下电路传递正弦信号的能力。
A( ) 1/ R 1 (T )
2
, T L/ R
arctan T
幅频特性
arctan
2018/8/15
L
R
相频特性
第五章 频率法 10
(1)频率特性定义
线性系统(或环节)在正弦输入下,稳 态时,输出量与输入量之比叫做系统(或环节) 的频率特性。
输出的复数形式 频率特性= 输入的复数形式
X c ( j ) W ( j ) A( )e j X r ( j )
幅频特性与相 频特性总和为 频率特性
2018/8/15
第五章 频率法
11
(2)频率特性与传递函数的关系
1 1/ R 频率特性: W ( j ) R j L 1 T j
面上,以对数幅值作纵坐标(单位为分贝)、以 相位移作横坐标(单位为度)、以频率为参变量。 这种图称为对数幅—相频率特性,也称为尼柯尔 斯图或尼氏图。
2018/8/15
第五章 频率法
32
5.3 典型环节的频率特性
• 1. 比例环节
• 2.
• 3.
惯性环节
积分环节
• 4.
• 5.
微分环节
振荡环节
• 6.
• 7.
2018/8/15
时滞环节
最小相位环节
第五章 频率法 33
1. 比例环节频率特性
1)传递函数
X c (s) W (s) K X r (s)
s = jω
2)频率特性 3)幅相频率特性
W ( j ) W ( s )
s j
K
直角坐标:W ( j ) P( ) jQ( ) K j 0 极坐标: W ( j ) W ( j ) e j ( ) A ( ) K A K, ( ) 0
第五章 频率法
20
5.2 频率特性的几何表示方法
常用的表示方法:
1. 幅相频率特性(奈氏图) 2. 对数频率特性(Bode图)
[极坐标或直角坐标]
[对数坐标] [对数坐标]
3. 对数幅相特性(尼氏图)
2018/8/15
第五章 频率法
21
1. 幅相频率特性(奈氏图)
在极坐标系或直角坐标系中,以频率ω为参变量, 绘制W(jω)的幅频特性A(ω)和相频特性ϕ(ω)之间关系 的曲线。
decade )
第五章 频率法
28
为什么要采用对数坐标?
(1)在研究频率范围很宽的频率特性时,可缩小比例 尺,在一张图上表示出低、中、高频段的特性, 便于分析。
(2)大大简化频率特性的绘制。因为系统往往是由多 个环节串联构成的,设频率特性为:
W1 j A1 e Wn j An e jn
影响的分析无能为力。
5)系统的性能不满足技术要求时,无法方便地确定应如 何调整系统的参数来获得预期结果。 6)对工程中普遍存在的高频噪声干扰的研究无能为力。
2018/8/15 第五章 频率法 2
根轨迹法——图解分析法
根轨迹法是一种快速、简洁而实用的图解分 析法。由开环的零极点来研究闭环极点(闭环系统) 的方法。它根据图形的变化趋势即可得到系统性能 随某一参数变化的全部信息,从而可以获得应如何
2018/8/15 第五章 频率法 18
设系统结构如图,由劳斯判据知系统稳定。

40
2018/8/15
第五章 频率法
19
(4)频率特性的求取
a、根据传递函数求取 用s=j代入系统的传递函数,即可得到。
即: W ( j ) W ( s)
s j
b、通过实验的方法直接测得
2018/8/15
2018/8/15 第五章 频率法 25
半对数坐标:一个轴是分度均匀的普通坐标轴,另一个轴是
分度不均匀的对数坐标轴。该图中的纵坐标轴(y轴)是对数 坐标。在此轴上,某点与原点的实际距离为该点对应数的对
数值,但是在该点标出的值是真数。
2018/8/15
第五章 频率法
26
lg W ( j ) lg A() j0.434 ()
两张图。
W ( j ) P 2 ( ) Q 2 ( ) e j ( ) A( )e j ( )
对上式两边取对数,得:
以10为底取对数
lg W ( j ) lg[ A( )e j ( ) ] lg A() j () lg e lg A( ) j 0.434 ( )
调整系统的参数来获得预期结果。它弥补了时域分
析法中某一参数变化时特征不明显的不足。特别适 用于高阶系统的分析求解。 在数学模型问题、高频噪声问题等方面仍然存 在不足。
2018/8/15 第五章 频率法 3
频域分析法
基于频率特性和频率响应对系统进行分析的方 法。图解分析和设计的方法。
相关文档
最新文档