如何理解电容器的静电容量
电容基本知识
产品说明贴片电容产品规格说明及选用基本知识电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上分主要有:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容(即贴片电容或MLCC)、电解电容、钽电容等。
我们将贴片电容选用时需要注意的事项和一些基本知识拿出来一起与大家探讨.如何理解电容介质击穿强度介质强度表征的是介质材料承受高强度电场作用而不被电击穿的能力,通常用伏特/密尔(V/mil)或伏特/厘米(V/cm)表示。
当外电场强度达到某一临界值时,材料晶体点阵中的电子克服电荷恢复力的束缚并出现场致电子发射,产生出足夠多的自由电子相互碰撞导致雪崩效应,进而导致突发击穿电流击穿介质,使其失效。
除此之外,介质失效还有另一种模式,高压负荷下产生的热量会使介质材料的电阻率降低到某一程度,如果在这个程度上延续足夠长的时间,将会在介质最薄弱的部位上产生漏电流。
这种模式与温度密切相关,介质强度隨温度提高而下降。
任何绝缘体的本征介质强度都会因为材料微结构中物理缺陷的存在而出现下降,而且和绝缘电阻一样,介质强度也与几何尺寸密切相关。
由于材料体积增大会导致缺陷隨机出現的概率增大,因此介质强度反比于介质层厚度。
类似地,介质强度反比于片式电容器內部电极层数和其物理尺寸。
基於以上考虑,进行片式电容器留边量设计时需要确保在使用过程中和在进行耐压测试(一般为其工作电压的2.5倍)時,不发生击穿失效。
如何理解绝缘电阻IR绝缘电阻表征的是介质材料在直流偏压梯度下抵抗漏电流的能力。
绝缘体的原子结构中没有在外电场强度作用下能自由移动的电子。
对于陶瓷介质,其电子被离子键和共价键牢牢束缚住,理论上几乎可以定义该材料的电阻率为无穷大。
但是实际上绝缘体的电阻率是有限,并非无穷大,这是因为材料原子晶体结构中存在的杂质和缺陷会导致电荷载流子的出现。
电容器的射频电流与功率这篇文章主要是讨论多层陶瓷电容器的加载电流、功率损耗、工作电压和最大额定电压之间的关系。
电解电容重要的参数
电解电容重要的参数标称参数就是电容器外壳上所列出的数值,静电容量,用UF表示。
工作电压简称WV,应为标称安全值,也就是会说应用电路中,不得超过此标称的电压。
温度,常见的大多为85度、105度。
高温条件下,要优选105度标称的。
一般情况下优选高温度系数的对于改善其参数性能也有积极的帮助。
新晨阳电子散逸因数有时DF值也用损失角tan表示。
DF值是高还是低,与温度,容量,电压,频率都有关系;当容量相同时,耐压愈高的DF值就愈低。
频率愈高DF值愈高,温度愈高DF值也愈高。
DF值一般不标注在电容器上或规格介绍上面。
在DIY选其电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理。
尽管使用50V 的从承受电压正常工作方面并无不妥,但从DF值方面考虑就欠缺一些。
使用63V或71V耐压的会有跟好的表现。
当然再高了性价比上就不合算了。
新晨阳电子有限公司等效串联电阻ESRESR的高低,与电容器的容量、电压频率及温度都有关,ESR要求越低越好。
当额定电压固定时,容量愈大ESR愈低。
当容量固定时,选用高额定电压的品种可以降低ESR。
低频时ESR高,高频时ESR低,高温也会使ESR上升。
漏电流漏电流其实也就是漏电。
铝电解电容都存在漏电的情况,这是物理结构决定的。
不用说,漏电流当然是越小越好。
电容器容量愈高,漏电流就愈大,降低工作电压可降低;漏电流。
反过来选用更高耐压的品种也会有助于减小漏电流。
结合上面的两个参数,我们可以知道相同条件下优先选取高耐压的品种的确是一个简单可行的好方法;降低内阻,降低漏电流,降低损失角,增加寿命。
涟波电流Irac涟波电流对于石机的滤波电路来说,是一个很重要的参数。
涟波电流Irac是愈高愈好。
他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小。
传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以换高频的更好的延伸和减小粗糙感。
电容简介
JENSEN 铜泊纸管油浸电
Jensen纸管电容除拥有铜箔电容的全部优点外,背景更显得宁静一些,声音的细致程度更好和颗粒更细,中高频更为飘逸,声音密度高的同时更具形体感。那种流动的音乐非常迷人。
JENSEN 铜泊瓷管油浸电容
瓷管电容的高频段有接近于银箔电容的声音表现,高频是细腻通透、传神和有着优秀的延伸度,且高频段的声音厚度很令人惊讶。音色上也一如银箔电容般透出一种亮丽的贵气。中频段瓷管电容又有点像铜管电容,声音中充满着活力,令人跟着音乐拍子去跳动的声音魅力真是太迷人了。低频段又像纸管电容般有充足的量感、下潜力及弹跳力。瓷管电容 就像集合了银箔电容 、铜箔电容、纸管电容优点于一身一般。
2010-02-09 09:01回复
AFK玩家 xoqiu
288位粉丝
核心会员7
6楼
薄膜两
关于油浸电容
Sprague在六十年代推出的维他命Q(Vitamin Q ) 油浸电容,已经成为传奇的零件,DIY族莫不以加上几颗Vitamin Q来自我炫耀一番。的确,加上Vitamin Q之后的直热式三极胆机,有种难以形容的华丽音色与松软质感,非常好听。过去人们并不像现在一样认为油浸电容是好东西,有时不会在外面注明它是油浸的,现在则刻意标示paper capacitance或paper in oil来强调其价值。以前的油浸电容多采用多氯联苯等材料,这些材料是有剧毒的,多年前在台湾曾发生过严重的“可乐儿”事件,就是它惹的祸。孕妇因多氯联苯中毒,使婴儿透过胎盘受到多氯联苯影响,以致胎儿出生时皮肤深棕色素沈著,全身粘膜黑色素沈著,发育较慢,很像一瓶可口可乐,故以“可乐儿”称之。多氯联苯是人工合脂肪几乎完全无法自体内排出,对免疫系统、肝脏、荷尔蒙分泌造成重大影响,患者因慢性肝病死亡及皮肤发生氯疮持续排脓、生殖器官也会糜烂生疮,而多氯联苯的一个“多氯夫喃”结构与世纪之毒:“载奥辛”相似,有然后是丹麦 JENSEN 电容 我们叫它“战神”
如何理解电容器的静电容量
如何理解电容器的静电容量A.电容量电容器的基本特性是能够储存电荷(Q),而Q值与电容量(C)和外加电压(V)成正比。
Q =CV因此充电电流被定义为:= d Q/dt= CdV/dt 当外加在电容器上的电压为1伏特,充电电流为1安培,充电时间为1秒时,我们将电容量定义为1法拉。
C = Q/V = 库仑/伏特= 法拉由于法拉是一个很大的测量单位,在实际使用中很难达到,因此通常采用的是法拉的分数,即:皮法(pF) = 10-12F纳法(nF)= 10-9F微法(mF)= 10-6FB.电容量影响因素对于任何给定的电压,单层电容器的电容量正比于器件的几何尺寸和介电常数: C= KA/f(t)K =介电常数A =电极面积t =介质层厚度f = 换算因子在英制单位体系中,f = 4.452,尺寸A和t的单位用英寸,电容量用皮法表示。
单层电容器为例,电极面积1.0×1.0″,介质层厚度0.56″,介电常数2500,C = 2500(1.0)(1.0)/4.452(0.56)= 10027pF如果采用公制体系,换算因子f =11.31,尺寸单位改为cm,C= 2500(2.54)(2.54)/11.31(0.1422)= 10028pF正如前面讨论的电容量与几何尺寸关系,增大电极面积和减小介质层厚度均可获得更大的电容量。
然而,对于单层电容器来说,无休止地增大电极面积或减小介质层厚度是不切实际的。
因此,平行列阵迭片电容器的概念被提出,用以制造具有更大比体积电容的完整器件。
这种“多层”结构中,由于多层电极的平行排列以及在相对电极间的介质层非常薄,电极面积A得以大大增加,因此电容量C会随着因子N(介质层数)的增加和介质层厚度t’的减小而增大。
铝电解电容规格参数
铝电解电容规格参数
铝电解电容的规格参数主要包括静电容量、工作电压、温度、等效串联电阻(ESR)
等。
1.静电容量:这是电容器能够储存的电荷量,单位通常为微法(uF)。
静电容量的大
小决定了电容器的储能能力。
2.工作电压:电容器在工作时所能承受的最大电压,也称为额定电压。
如果电容器在
工作时电压超过这个值,可能会导致电容器损坏。
3.温度:电容器的工作温度范围,以及在此范围内的性能变化。
常见的铝电解电容温
度大多为85℃、105℃。
在高温条件下(例如纯甲类功放),应优选105℃标称的电容。
4.等效串联电阻(ESR):电容器内部的电阻,会影响电容器的充放电性能。
ESR越
低,电容器的性能越好。
ESR与电容器的容量、电压、频率及温度都有关。
当额定电压固定时,容量愈大ESR愈低。
当容量固定时,选用高额定电压的品种可以降低ESR。
此外,铝电解电容的外形结构尺寸也是重要的规格参数,包括高度、直径、端子直径等,这些参数对于电容器的安装和使用都有影响。
总的来说,铝电解电容的规格参数是选择和使用电容器时需要考虑的重要因素,应根据具体的应用需求和电路条件来选择合适的电容器。
电容参数详解
电容参数详解电容器作为电路元件的一种,具有很广泛的应用。
为了更好地理解电容器的工作原理和性能,在本文中将对电容器的参数进行详细解析。
1. 静电容量静电容量是电容器最基本的参数,简称“电容”。
它是指在单位电势差作用下,电容器所能存储的电荷量。
单位为法拉(F),常用标号的电容值为微法(μF)、皮法(pF)和纳法(nF)等。
静电容量的大小取决于电容器的内部结构和形状、电介质材料的性质、电极的大小和形状等因素。
常见的电容器有电解电容器、钽电容器、陶瓷电容器和聚酯电容器等。
2. 工作电压工作电压是电容器能够承受的最大电压值,也是选用电容器时需要特别关注的参数。
如果工作电压超过了电容器的额定值,就会导致电容器烧坏。
一般情况下,电容器的工作电压比电路中所需的电压要高一些,以便保证电容器的安全和可靠运行。
3. 耐久性电容器的耐久性是指其使用寿命,也就是电容器使用一段时间后退化的程度。
一般来说,电容器的寿命与其内部结构和材料有关。
在长期使用中,电容器的电介质可能发生老化、漏电等情况,导致电容值变化,甚至失去功能。
特别需要注意的是,电解电容器在高温环境下使用寿命较短,应尽量避免长时间在高温环境下使用。
4. 最大漏电流最大漏电流是指电容器在工作时漏电的最大电流值。
一般来说,电容器的漏电流越小越好,因为漏电会导致电容值的变化,甚至完全失去存储电荷的作用。
在选用电容器时,需要特别注意其漏电流值,以确保其符合所需的工作要求。
总之,要合理选择电容器,需要充分了解以上几个参数的含义和影响。
同时,也需要根据实际需求灵活选用不同类型的电容器,以获得最佳的电路性能。
静电容量和电容
静电容量和电容静电容量和电容是电学中常用的两个概念,它们在电路设计和电子设备中发挥着重要的作用。
本文将从理论和应用两个方面对静电容量和电容进行介绍和解释。
一、静电容量静电容量是指导体存储电荷的能力。
当导体上带有电荷时,它会形成电场,而静电容量就是导体上存储的电荷量和电场强度之比。
静电容量的单位是法拉(F),它的大小取决于导体的几何形状和材料特性。
静电容量与导体的形状有关。
例如,当我们将两个平行金属板之间加上电荷时,它们之间就会形成一个电场。
这两个金属板就构成了一个电容器,其静电容量与金属板的面积成正比,与板间距离成反比。
这也是为什么电容器的结构常常采用平行金属板的原因。
静电容量与导体的材料特性有关。
导体材料的介电常数越大,静电容量也越大。
介电常数是一个表示物质在电场中相对响应程度的物理量。
常见的导体材料如金属,其介电常数接近于1;而绝缘体材料如电容器中的介质,其介电常数通常大于1,因此电容器能够存储更多的电荷。
二、电容电容是指电容器的电容量。
电容是一种被动元件,用于存储电荷和能量。
它由两个导体之间的绝缘介质隔开,可以阻止电荷的直接流动。
电容器由两个导体板和介质组成,当在电容器的两个板上施加电压时,电容器会存储电荷,并产生电场。
电容的大小取决于电容器的静电容量以及施加的电压。
电容的计算公式为C=Q/V,其中C表示电容,Q表示电荷量,V表示电压。
从公式中可以看出,电容与电荷量成正比,与电压成反比。
这也意味着,给定电压下,电容器存储的电荷量越大,电容越大。
电容在电路中有广泛的应用。
例如,电容器可以用作滤波器,通过选择合适的电容值可以滤除电路中的噪声信号。
电容器还可以用作电源电压的稳压器,通过存储电荷来平稳输出电流。
此外,电容器还可以用于存储能量,如蓄电池和超级电容器。
总结静电容量和电容是电学中重要的概念。
静电容量是指导体存储电荷的能力,与导体的形状和材料特性有关。
电容是指电容器的电容量,由两个导体之间的绝缘介质隔开,用于存储电荷和能量。
电容的基本知识概述
电容的全然知识从事电子电路设计开发的,既有有多年经验的老手,也有刚进道的新手。
每个人都对单片机、DSP、嵌进式系统投进了大量的时刻和精力往研究,然而关于电路设计中应用最多、最广泛的元器件--电容,又有多少人能搞的特别清楚呢?而这正是许多新手的迷惑之一,面对众多的电容类型:钽电解、铝电解、独石、薄膜、陶瓷、纸介质等,各种各样的封装形式:贴片、针式、方块、不规那么等,不同的应用领域:往耦、滤波、高频、低频、谐振、开关电源中的应用等,您是否能做出正确的选择呢?建议大伙儿多加补充,一方面相互学习,另一方面对新手也是一个关怀。
在下抛砖引玉,引用其它网站的一些文章,〔该网站名差不多记不得了,现对其表示感谢〕名称:聚酯〔涤纶〕电容〔CL〕符号:电容量:40p--4u额定电压:63--630V要紧特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路名称:聚苯乙烯电容〔CB〕符号:电容量:10p--1u额定电压:100V--30KV要紧特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路名称:聚丙烯电容〔CBB〕符号:电容量:1000p--10u额定电压:63--2000V要紧特点:性能与聚苯相似但体积小,稳定性略差应用:代替大局部聚苯或云母电容,用于要求较高的电路名称:云母电容〔CY〕符号:电容量:10p--0。
1u额定电压:100V--7kV要紧特点:高稳定性,高可靠性,温度系数小应用:高频振荡,脉冲等要求较高的电路名称:高频瓷介电容〔CC〕符号:电容量:1--6800p额定电压:63--500V要紧特点:高频损耗小,稳定性好应用:高频电路名称:低频瓷介电容〔CT〕符号:电容量:10p--4。
7u额定电压:50V--100V要紧特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路名称:玻璃釉电容〔CI〕符号:电容量:10p--0。
1u额定电压:63--400V要紧特点:稳定性较好,损耗小,耐高温〔200度〕应用:脉冲、耦合、旁路等电路名称:铝电解电容符号:电容量:0。
静电容量和电容
静电容量和电容一、引言静电容量和电容是电学中常用的概念,它们在电路设计和电磁学中起着重要的作用。
本文将从静电容量和电容的定义、计算公式、影响因素以及应用等方面进行详细介绍。
二、静电容量的定义和计算静电容量是指导体存储电荷的能力,通常用单位电压下导体所带电荷量来表示。
静电容量的计算公式为 C = Q / V,其中C表示静电容量,Q表示导体所带电荷量,V表示导体上的电压。
静电容量的单位为法拉(F)。
三、电容的定义和计算电容是指电路中存储电荷的能力,它由两个导体之间的绝缘介质隔开。
电容的计算公式为C = ε × A / d,其中C表示电容,ε表示介质的介电常数,A表示导体板之间的面积,d表示导体板之间的距离。
电容的单位也是法拉(F)。
四、静电容量和电容的关系静电容量和电容在概念上非常相似,都是用来描述导体存储电荷的能力。
然而,它们在计算公式和应用上有所不同。
静电容量主要用于描述导体自身的电荷存储能力,而电容则涉及到导体之间的绝缘介质。
在电路设计中,常常需要通过串联或并联的方式来改变电容的值,以满足特定的电路要求。
五、影响静电容量和电容的因素静电容量和电容的大小受多个因素影响。
首先,导体的形状和尺寸对静电容量和电容有直接影响。
导体的面积越大,静电容量和电容就越大。
导体之间的距离越小,静电容量和电容也越大。
其次,介质的介电常数对电容的大小起着重要作用。
介电常数越大,电容就越大。
此外,温度对电容的影响也需要考虑,一般情况下,温度升高会导致电容减小。
六、静电容量和电容的应用静电容量和电容在电路设计和电磁学中有广泛的应用。
在电路设计中,电容经常被用作滤波器、耦合器和延时器等元件。
在电磁学中,电容常被用于构建天线和电容传感器等装置。
此外,静电容量还被广泛应用于静电纺丝、静电喷涂和静电除尘等领域。
七、结论静电容量和电容是电学中重要的概念,它们用于描述导体存储电荷的能力。
静电容量主要用于描述导体自身的电荷存储能力,而电容则涉及到导体之间的绝缘介质。
电容电荷量
电容电荷量电容电荷量一直是物理领域中关于电学的重要概念,也是构建电路分析理论的基础。
电容电荷量指的是一个特定容量的电容器中所储存的电荷量,这一概念是1800年代晚期物理学家瓦尔特埃弗顿提出的,也是物理学中最基本的概念之一。
根据定义,电容电荷量的大小依赖于两个因素:电容器的容量和电压。
电容器的容量指的是该电容器能够储存的电荷量,电压代表的是电容器两端的势差,也就是电容器的内部的电势。
电容电荷量的大小可以通过一个叫做“容宁方程”的公式来计算:Q=CV,其中Q是电容电荷量,C是电容器的容量,V是电压。
电容电荷量可以用于解决许多电学问题,因为它是电路分析理论的基础。
在电路分析中,电容电荷量经常被用来作为一个参数,来解决电路的不同问题。
比如,电路的电流是由电容器的电容电荷量表示的,而电容器的电荷体积取决于电路中的电压,这可以通过容宁公式来表示。
此外,电容电荷量也可以用于求解电路中静电和电容的关系,以及电路中电容和电感的关系。
电容电荷量也可以被用来解决一些无电路设计可以解决的问题,比如模拟电路仿真。
在模拟电路仿真中,电容电荷量被用来模拟电路中的电容器,以及电容器的反应。
当一个复杂电路的分析变得困难时,电容电荷量的概念也可以用来模拟电路的行为。
电容电荷量也可以用于解决电动势的问题,特别是在直流电路中。
电动势的概念指的是电路中的电压差,而这种电压差可以通过电容器的电容电荷量来表达。
由于电容电荷量是一个表示电容器内电荷量的量,因此可以从电容器的容量和电压两个变量中计算出电动势。
此外,电容电荷量也可以用于描述电感中的磁化现象,因为电感中的电场可以通过电容电荷量来表示。
根据电容电荷量的定义,电感中的电场可以表达为:EL=V/L,其中EL是指磁感力,V是电压,L是电感的感抗。
从上面的讨论可以看出,电容电荷量是一个非常重要的概念,它是电路分析理论的基础,也是解决许多电学问题的重要工具。
电容电荷量可以帮助我们深入理解电路中电势和电场的关系,以及电路中电容和电感的关系。
静电容量值
静电容量值的概念、计算、影响因素和应用静电容量是一种表示电容器或带电体能够储存多少电荷的物理量,也称为电容或电气容量。
静电容量的单位是法拉(F),但通常使用其分数单位微法拉(μF)或皮法拉(pF)。
静电容量的大小取决于带电体的形状、大小、材料以及周围环境的影响。
本文将介绍静电容量的定义、计算方法、影响因素以及应用实例。
一、静电容量的定义静电容量是指在给定的电位差下,一个带电体或一个电容器所能储存的最大电荷量。
它可以用以下公式表示:C=QV其中,C是静电容量,Q是带电体或电容器上的总电荷量,V是带电体或电容器两端的电位差。
根据这个公式,我们可以看出,静电容量与带电体或电容器的结构和材料有关,而与所带的具体电荷量无关。
静电容量的单位是法拉(F),它是国际单位制(SI)中的基本单位之一。
法拉的定义是:当一个带有1库仑(C)的正负两极之间的电位差为1伏特(V)时,该两极间的静电容量为1法拉。
由于法拉这个单位过大,在实际应用中,通常使用其分数单位微法拉(μF)或皮法拉(pF)。
1微法拉等于1法拉的百万分之一,1皮法拉等于1法拉的万亿分之一。
二、静电容量的计算方法静电容量的计算方法取决于带电体或电容器的形状和结构。
下面介绍几种常见的情况。
2.1 球形导体如果一个半径为a米的球形导体上带有Q库仑的总电荷,那么它相对于无穷远处(可以看作接地)的表面电位为:V=Q 4πε0a其中,ε0是真空中的介电常数,约等于8.85×10−12 F/m。
根据静电容量的定义,我们可以得到球形导体的静电容量为:C=QV=4πε0a这个公式表明,球形导体的静电容量只与其半径成正比,而与其材料无关。
2.2 平行板电容器如果两块面积为S平方米、间距为d米、相对介电常数为εr的平行板分别带有+Q和−Q库仑的总电荷,那么它们之间存在一个匀强电场,其强度为:E=Q ε0εr S其中,εr是平行板间填充物料(绝缘体)的相对介电常数,它反映了该物料对于增加静电容量的能力。
静电容量的电压特性
静电容量的电压特性【导读】本文将对"静电容量的电压特性"进行说明。
其中包括电压特性、直流偏置特性以及交流电压特性,会对各种特性进行举例说明。
通过对这些特性的了解,可以在设计电路的过程中更得心应手。
电压特性电容器的实际静电容量值随着直流(DC)与交流(AC)电压而变化的现象叫做电压特性。
该变化幅度越小,说明电压特性越好,幅度越大,说明电压特性越差。
以消除电源线纹波等为目的在电子设备上使用电容器时,必须设想使用电压条件进行设计。
直流偏置特性直流偏置特性是指,对电容器施加直流电压时实际静电容量发生变化(减少)的现象。
这种现象是使用了钛酸钡系铁电体的高介电常数类片状多层陶瓷电容器特有的现象,导电性高分子的铝电解电容器(高分子AI)和导电性高分子钽电解电容器(高分子Ta)、薄膜电容器(Film)、氧化钛和使用了锆酸钙系顺电体的温度补偿用片状多层陶瓷电容器(MLCC<C0G>)上几乎不会发生这种现象(参照图1)。
下面举例说明实际上是如何发生的。
假设额定电压为6.3V,静电容量为100uF的高介电常数片状多层陶瓷电容器上施加了1.8V的直流电压。
此时,温度特性为X5R的产品,静电容量减少约10%,实际静电容量值变成90uF。
而Y5V的产品,静电容量减少约40%,实际静电容量变成60uF。
图1 各种电容器的静电容量变化率-直流偏置特性(示例)向钛酸钡系铁电体施加直流电压时,电场小时,电位移(D)与电场(E)成正比,但随着电场增大,原本方向混乱的自发极化(Ps)开始沿电场的方向整齐排列,显示非常大的介电常数,实际静电容量值增大。
随电场进一步增强,不久自发极化整齐排列完毕,分极饱和后,介电常数变小,实际静电容量值变小(参照图2)。
因此,在选择多层陶瓷电容器时,请不要完全按照产品目录上记载的静电容量进行选择。
必须先向适用的电源(信号)线施加直流电压成分,测定静电容量,掌握实际静电容量值的情况。
电解电容器介绍
一.电解电容器是怎样的部品呢?电容器是反复充电,放电的部品,在电视、广播、立体声音响等的电气回路中必须使用的部品,在交流(AC)中不可使用,若在交流中使用,电容器会发生爆炸,现在生产的电容器在直流回路中是为了消除纹波电流而被使用.二.电解电容器的种类电容器的种类可以分成下列三种:(1)在极性的电解电容器:有极性,种类如下列所记:标准品、低漏电品、低损耗品、低阻抗品、高频低阻抗品、印刷基板自立品、频闪观测品.(2)无极性电解电容器:无极性,种类如下所记:标准品(在极性不明的回路中使用)喇叭线路.(3)交流用电解电容器:交流用电容没有极性,种类如下列所记:电机起动品、连续用品.三.电容器的标准现生产的电解电容器,按照日本工业规格进行检查和试验的,规格种类如下列所记:有极性:JIS-C-5141无极性:EIAJRC-3803A试验:JIS-C-5102使用的注意事项:EIAJRCR-2367电极箔:EIAJRC-2364四.电容器的单位关于电容器的种类和单位,如同下列所记:电解电容器:μF电机起动用电容器:μF陶瓷电容器:pF~μF聚指胶片电容器:μF镀金聚脂胶片电容器:μF钽电容器:μF五.电解电容器电容器的基本构造是在相对的两片金属物夹着绝缘物的物品,换言之是由正箔和负箔两张金属电极板间夹着电解纸(绝缘物)的物品.此为电解电容器的基本构造,对电容印加直流电压,可在电极的两边各蓄存等量的正负电荷.用短文来说明电解电容器就是《和正箔和负箔的长度正比例,和绝缘物的厚度成反比例》.对上述短文进行说明是在使用同一种化成箔时,○+○-箔越长容量也就越大.因为○+○-箔直接卷在一起会发生短路,所以电解纸作为绝缘物,夹入正负电极之间,这层电解纸厚度越厚容量就会小,这是由于正负电极间的距离被拉远的缘故.在特性方面损失角的正切值tanσ变大.这样简单的电容器却在电器回路中发挥着不可缺少的重要作用.构成电容器的电极在电解电容器以外的场合,只要是导体什幺都行.无论是作为正极还是作为负极都可以.但电解电容器却不是这样,电解电容器所使用的金属物为铝箔,这箔是在电解液中被电气化学原理(可称正极气化或化成)得到气化皮膜作为绝缘物而发挥作用,被化成了的箔,作为正极而进行工作.在电解电容这样的金属除了铝以外还有钽,也同样被使用.象这样被化成的铝箔作为正极使用是很重要的.六.电容器的作用在电容器的两端之间印加直流电压,电流便流通了,在一侧电极上有正负电荷,在另一侧电极上有负电荷的聚集,这正电荷和负电荷在两侧电极之间通过绝缘物相互吸引着,在承受着同样电压时,要将更多的电荷储存起来,只要把容量作大就可以了.在作大容量电容器上:(1)将正极和负极的相对面积增大,正电荷和负电荷相互吸引面积增大是必要的(2)两侧的电极间隔拉近,也就是将正极和负极间的绝缘物厚度变薄是必要的.正负极间隔越近,正电荷和负电荷的相互吸引力也就越强,电荷很容易被储存.如上所列在一般的电解电容器中,想必大家可以理解是有极性的,作为大家而被使用的铝箔,作为正极用的化成箔,作为负极用的负箔没有被化成,所以有制造电容器的工序中,极性很重要,搞错了会把电压印加反了,形成反向电压而造成电容器爆炸.七.电容器的特性1.电解电容器中有规格及标准(OOVOOμF Ripple mA)2.电解电容器中有冲击电压,短时间内能承受的电压.3.电解电容器中有三特性:容量、损耗(tanσ)、漏电流(LC),根据这三特性的标准判断产品是否合格.4.静电容量随着频率的增高而减小.5.损耗(tanσ)随着频率的的增高而会变大.6.在激烈充放电的回路中(如焊接机的回路上),一般电容器是不可以使用的.7.电解电容器被长期放置造成氧化被膜劣化会引起漏电流增大.8.关于电容器三特性的说明:(1)静电容量(CAP)电容器是用来储存电荷的零件,别名称作蓄电器,在蓄电器内储存电荷的量称为静电容量.一般单讲容量,单位为法拉,记号用F表示,实际上用其百分之一的量来作单位叫微法,用μF来表示.我信的工厂生产是从0.1μF到数千微法的电容器.在制造电解电容器时,成为电极的铝箔用盐酸将其腐蚀,造成箔表面凸凹不平,和原箔相比扩大其10倍到20倍的表面积,这种手法被称作腐蚀.作为电极使用的铝箔,全部将其表面作出凸凹面来,便出现了倍率这一名词,纯度根据各自用途不同,用2N、3N、4N将其分开.腐蚀的目的是为实际能储存电荷的有效电荷的有效面积增大分倍率越大,在其单位面积内的容量也就越大,但反过来说箔的引拉强度、扭曲强度都会减弱、易断、易擦伤、受挤压后易裂,造成材料特性,也是容量变小的原因.下面在卷绕工序,正负箔不能完全重合,对抗面积减小,此面积的容量会变小(卷绕不齐时).可以说同样的铝壳尺寸,而容量最大的电容器,其耐压值就低.(2)损失角的正切(tanσ)理想的电容器是没的损耗的,而实际的电容器被印加电压进行使用后温度就会慢慢上升,这样就会消耗电力能源,也就出现了损耗.在铝箔氧化膜和导针上都有电阻(所谓电阻是指对电流流动的阻力作用),在电容器上印加电压,流动的电流便出现无用的发热而造成的损失,消耗电力,这个电力就转化成热,形成温度上升,在电容器上有规格根据各种电压的不同,损失角的正切值(tanσ)也有变化,损失角的正切也有称作是损失率.(3)漏电流(LC)通常说电容器是电极间夹着绝缘物(在电解电容器中是指氧化膜)的物品,此绝缘物并不是完全绝缘的,而漏出的电流就是漏电值.铝作为电极放置在电解质水溶液(碱和酸及盐类的水溶液也就是含在导电物质的水溶液)中加上电压时,此电流的电压比有铝箔上作成氧化被膜的电压要低的话,铝箔间电流基本不会流动,如果此电流会急速地增大.另外印加电压的方向反了,电压变大,急速增大的电流会出现流动.从中可以看出:○1印加电压在作成氧化被膜电压以下,氧化被膜作为绝缘物而起作用.印加电压若在作成氧化被膜的电压之上,氧化被膜将失去其绝缘性,漏电也会增大,因此在使用时,电压必须是在作成氧化被膜电压以下才行.○2曾提到电解电容器有极秘性,其极性就是在氧化被膜上面的决定极性的缘故.更加简单的地说,一只电容器的无效电流就用漏电流值来表示.其内容为氧化膜阻抗,电解液阻抗和卷绕阻抗等.八.电容器是怎样构造的电子部品呢?(1)一只电容器是如下列回路图来表现出的.实际的铝电解电容器的构造图可参考附页.(2)电解电容器有极性,为什幺会有极性?关于这点上面已有所述,在此省略.一般来说,电解电容器在直流电路中使用,在交流中不可以使用.正因为此在极性上有所区别是有必要的.若在部品是作区别可按下列所记进行区别:导针端子导针长的一侧为正极○+导针短的一侧为负极○-套管套管标示,有黑色粗线表示负极.对材料区别如下所记:铝箔:铝箔上有化成铝箔和非化成铝箔.化成箔:在正极上使用.所指为可印加电压的铝箔,按规格电压所使用的箔基本上是可区分开的.非化成箔:使用在负极上未化成箔也就是没有化成的铝箔,换言之是指不能被印加电压的铝箔.电解纸为何而被使用?电解纸○1夹在化成箔和未化箔之间,作为绝缘物而被使用,换言之也就是为防止正箔和负箔的短路而放入的.○2吸附保留电解液.其它的材料及零件是为什幺使用?电解液可以说是驱动用电解液,是数种药品混合而成,可根据使用的电压、温度特性、电容器的品种进行区别.橡胶卷绕后素子被含浸电解液浸透铝壳,若就这样放置在空气中,被浸透的药品会蒸发,正因为此将素子放入铝壳,用橡胶盖住,将铝壳束紧,为了完全密封而使用橡胶和铝壳.九.作为电容器的生产者,应知道的事项:1.一般电容器都有极性,若印加反向电压或交流电压,电容量会被破坏.2.电容器有寿命.3.所使用温度范围以及纹波电流都是被决定了的,请在规定范围内使用.4.随着温度的变化,特性变化很大.5.在保证条件以外的情况下,防爆线发生动作,易发生电解液漏出现象,另外电解液具有可燃性.6.过大电流(超过允许的纹波电流)请不要流过电容器,有过大电流渡过电容器,会产生电容内压过升,容量减小,损耗增大、电容被破坏的原因.7.在激烈的充放电回路中,不能使用,用在充放电回路中的电容器的基本设计和一般品不同.8.使用在电容器外部的套管,没有绝缘的目的,仅是作为表示而使用.9.在铝壳和负极端子之间,铝壳内侧自然形成的氧化被膜和电解液呈不安定阻抗的接触.10.氧化被膜(诱电体)具有自我修复必性.11.静电容量是随频率增高而增大.损耗是随频率的增高而增大.12.在老化工序以及老化电压,当大电压被印加后内部会产生气体,电容器也因此而破坏.13.起驱动用的电解液,在一般回路中使用的电解液无害的,在特殊品中使用电解液,若附着皮肤时,请用肥皂清洗.14.电容器安装环境:(1)端子的间距和印刷线路板孔相吻合是基本条件.(2)在电容器的防爆线上不要配线,回路模板是基本条件.(3)使电容器变形是产生安装不良的原因.(4)电自动插线机将产品插入基板,卷线钳固定的强度,请不要过大.(5)将电容器本体放入溶化的焊锡槽内进行焊接要避免.(6)进行焊接的条件(预热、焊锡温度、导针浸入时间),在购入是都应在双方商定的范围内.(7)在导针以外的地方不允许附着助焊剂.(8)在焊锡作业时,其它部品不要倒下和电容器相融化而发生接触.(9)电容器被焊锡焊好后,不得将电容器本体倾斜、倒下、扭动.(10)当电容器被焊接在线路基板上后,电容器不得和其它物品发生碰撞.(11)电容器浸入焊接的次数,基本上保持为一次,有必要作二次焊接时,必须作出商量.十.電容器制造使用材料示圖電容構造圖和使用材料明細:構造圖。
电容简介
电容:(1) 以uF為單位:電容容量1uF以上者,直接以數值標示容量,例如10000uF,3300UF。
(2)以pF為單位:第一位數與第二位數代表電容數值,第三個數字代表10的次方,亦即數值後面0的個數。
例如電容容量標示為104者,代表10後面有四個0,亦即100000pF。
(3)以nF為單位:電容容量標示為100N代表100x10-9=10-7法拉,亦等於0.1x10-6法拉,所以等於0.1UF。
以上關係可以表示為1uF=103nF=106pF其中:1法拉=103毫法=106微法=109纳法=1012皮法字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF话说电容之一:电容的作用写在前面:本人将着手从电容的作用、分类、选择等诸方面论述,敬请批评指正。
作为无源元件之一的电容,其作用不外乎以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
地弹是地连接处在通过大电流毛刺时的电压降。
2)去藕去藕,又称解藕。
从电路来说,总是可以区分为驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
提高静电容量的原理
提高静电容量的原理静电容量是指电容器储存电荷的能力。
在实际应用中,我们经常会遇到需要提高静电容量的情况,比如在电力系统中提高电容器的贮能能力。
本文将探讨提高静电容量的原理。
一、电容器的基本原理要理解如何提高静电容量,首先需要了解电容器的基本原理。
电容器由两个导体之间的绝缘介质隔开,当施加电压时,一个导体上会带有正电荷,另一个导体上带有等量的负电荷。
这种电荷只会存在于导体的表面,而不会深入导体内部。
电容器的静电容量取决于导体间的距离和绝缘介质的介电常数。
二、增加电容器面积静电容量和导体的表面积成正比。
因此,要提高静电容量,可以增加电容器的表面积。
可以通过增加导体的长度或使用多个导体并联的方式来实现。
此外,还可以使用金属箔或网格等具有大表面积的导体结构。
三、减小电容器间的距离除了增加电容器表面积,减小导体间的距离也可以提高静电容量。
这是因为电容器间的距离越小,两个导体之间的电场就越强,从而导致更多的电荷储存。
常见的做法是采用薄型绝缘介质,如薄膜电容器。
此外,也可以使用高介电常数的绝缘材料来增加电容器的静电容量。
四、改变绝缘介质的介电常数绝缘介质的介电常数也会影响静电容量。
介电常数是一个描述绝缘材料能够储存电荷的能力的物理性质。
介电常数越大,静电容量就越高。
因此,通过选择具有高介电常数的绝缘材料,可以提高静电容量。
例如,常用的介电常数较高的绝缘材料包括氧化铝和聚乙烯。
五、空气湿度的影响空气湿度也会对静电容量产生影响。
在高温高湿度的环境下,空气中的水分分子会与空气中的氧分子发生反应,形成导电的氢氧根离子。
这些自由的氢氧根离子可以增加电容器的静电容量。
因此,在一定程度上,增加空气湿度也可以提高静电容量。
六、总结通过增加导体表面积、减小导体间距离、改变绝缘介质的介电常数和增加空气湿度等方式,可以提高静电容量。
这些方法可以在实际应用中灵活运用,以满足不同领域的需求。
然而,在实际工程中要注意综合考虑各种因素,以找到最适合的方案。
电容器的作用和工作原理介绍
电容器的作用和工作原理介绍贵州家电维修网2008-3-17 18:14:05 来源:贵阳蓝天整理电容器的作用和工作原理介绍电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。
与电阻器相似,通常简称其为电容,用字母C表示。
顾名思义,电容器就是“储存电荷的容器”。
尽管电容器品种繁多,但它们的基本结构和原理是相同的。
两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。
两片金属称为的极板,中间的物质叫做介质。
电容器也分为容量固定的与容量可变的。
但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。
不同的电容器储存电荷的能力也不相同。
规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。
电容的基本单位为法拉(F)。
但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)=1000000微法(μF)1微法(μF)=1000纳法(nF)=1000000皮法(pF)在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。
小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。
大容量的电容往往是作滤波和存储电荷用。
而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。
电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。
把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。
电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。
电容工作原理及作用
想从事开关电源设计吗?,QQ:2621825447
4)储能
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。
电压额定值为40~450VDC、电容值在220~150 000μF 之间的铝电解电容器(如EPCOS 公司的 B43504 或B43505)是较为常用的。
根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。
2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:
1)耦合
举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号
较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
2)振荡/同步
包括RC、LC 振荡器及晶体的负载电容都属于这一范畴。
3)时间常数
这就是常见的 R、C 串联构成的积分电路。
当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。
而其充电电流则随着电压的上升而减小。
电流通过电阻(R)、电容(C)的特性通过下面的公式描述:
i = (V / R)e - (t / CR)
话说电容之二:电容的选择
通常,应该如何为我们的电路选择一颗合适的电容呢?笔者认为,应基于以
下几点考虑:
1、静电容量;
2、额定耐压;
3、容值误差;
4、直流偏压下的电容变化量;
5、噪声等级;
6、电容的类型;
7、电容的规格。
电容器的电容量与电荷
电容器的电容量与电荷电容器是电气元件中常见的一种,它可以存储电荷并用于各种电路应用。
电容器的电容量与电荷之间存在着密切的关系,本文将探讨电容器的电容量与电荷的关系,并介绍电容器的基本原理、计算方法以及一些相关应用。
一、电容器的基本原理电容器由两个导体板(通常是金属)和介质(如空气、瓷质或聚合物)组成。
当电容器接通电源时,正极板会积聚正电荷,负极板会积聚负电荷。
这种电荷积聚的过程导致了电容器两板之间产生电场,并使电容器具有储存电荷的能力。
二、电容量的定义与计算方法电容量是指电容器存储电荷的能力大小,通常用单位法拉(F)表示。
电容量与电荷量之间的关系可以通过下述公式表示:C = Q/V其中,C表示电容量,Q表示电荷量,V表示电压。
这个公式可以解释为电容量等于电荷量和电压的比值。
三、电容量与电荷的关系1. 电容量与电荷量成正比根据电容量的定义公式可知,电容量与电荷量成正比。
当电荷量增加时,电容器可以存储更多的电荷,电容量也随之增加。
反之,当电荷量减少时,电容器存储的电荷减少,电容量也会减小。
2. 电容量与电压成正比在固定电荷量下,电容容量与电压成正比。
当电压增大时,电容器两板之间的电场强度增强,可以容纳更多的电荷,从而增加电容量。
反之,当电压减小时,电容器存储的电荷减少,电容量也会缩小。
综上所述,电容器的电容量与电荷量和电压有着密切的关系。
通过改变电容器的电荷量或电压,可以调节电容器的电容量。
四、电容器的应用电容器在电路中具有广泛的应用。
以下是一些常见的应用场景:1. 电源滤波:电容器可以用于平滑直流电源输出,去除电源中的纹波,使电压更加稳定。
2. 信号耦合:电容器可以用于将两个电路相互连接,实现信号的传输与耦合。
3. 电容式传感器:电容器也可以用作传感器,在一些测量场景中用于检测压力、湿度等物理量。
4. 临时电源:电容器可以作为临时电源储存能量,用于一些需要短时间供电的场景,如数码相机闪光灯。
总结:电容器的电容量与电荷量和电压密切相关,电容量与电荷量成正比,与电压成正比。
epcos电容参数
epcos电容参数
摘要:
1.EPCOS 电容的概述
2.EPCOS 电容的主要参数
3.EPCOS 电容参数的含义及应用
4.总结
正文:
【1.EPCOS 电容的概述】
EPCOS 电容是由德国TDK 集团生产的一种电子元器件,具有稳定性高、可靠性强、体积小等优点,广泛应用于各类电子设备中。
【2.EPCOS 电容的主要参数】
EPCOS 电容的主要参数包括额定电压、最大工作电压、静电容量、容差、绝缘电阻等。
【3.EPCOS 电容参数的含义及应用】
- 额定电压:指电容器可以正常工作的电压范围,超过这个范围可能会导致电容器损坏。
- 最大工作电压:是电容器能够承受的最高电压,超过这个电压可能会使电容器击穿。
- 静电容量:是电容器存储电荷的能力,单位为法拉。
- 容差:是电容器静电容量的允许偏差,通常用百分比表示。
- 绝缘电阻:是电容器两极之间的电阻,可以反映电容器的绝缘性能。
【4.总结】
总的来说,EPCOS 电容是一种性能优良的电子元器件,其主要参数对于电容器的使用和选择具有重要的指导意义。
电容参数
电容参数2007-02-20 18:50电容器的参数与分类参数1. 标称电容量(CR)。
电容器产品标出的电容量值。
云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF);通常电解电容器的容量较大。
这是一个粗略的分类法。
2. 类别温度范围。
电容器设计所确定的能连续工作的环境温度范围。
该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。
3. 额定电压(UR)。
在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。
电容器应用在高电压场和时,必须注意电晕的影响。
电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。
在交流或脉动条件下,电晕特别容易发生。
对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。
4. 损耗角正切(tgδ)。
在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。
在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。
对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。
这个关系为:tgδ=RS/XC=2*3.14*f*C* RS 。
因此,在应用当中应注意选择这个参数,避免自身发热过大而影响寿命。
5. 电容器的温度特性。
通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示。
6. 使用寿命。
电容器的使用寿命随温度的增加而减小。
主要原因是温度加速化学反应而使介质随时间退化。
7. 绝缘电阻。
由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低。
电容的分类电容器包括固定电容器和可变电容器两大类。
其中固定电容器又可根据其介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C = Q/V = 库仑/伏特 = 法拉
由于法拉是一个很大的测量单位,在实际使用中很难达到,因此通常采用的是法拉的分数,即:
皮法(pF) = 10-12F
纳法(nF) = 10-9F
微法(mF)= 10-6F
B.电容量影响因素
对于任何给定的电压,单层电容器的电容量正比于器件的几何尺寸和介电常数:
例 (a) 老化速率 = -5% / 5 十倍时 = 1.0% / 十倍时(小时)
例 (b) 老化速率 = -15% / 6 十倍时 = 2.5% / 十倍时(小时)
由此可知,材料老化的速率与材料组分和工艺过程密切相关,同时对那些影响材料介电常
数的因素也非常敏感。
铁电体容量的时间损耗是不可避免的,尽管通过把介质加热到居里点以上,使材料晶体结构变回“顺电”立方态的方法可以得到恢复。但一旦冷却下来,材料晶体结构再次转变为四方相,自发极化再次出现,产生的新极化畴使得老化过程重新开始。
如何理解电容器的静电容量
A.电容量
电容器的基本特性是能够储存电荷(Q),而Q值与电容量(C)和外加电压(V)成正比。
Q = CV
因此充电电流被定义为:
= dQ/dt = CdV/dt
当外加在电容器上的电压为1伏特,充电电流为1安培,充电时间为1秒时,我们将电容量定义为1法拉。
K = K0 -m log t
这里 K = 任意时间t处的介电常数
K0 = 时间t0(t0 < t)处的介电常数
m = 衰减速率
上面公式是对数关系,如果采用半对数图处理所得数据,其结果将会近似于一条直线,正如下图所示。
每十倍时内K(或电容量)变化的百分数可以通过计算得出,用做衡量瓷料优劣的一个指标。 与微观结构有关,进而对极化产生影响的的因素(材料纯度、晶粒尺寸、烧结情况、晶界、空隙率,内应力)同样也决定了畴壁移动和重新取向的自由程度。
如何理解电容器的容量老化
铁电体陶瓷电容器的容量和介质损耗会展现出随时间延长而衰减的趋势。这种被称为老化的现象是可逆的,其产生的原因在于铁电体晶体结构随温度而变化。
铁电介质以钛酸钡(BaTiO3)为主要成分,加入一定的氧化物以改变材料晶体惯态和对称性,产生出铁电畴。在居里点(120℃)附近,BaTiO3晶体结构由四方相转变为立方相,自发极化不再发生。而当冷却通过居里点时,材料晶体结构又重新由立方相转变为四方相,其点阵结构中不存在对称中心。Ti4+离子可以占据两个非对称位置中的一个,从而导致永久性电偶极。由于相邻晶胞相互作用的影响足以建立起极化畴,因此这些电偶极是自发产生和略微有序的。平行极化畴是随机取向的(在没有外加电场作用的情况下),给系统提供应变能。而应变能的松弛正是材料介电常数老化的原因,具有下列时间关系:
C = 2500(0.030)(0.020)30/4.452(0.01)= 10107 pF
上面的实例表明在多层结构电容器尺寸相对于单层电容器小700倍的情况下仍能提供相同的电容量。因此通过优化几何尺寸,选择有很高介电常数和良好电性能(能在形成薄层结构后保持良好的绝缘电阻和介质强度)的介质材料即可设计和制造出具有最大电容量体积系数的元件。
这种“多层”结构中,由于多层电极的平行排列以及在相对电极间的介质层非常薄,电极面积A得以大大增加,因此电容量C会随着因子N(介质层数)的增加和介质层厚度t’的减小而增大。这里A’指的是交迭电极的重合面积。
C = KA’N/4.452(t’)
以前在1.0×1.0×0.56″的单片电容器上所获得的容量,现在如果采用相同的介质材料,以厚度为0.001″的30层介质相迭加成尺寸仅为0.050×0.040×0.040″的多层元件即可获得(这里重合电极面积A’为0.030×0.020″)。
C = KA/f(t) t = 介质层厚度
f = 换算因子
在英制单位体系中,f = 4.452,尺寸A和t的单位用英寸,电容量用皮法表示。单层电容器为例,电极面积1.0×1.0″,介质层厚度0.56″,介电常数2500,
C = 2500(1.0)(1.0)/4.452(0.56)= 10027 pF
顺电体,例如NPO,中由于不存在自发极化的机制,因此观察不到老化现象。老化速率受电容器“电压状态”的影响。元件在高温(低于居里温度)直流偏压负荷试验中表现出了容量损耗,但老化速率很低。从理论上讲,高温下的电压负荷会促进极化畴的的弛豫。当然,如果实际温度超过了居里点,电压效应则会消失。
如果采用公制体系,换算因子f = 11.31,尺寸单位改为cm,
C = 2500(2.54)(2.54)/11.31(0.1422)= 10028 pF
正如前面讨论的电容量与几何尺寸关系,增大电极面积和减小介质层厚度均可获得更大的电容量。然而,对于单层电容器来说,无休止地增大电极面积或减小介质层厚度是不切实际的。因此,平行列阵迭片电容器的概念被提出,用以制造具有更大比体积电容的完整器件。