大学数学试卷A及答案

合集下载

福建农林大学高等数学(A)卷答案.doc-福建农林大学考试试卷高等...

福建农林大学高等数学(A)卷答案.doc-福建农林大学考试试卷高等...

福建农林大学考试试卷 高等数学(A)卷参考答案一。

填空题(每小题3分,本题共15分) 1、6e 2、k =1 . 3、xx+1 4、1=y 5、x x f 2cos 2)(= 二.单项选择题(每小题3分,本题共15分) 1、D 2、B 3、C 4、B 5、A 三.计算题(本题共56分,每小题7分) 1.解:x x x 2sin 24lim-+→81)24(2sin 2lim 21)24(2sin lim 00=++=++=→→x x x x x x x x 7分 2.解 :21lim 11lim )1(1lim )111(lim 0000=++=+--=---=--→→→→x x x x x x x x x x x x x x xe e e e xe e e e x x e e x 7分 3、解: 2c o s12limx dt e x tx ⎰-→exxe xx 212sin lim 2cos0-=-=-→ 7分 4、解: )111(1122xx x y ++++='……………………… …...4分211x+=……………………………………… …...7分5、解:t t t t dx dy 21121122=++= (4分) 222232112()241d y t d dydxt dtt dt dx dxt t-+===-+ (7分) 6、解:C xd x dx x x ++=++-=+⎰⎰)32cos(21)332()32sin(21)32sin(12 (7分)7、 解:⎰⎰=xx e x x x e d c o s d c o s⎰+=sinxdx e cos x x e x …………………… …….2分 ⎰+=x de sin cos x x e x ..………………… ……….3分 dx cos sin cos x e x e x e x x x ⎰-+= ……… ……5分C x x e x ++=)cos (sin ……………… ……… …7分8、解:⎰⎰⎰⎰--+==-0111120d )(d )(d )(d )1(x x f x x f x x f x x f … …2分⎰⎰+++=-10011d 1d x x e x x ……… ………3分 1001)1ln(d )11(x x ee x x +++-=⎰-…… ……5分 2ln )1ln(101++-=-xe ……………… …6分)1ln()1ln(11e e +=++=-………… ……7分四.应用题(本题7分)解:曲线2x y =与2y x =的交点为(1,1), 1分 于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x A 4分A 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(1052142=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 7分 五、证明题(本题7分)证明: 设x x f x F -=)()(, ……………………….……… ……2分显然)(x F 在]1,21[上连续,在)1,21(内可导, 且 021)21(>=F ,01)1(<-=F .由零点定理知存在]1,21[1∈x ,使0)(1=x F . …….… …………4分 由0)0(=F ,在],0[1x 上应用罗尔定理知,至少存在一点)1,0(),0(1⊂∈x ξ,使01)()(=-'='ξξf F ,即1)(='ξf … …7分。

工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案

工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案

工程大学2023-2024学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案试卷题目:高等数学(上)期末考试试卷(A卷)科目:高等数学(上)时间:2024年1月一、选择题(共30题,每题2分,共60分)1.在直角坐标系中,抛物线y = x^2 - 2x 的顶点坐标是()A. (1, -1)B. (1, 2)C. (2, 1)D. (-1, 1)2.设函数f(x) = sin(2x + π/3),则函数 f(x) 的一个周期是()A. π/3B. π/2C. πD. 2π3.函数 y = 3ln(2x + 1) 的图像在 x 轴上的截距是()A. -1/2B. 1/2C. 0D. -14.设函数 f(x) = x^3 + 4x^2 + 5x,则 f(x) 的极值点是()A. (-1, -1)B. (0, 0)C. (0, 5)D. (-5, 0)5.已知曲线 C 的参数方程为 x = t^2 - 4, y = t - 1,则曲线 C 属于()A. 抛物线B. 椭圆C. 双曲线D. 直线…二、填空题(共10题,每题3分,共30分)1.函数 f(x) = sin(2x) 的最小正周期是 _______。

2.函数 y = x^3 + 4x^2 的导函数是 _______。

…三、解答题(共4题,每题20分,共80分)1.求方程组 x^2 + y^2 = 4, x - y = 1 的解。

2.计算不定积分∫(cos^2x + 2sinx)dx。

…四、大题(共2题,每题20分,共40分)1.设 y = ax^2 + bx + c,其中 a, b, c 均为常数,且a ≠ 0。

若曲线 y = ax^2 + bx + c 的顶点坐标为 (1, -1),且该曲线与直线 y = x + 1 相切于点 (2, 3),求曲线方程。

2.设函数 f(x) = e^x / (1 + e^x),求f’(x) 和f’’(x)。

湖北大学高等数学课程考试A卷答案

湖北大学高等数学课程考试A卷答案

A 卷 参考答案()121..1,3,24,16.0.2-cos ea b c d x e ⎛⎫==-=-=+∞ ⎪⎝⎭一、1 2 3, 4'11()0()()1. -lim ()lim lim ()111n n n f a f a f a n n nf a f a n n n →∞→∞→∞⎛⎫ ⎪---- ⎪ ⎪-==-=-=- ⎪- ⎪ ⎪⎝⎭51因为()23.a r c s in a r c s i n 2.4x x x x C +-+6 700012112. lim lim ,33nn n n i n n →→→∞=⎛⎫⎪==== ⎪ ⎪ ⎪⎝⎭⎰8原式[][]2201tan sin 1tan (1cos )1121.-lim lim lim lim 12(1)2(1)4(1)4211x x x n x x x x x x x In x x x In x x In x x x→→∞→∞→∞⎛⎫ ⎪⎧⎫--⎪ ⎪=====-⎨ ⎪+-+-+-⎪⎩- ⎪ ⎪+⎝⎭9原式 1,(1)(1)(2),()(2)(1)(1)2(1)2,1,(3)(1)(2)3(1)3.(),1,2,3(),1(1)(1)(2)(1)2(1).x f f f f x f f f f a x f f f f a f n na n n k f k ka n k f k f k f k a a na k a n f =-=-+=--====+====≤==++=-+=-+=+令则因为是奇函数,得到再令则现用数学归纳法证明当时已证,假设当时有当时, 10. 故对一切正整数,有(),0,(2)(0)(2),(0)00,()()()(),()n na x f f f f a f x n f n f n na na n f n na ⎛⎫⎪ ⎪ ⎪⎪===+==⋅ ⎪ ⎪=--=--= ⎪ ⎪=⎝⎭令则即又是奇函数,故对一切负整数有所以对一切整数,均有 二、 CACBD BDAAB33032001(1)(1)1lim0,lim 0,00lim (1)0,10,(1)(1)(1)(21)limlim ,210.(1)612x xx x x x x xxxx x axe bx e ax bx x be bx e a b a x x bx bx e ax b e bxeb b x bx x bx→∞→∞→→→+-+-++⎡⎤==→++-=+-=⎣⎦++-+++=+=++ 3.由题设可知,即因为时,分母趋于,所以得到 又所以再结合10a +-=即可.1,2,3.Q Q Q 5.在数轴上画出代表的面积即可得出。

大学数学考试试题及答案

大学数学考试试题及答案

大学数学考试试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-3x+2,下列哪个选项是正确的?A. f(x)在x=1处取得最小值B. f(x)在x=3处取得最大值C. f(x)在x=1处取得最大值D. f(x)在x=3处取得最小值答案:A2. 以下哪个选项是复数z=3+4i的模?A. 5B. √7C. √13D. 7答案:C3. 矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\]的行列式det(A)等于多少?A. 2B. -2C. 5D. -5答案:B4. 如果序列{an}满足a1=1,且an+1 = 2an + 1,那么a3的值是多少?A. 7B. 9C. 11D. 13答案:A二、填空题(每题5分,共20分)1. 求极限lim(x→0)(sinx/x)的值是______。

答案:12. 给定函数g(x)=x^3-6x^2+9x+1,求g'(x)的值。

答案:3x^2-12x+93. 计算定积分∫(0 t o 1) (2x+3)dx的结果。

答案:5/24. 已知圆的方程为x^2+y^2-6x-8y+24=0,求该圆的半径。

答案:√5三、解答题(每题10分,共60分)1. 证明:如果一个数列{an}是单调递增且有界的,则它必定收敛。

答案:略2. 求解微分方程dy/dx = y/x,其中初始条件是当x=1时,y=1。

答案:略3. 计算二重积分∬(D) (x^2+y^2) dA,其中D是区域x^2+y^2≤4。

答案:略4. 证明:对于任意正整数n,n^3-n是6的倍数。

答案:略5. 给定函数f(x,y)=x^2y+2xy^2-x^2-y^2,求该函数在点(1,1)处的梯度和方向导数。

答案:略6. 证明:如果一个函数f(x)在区间[a,b]上连续,那么它在该区间上必定有最大值和最小值。

答案:略四、附加题(10分)1. 给定函数f(x)=x^3-3x^2+4,求f(x)的极值点。

大学数学1试题(A)参考答案

大学数学1试题(A)参考答案

大学数学1试题(A)参考答案一、选择题1. 答案:C解析:题目中要求求出f(x)=3x2-7x+5的导数。

根据求导法则,导数的求法为f'(x)=[3*(2x)^(2-1)-7*(1x)^(1-1)],即f'(x)=6x-7。

根据选项,可知C选项是正确答案。

2. 答案:B解析:题目中要求求出f(x)=2sin(x)+cos(x)的导数。

根据求导法则,导数的求法为f'(x)=2*cos(x)-sin(x)。

根据选项,可知B选项是正确答案。

3. 答案:A解析:题目中要求求出下列等差数列的前n项和。

根据等差数列的前n项和公式Sn=n*(a1+an)/2,其中a1为首项,an为末项,n为项数。

根据选项,可知A选项是正确答案。

4. 答案:D解析:题目中要求求出平面上一点到x轴的距离。

根据平面几何知识,点P(x,y)到x轴的距离为|y|,即D选项是正确答案。

5. 答案:C据求导法则,在极值点处的导数为零。

对函数f(x)求导得到f'(x)=3x2-3=0,解得x=±1。

根据选项,可知C选项是正确答案。

二、填空题1. 答案:-√3解析:题目中要求求出方程x2+3x+3=0的解。

根据二次方程求根公式,解出x=(-b±√(b2-4ac))/(2a),代入a=1,b=3,c=3,可得到x=(-3±√(3^2-4*1*3))/(2*1),计算得x=-√3。

2. 答案:15解析:题目中要求求出3,5,7...97的等差数列的前n项和,根据等差数列的前n项和公式Sn=n*(a1+an)/2,其中a1为首项,an为末项,n 为项数。

根据选项,可得n=16,代入公式计算得Sn=16*(3+97)/2=15*100/2=1500/2=750。

3. 答案:-1解析:题目中要求求出方程sin(x)=cos(x)的解。

根据三角函数的定义,sin(x)=cos(π/2-x),即sin(x)=sin(π/2-x),因此x=π/2-x+2kπ,化简得到x=-1/2+2kπ,其中k为整数。

浙江大学大二数学专业《高等数学下》考试A卷及答案

浙江大学大二数学专业《高等数学下》考试A卷及答案

《高等数学》(下)考试卷A适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共6小题,每空2分,共14分)1.设z=22x xy y ++,则x z ∂∂= ; yz∂∂= . 2.改变积分顺序240(,)dy f x y dx ⎰⎰= .3.函数 z=2x 2+y 2在点P(1,1)处的梯度为__________4.级数∑∞=11n n的敛散性为 .5.设平面曲线L 为下半圆周y=-21x -,则曲线积分⎰+Lds y x )(22=__________6.曲线x=41t 4,y=31t 3,z=21t 2在相应点t=1处的切线方程为_______________二.单项选择. (共8小题,每小题3分,共24分)1.设D 为圆域:x 2+y 2≤1,Ddxdy ⎰⎰=A.则A =( ) .(A) π (B) 4π (C) 2π (D) 3π. 2.lim 0n n u →∞≠是级数1n n u ∞=∑发散的( )(A).充分条件 (B). 必要条件 (C).充要条件 (D).无关条件 3.积分()(),,LP x y dx Q x y dy +⎰与路径无关的充要条件是( )(A) .P Q y x ∂∂=∂∂ (B). P Q y x∂∂=-∂∂ (C). P Q x y ∂∂=∂∂ (D). P Q y y ∂∂=∂∂ 4.设3z x y =,则dz =( ).(A)dx dy + (B)233x ydx x dy + (C) 3x dx ydy + (D) 23x ydx ydy +5.曲线积分⎰++-c yx xdyydx 22的值为( ),其中C 取圆周221x y +=的正向. (A )、π (B)、-2π (C)、 2π (D)、-π 6.已知2)()(y x ydydx ay x +++为某一函数的全微分,则a=( ) (A) -1 (B) 0 (C) 2 (D) 17.设∑为锥面z=22y x +介于z=0与z=1之间的部分,1∑是∑在第一卦限的部分,则⎰⎰∑++ds xz yz xy )(=( )(A)0 (B)4⎰⎰∑1xyds (C) 4⎰⎰∑1zyds (D) 4⎰⎰∑1xzds8.f x (x 0,y 0) 与f y (x 0,y 0)均存在是函数f(x,y)在点(x 0,y 0)处连续的( )条件 (A) 充分 (B)必要 (C)充要 (D)无关三.(8分)设z=x 3y 2-3xy 3-xy+1,求22x z ∂∂ ,22yz∂∂。

大学数学期末考试试卷(A卷)和参考答案

大学数学期末考试试卷(A卷)和参考答案

大学数学期末考试试卷(A 卷)2020学年第 2 学期 考试科目: 大学数学Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、 填空题(每小题2分,本题共12分)1.若事件B A 、相互独立,且()0.5P A =,()0.25P B =,则()P A B = ; 2则()()4,3P X P X ≤=≠=;3.设随机变量X 服从参数为λ的Poisson 分布,且已知[](1)(2)1E X X --=,则λ=;4.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,则=)(X E ;()D X = ;5.设1621,,,X X X 是来自总体),2(~2σN X 的一个样本,∑==161161i i X X ,则~84σ-X ;6.假设某种电池的工作时间服从正态分布,观察五个电池的工作时间(小时),并求得其样本均值和标准差分别为:43.4,8.08x s ==,若检验这批样本是否取自均值为50(小时)的总体,则零假设为 ,其检验统计量为 。

二、单项选择题(每小题3分,本题共18分)1.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513; B .12516; C .12518; D .12519.2.如果随机变量X 的密度函数为,01;()2,12;0,x x f x x x ≤≤⎧⎪=-≤≤⎨⎪⎩其它.,则()1.8P X ≤=( ).A .0.875;B . 1.80()f x dx ⎰; C . 1.80x dx ⎰; D .()1.82x dx -∞-⎰. 3.设物件的称重,05.0%95),01.0,(~过的置信区间的半长不超的为使μμN X 则至少应称多少次?( ). 0.0250.051.96, 1.64]u u ==[注: A .16;B .15;C .4;D .20.4.设随机变量X 的概率密度函数为⎩⎨⎧∈=其他,0]1,0[,)(4x Cx x f ,则常数C=( ).A .51;B .5;C .2;D .12.5.在一个已通过F 检验的一元线性回归方程中,若给定α-=1,00的则y x x 的预测区间精确表示为( ).A.0022ˆˆ[(2),(2)]yt n y t n αα--+-; B.0022ˆˆ[(2),(2)]yt n y t n αασ--+-; C.0022ˆˆ[(2),(2)]yt n y t n αα--+-;D.0022ˆˆ[,]yy ααμμ-+.6.样本容量为n 时,样本方差2S 是总体方差2σ的无偏估计量,这是因为( ). A .()22E Sσ=; B .()22E Snσ=; C .22S σ=; D . 22S σ≈.三、解下列各题(6小题,共48分)1.设总体()~0,1X N ,12,,,n X X X 为简单随机样本,且32124(1)3i i ni i X nF X ===-∑∑.证明:~(3,3)F F n -. (6分)2.已知连续型随机变量X 的分布函数为 0,1;()arcsin ,11;1 1.x F x a b x x x ≤-⎧⎪=+-<<⎨⎪≥⎩,① 试确定常数,a b ; ② 求1{1}2P X -<<; ③ 求X 的密度函数.(10分)3.若从10件正品、2件次品的一批产品中,无放回地抽取2次,每次取一个,试求第二次取出次品的概率.(6分)4.设X的密度函数为1(),(,)2xf x e x-=∈-∞+∞.①求X的数学期望EX和方差DX;②求X与X的协方差和相关系数,并讨论X与X是否相关.(8分)5.设二维随机变量),(Y X 在区域D 上服从均匀分布,其中D 是由曲线2y x =和直线y x =所围成.试求(,)X Y 的联合分布密度及关于,X Y 的边缘分布密度)(x f X 与)(y f Y ,并判断,X Y 是否相互独立.(10分)6.设随机变量X 服从区间],[b a 上的均匀分布,试证明:c X Y +=(c 为常数)也服从均匀分布. (8分)四、应用题:以下是某农作物对三种土壤123,,A A A ,两种肥料12,B B ,每一个处理作四次重复试验后所得产量的方差分析表的部分数据,分别写出各零假设,并完成方差分析表,写出分析结果 (0.01)α=. (12分)已知参考临界值:()()()0.010.010.012,18 6.01,1,188.29,3,18 5.09,F F F ===()()()0.010.010.012,23 3.42,1,23 4.28,3,23 3.03F F F ===五. 综合实验报告(10分)试卷参考答案一、 填空题(每小题2分,本题共12分) 1. 0.625; 2. 0.87,0.7; 3.1; 4.2,nσμ; 5.)1,0(N ; 6.50:0=μH ,X t =二、单项选择题(每小题3分,本题共18分)三、解下列各题(本大题共48分)1.证明 由题设可知 ()12~0,1,1,2,,,,,,i n X N i n X X X =且相互独立...........1分所以 ()()3222214~3,~3nii i i X X n χχ==-∑∑ .......................................................3分从而()()321243~3,33i i nii X F n Xn ==∑--∑....................................................................5分所以 ()321241~3,33ii n ii X n F n X ==∑⎛⎫--⎪⎝⎭∑......................................................................6分2. 解:① 因为X 是连续型随机变量,故()F x 在(),-∞+∞内处处连续由(10)(1)(10)(1)F F F F -+=-⎧⎨-=⎩, 可得 0212a b a b ππ⎧-=⎪⎪⎨⎪+=⎪⎩...................................................................4分 解得 11,2a b π==......................................................................................................6分 ② 111112{1}()(1)arcsin 022223P X F F π-<<=--=+-=.................................8分③ X 的密度函数 ,1()()0,x f x F x <'==⎩其它 .........................................10分3.解:令=ˆi A “第i 次取出的是次品”,2,1=i 。

安徽财经大学大学《高等数学A》2023-2024学年第一学期期末试卷

安徽财经大学大学《高等数学A》2023-2024学年第一学期期末试卷

一、选择题:(每小题3分,共18分安徽财经大学试卷安徽财经大学2023-2024学年度第1学期试卷《高等数学A 》(上)试题(A 卷)参考答案和评分标准)1、已知,2)3('=f 则h f h f h 2)3()3(lim 0--→=(D )1-)(1)(2/3-)(2/3A D C B )(2、当0→x 时,下列无穷小中与2x 为同阶无穷小的是(C )11)()3arcsin()()1ln()(1A 423-+--x D x C x B e x )(3、如果)(x f 的导数为x cos ,则)(x f 的一个原函数为(D )x D x C x B x cos 1)(cos 1)(sin 1)(sin 1A -+-+)(4、设函数⎪⎪⎩⎪⎪⎨⎧>+=<---=0,1sin 0,0,1cos 1)(x b x x x a x x e x x f x 在0=x 处连续,则常数b a,的值为(A )1,0)(0,1)(1,0)(1,1A -========b a D b a C b a B b a )(5、曲线32122---=x x x y 有(A )铅直渐近线没有水平渐进线,两条铅直渐近线两条水平渐进线,一条铅直渐近线一条水平渐进线,两条条铅直渐近线)一条水平渐进线,一()()()(A D C B 6、设)(x f 在0=x 点附近有二阶连续导数,且1cos 1)(''lim 0=-→x x xf x ,则(C )专业班级姓名学号----------------------密------------------------------封-----------------------线-----------------------------的极小值。

是且的拐点。

)是曲线,且(的极小值。

是且的拐点。

)是曲线,但()()()0(,0)0('')()()0(0,0)0('')()()0(,0)0('')()()0(0,0)0(''A x f f f D x f f f C x f f f B x f y f f ≠===≠二、填空题(每小题3分,共18分)在以下各小题中画有_______处填上答案。

大学数学试卷A及答案(企业管理)

大学数学试卷A及答案(企业管理)

《大学数学》试卷一. 选择题(每小题3分) 1.下列求极限的问题中,能用洛必达法则的是( ) A x x x x sin 1sin lim 20→ B )arctan 2(lim x x x -+∞→π C x x x x x sin sin lim +-∞→ Dx x x x e e e -∞→+lim 2.=-→1ln lim 1x x x ( ) A 1 B -1 C 2 D —2 3.=-+-+-∞→4223lim 2323x x x x x x ( ) A -1 B 0 C21 D 2 4。

若在区间(a,b)内,函数f(x)的一阶导数,0)('>x f 二阶导数0)(''<x f ,则函数f(x )在此区间内( ) A 单调减少,曲线为凸 B 单调增加,曲线为凸 C 单调减少,曲线为凹 D 单调增加,曲线为凹 5.函数y=f (x )在点0x x =处取得极大值,则必有( ) A 0)('0=x f B 0)(''0<x f C 0)('0=x f 且0)(''0<x f D0)('0=x f 或不存在 6.函数)1ln(2x y +=的单调减少区间是( ) A ),(+∞-∞ B ),0(+∞ C )0,(-∞ D 以上都不对 7.曲线x xe y -=的拐点坐标是( )A(1,) B (2,) C(2,2) D(3,) 学号: 班级: 姓 名:密封线8。

下列等式中,成立的是( )A ⎰=)()(x f dx x f dB dx x f dx x f d ⎰=)()(C C x f dx x f dx d +=⎰)()(D ⎰=dx x f dx x f dxd )()( 9。

在区间(a ,b)内的任一点x ,如果总有f ’(x )=g'(x )成立,则下列各式中必定成立的是( )A 。

大学-高等数学(Ⅱ)试卷题(A)+参考答案

大学-高等数学(Ⅱ)试卷题(A)+参考答案

大学-高等数学(Ⅱ)试卷题(A )一、选择题:(每小题2分,共10分)1. 函数 ),(y x f z =在点),(00y x 处偏导数 ),(00y x f x ,),(00y x f y 存在是函数z在点),(00y x 存在全微分的( );A.充分条件;B.必要条件;C.充分必要条件;D.既非充分又非必要条件.2.下列级数发散的是( );A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( );A.是发散级数;B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。

4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( );A.双曲线B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。

A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.222ln()1z x y x y =-++-的定义域为 ;2.曲面2221ax by cz ++=在点()000,,x y z 的法线方程是 ;3.设(,)ln()2yf x y x x=+,则 '(1,0)y f = ;4.已知D 是由直线x +y =1,x -y =1及x = 0所围,则Dyd σ⎰⎰= ;5. 3(,)ydy f x y dx ⎰⎰交换积分次序得 ;7.1(2),n n n u u ∞→∞=+=∑n 若级数收敛则lim ;8.微分方程y / + P(x)y = Q(x)的积分因子为_____________(写出一个即可); 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。

大学数学试题及答案

大学数学试题及答案

大学数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数f(x)=x^2+2x-3的零点?A. -3B. 1C. -1D. 3答案:C2. 求极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. πD. ∞答案:B3. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [1 0; 0 0]C. [2 0; 0 2]D. [1 1; 1 1]答案:C4. 函数y=x^3-3x^2+2在哪个点取得极值?A. (0,2)B. (1,0)C. (2,-2)D. (3,22)答案:B5. 以下哪个选项是二项式定理的展开式?A. (x+y)^n = Σ(n=0 to ∞) C(n,k) * x^(n-k) * y^kB. (x+y)^n = Σ(k=0 to n) C(n,k) * x^k * y^(n-k)C. (x+y)^n = Σ(k=0 to n) C(n,k) * x^(n-k) * y^kD. (x+y)^n = Σ(k=0 to n) C(n,k) * x^(n-k) * y^k答案:B6. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)答案:B7. 以下哪个选项是定积分∫(0 to 1) x^2 dx的值?A. 1/3B. 1/2C. 1D. 2答案:A8. 以下哪个选项是微分方程y'' - 3y' + 2y = 0的通解?A. y = e^x + e^(-2x)B. y = e^(2x) + e^(-x)C. y = e^x + e^(-x)D. y = e^(2x) + e^(-2x)答案:C9. 以下哪个选项是柯西-施瓦茨不等式?A. |⟨u,v⟨| ≤ ||u|| * ||v||B. |⟨u,v⟨| ≥ ||u|| * ||v||C. |⟨u,v⟨| = ||u|| * ||v||D. |⟨u,v⟨| = ||u||^2 + ||v||^2答案:A10. 以下哪个选项是线性代数中矩阵的特征值?A. 矩阵的对角线元素之和B. 矩阵的行列式C. 满足Av=λv的非零向量v对应的标量λD. 矩阵的迹答案:C二、填空题(每题2分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的导数是________。

西华大学高等数学考核参考答案(A 卷)

西华大学高等数学考核参考答案(A 卷)

2a
2a
(0, 1 ) 是凸区间,[ 1 , + ∞)是凹区间, ( 1 , 1− ln 2a)是拐点。
2a
2a
2a 2
x
∫ 3、解:首先,当 x ≠ 0 时,令 xt = s ,则
g(x) =
1
f (xt)dt =
f (s)ds
0
∫0
x
x
∫ xf (x) − f (s)ds
gʹ(x) =
0
x2
其次,当 x = 0 时,由 f (x) 连续, lim f (x) = 2,知 x→0 x
0
0
6
五、参考答案及评分标准
证:设 F (x) = f (x) − x,则 F (x) 在[0, 1]上连续,在 (0, 1) 内可导,且 Fʹ(x) = f ʹ(x) −1
因为 F(0) = 0, F(1) = f (1) − 1 = 1 > 0, F(1) = f (1) −1 = −1 < 0 2 2 22 1
0
2 π
(sin
x

cos
x)dx
4
π
π
=
[sin
x
+
cos
]x 4 0
+ [− cos
x
− sin
]x
2 π
=
2(
2 −1)
4
1 x2
1 x cos x
∫ ∫ 3、原式=
−11+ x2 dx +
dx −1 1+ x2
1
1
∫ = 2 0 (1− 1+ x2 )dx + 0
+∞ exdx

大学高等数学试题及答案

大学高等数学试题及答案

大学高等数学试题及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2在区间(-∞, -3)上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 不存在3. 微分方程y''+y=0的通解为:A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*ln(x)+C24. 函数f(x)=x^3-3x+1在x=1处的导数为:A. 1B. -1C. 3D. -35. 定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1二、填空题(每题4分,共20分)6. 函数f(x)=x^2+2x+1的极小值点为______。

7. 函数f(x)=e^x的不定积分为______。

8. 曲线y=x^3-3x+2在点(1,0)处的切线斜率为______。

9. 函数f(x)=sin(x)的周期为______。

10. 极限lim(x→∞) (1/x)的值为______。

三、计算题(每题10分,共30分)11. 求极限lim(x→2) (x^2-4)/(x-2)。

12. 计算定积分∫(0 to 1) (2x+1) dx。

13. 求函数f(x)=x^3-6x^2+9x+1的二阶导数。

四、证明题(每题15分,共30分)14. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。

15. 证明极限lim(x→0) (1+x)^(1/x)=e。

答案:一、单项选择题1. B2. B3. A4. B5. A二、填空题6. x=-17. e^x+C8. 09. 2π10. 0三、计算题11. 412. 3/213. f''(x)=6x-12四、证明题14. 证明略15. 证明略结束语:本试题涵盖了高等数学的多个重要知识点,包括极限、导数、积分等,旨在检验学生对高等数学基本概念和计算方法的掌握程度。

大学数学试题a及答案

大学数学试题a及答案

大学数学试题a及答案一、选择题(每题5分,共20分)1. 下列哪个选项是实数集的符号表示?A. ZB. QC. RD. N答案:C2. 函数f(x)=2x+1的反函数是:A. f^(-1)(x)=(x-1)/2B. f^(-1)(x)=(x+1)/2C. f^(-1)(x)=x/2+1D. f^(-1)(x)=x/2-1答案:A3. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. ∞答案:B4. 以下哪个不是矩阵的基本运算?A. 矩阵加法B. 矩阵乘法C. 矩阵除法D. 矩阵转置答案:C二、填空题(每题5分,共20分)1. 圆的面积公式为__________,其中r为半径。

答案:πr^22. 微分方程dy/dx + y = x的通解是__________。

答案:y = e^(-x)∫xe^(x)dx + Ce^(-x)3. 函数f(x)=x^3-3x+2在x=1处的导数为__________。

答案:04. 矩阵A=\[\begin{array}{cc}1 & 2\\3 & 4\end{array}\]的行列式值为__________。

答案:-2三、解答题(每题15分,共30分)1. 计算定积分∫(0到π) sin(x)dx。

答案:定积分∫(0到π) sin(x)dx = [-cos(x)](0到π) = -cos(π) - (-cos(0)) = 2。

2. 求解二阶常系数线性微分方程y'' - 2y' + y = 0的通解。

答案:特征方程为r^2 - 2r + 1 = 0,解得r1 = r2 = 1,因此方程的通解为y = C1e^x + C2xe^x。

四、证明题(每题15分,共15分)1. 证明:若函数f(x)在区间[a,b]上连续,则定积分∫(a到b)f(x)dx存在。

答案:根据黎曼积分的定义,若函数f(x)在闭区间[a,b]上连续,则存在一个实数I,使得对于任意的正数ε,都存在一个正数δ,使得对于任意的分割P,只要每个子区间的长度小于δ,那么上和U(P,f)与下和L(P,f)与I的差的绝对值都小于ε。

大学数学试题及答案

大学数学试题及答案

大学数学试题及答案一、选择题(每题5分,共20分)1. 极限lim(x→0) (sin x)/x 的值是多少?A. 0B. 1C. -1D. 2答案:B2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = cos(x)D. f(x) = sin(x)答案:D3. 一个矩阵的行列式值等于多少?A. 0B. 1C. -1D. 无法确定答案:D4. 以下哪个选项是复数的共轭?A. 3 + 4iB. 3 - 4iC. 4 + 3iD. 4 - 3i答案:B二、填空题(每题5分,共20分)5. 计算定积分∫(0 to 1) x^2 dx 的值是 ________。

答案:1/36. 微分方程dy/dx = 3x^2 的通解是 ________。

答案:y = x^3 + C7. 矩阵A = [1, 2; 3, 4] 的逆矩阵是 ________。

答案:[-2, 1; 1.5, -0.5]8. 求函数f(x) = e^x 的二阶导数 f''(x) = ________。

答案:e^x三、解答题(每题15分,共30分)9. 求函数f(x) = ln(x) 的最大值。

解:函数f(x) = ln(x) 在定义域x > 0上是单调递增的,因此没有最大值。

10. 证明:如果矩阵A是可逆的,那么它的行列式值不为0。

证明:设A是n阶方阵,且A可逆,则存在逆矩阵A^(-1),使得A *A^(-1) = I,其中I是单位矩阵。

根据行列式的性质,行列式乘积等于行列式乘积的行列式,即det(A * A^(-1)) = det(A) * det(A^(-1)) = det(I) = 1。

因为det(A)不等于0,所以det(A^(-1))也不等于0,即A是可逆的,其行列式值不为0。

四、证明题(每题15分,共15分)11. 证明:如果函数f(x)在区间[a, b]上连续,那么它在该区间上一定有最大值和最小值。

北京科技大学2024-2025学年度第1学期高等数学A试题及答案

北京科技大学2024-2025学年度第1学期高等数学A试题及答案

装 订 线 内 不 得 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊(A )0 (B )1 (C )2 (D )217.在空间直角坐标系下,z 轴的对称式方程为 【 】.(A )1001zy x ==-; (B ) 2300--==z y x ; (C )001zy x ==; (D )10z y x == . 8.函数)(x f 在点a 可导,则ax a f x f a x --→)()(lim 22下列结论正确的是 【 】( A ) )('a f ( B ) )('2a f ( C ) )()('2a f a f ( D ) 09. 已知函数)(x f 具有随意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的整数时,)(x f的n 阶导数)()(x f n 是【 】(A ) 1)]([!+n x f n (B )1)]([+n x f n (C )n x f 2)]([ (D )n x f n 2)]([!。

10. 设)(x f 的导数是x sin ,则)(x f 的一个原函数为 【】(A )1+x sin (B )1-x sin (C )1+x cos (D )1-x cos三、(8分) 计算x ->+∞四、(8分)设⎪⎩⎪⎨⎧+-=++=22)1(21)1ln(t arctgt y t x 求.,22dx y d dx dy五、(8分) 求不定积分⎰-dx xx1arcsin六、(8分) 利用定积分定义计算极限 121lim +∞→+++p pp p n n n (0)p >)装 订 线 内 不得 答 题自觉遵 守考 试 规 则,诚 信 考 试,绝 不作 弊七、(8分)求极限 xx x x cos 11sin lim -→⎪⎭⎫⎝⎛八、(8分)求定积分312x dx --⎰九、(8分)求极限 )1ln(d lim21cos 02x te xt x +⎰-→十、(5分)已知汽车行驶每小时的耗油费用为y (元),它与行驶速度x (公里 / 小时)的关系为325001x y =.若汽车行驶时除耗油费用外的其它费用为每小时100元,问汽车最经济的行驶速度为多少? 装 订 线 内 不 得 答 题自觉遵 守考 试 规 则,诚 信 考 试,绝 不作 弊十一、(5分)如图:已知半径为R 的半球形水池充溢了水,求当抽出水所做的功为将水全部抽出所做的功的一半时, 水面下降的高度。

昆明理工大学级高等数学A期末试卷及参考答案

昆明理工大学级高等数学A期末试卷及参考答案

昆明理工大学级高等数学A期末试卷及参考答案standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive昆明理工大学2011级《高等数学》A (2)期末试卷(A 卷) (2012年6月 日)一、单项选择题(每小题4分,共20分) 1.设),(y x f z =在点),(00y x 处取极小值,则函数),()(0y x f y =ϕ在0y 处( )。

)(A 取最小值,)(B 取最大值,)(C 取极大值,)(D 取极小值。

2.已知全微分dy y x dx xy x y x df )()2(),(222-++=,则).(),(=y x f ,33)(323y y x x A +-,33)(323y y x x B -- ,33)(323y y x x C -+.33)(323C y y x x D +-+ 3.设),0(:222>≤+a a y x D 要使,222π=σ--⎰⎰d y x a D 则.)(=a .21)(,43)(,23)(,1)(333D C B A 4.微分方程y y dx dy x ln =满足条件2)1(e y =的特解为.)(=y .)(,)(,)(,)(2221x e D e C e B e A x x x + 5. 微分方程x xe y y 22='-''的特解*y 的形式为.)( .)()(,)(,)(,)()(22222x x x x e B Ax x y D e Ax y C Axe y B e B Ax y A +===+=**** 二、填空题(每小题4分,共20分) 1.过曲面224y x z --=上点P 处的切平面平行于,0122=-++z y x 则P 点的坐标是 .2.设10,10:≤≤≤≤y x D ,则=-⎰⎰dxdy x y D.3.设曲面∑为上半球面229y x z --=的上侧,则zdxdy ∑=⎰⎰ .4.设曲线L 为)0(222>=+a ax y x ,则=⎰Lds . 5设)(x ϕ在),0(+∞有连续导数,,1)(=πϕ要使积分 dy x dx xy x x I L )()]([sin ϕ+ϕ-=⎰在0>x 时与路径无关,则=ϕ)(x .三 (9分).设),(y x z z =是由0),(=--bz y az x F 确定的隐函数,而),(v u F 可微,验证1z z a b x y∂∂+=∂∂.四(9分)计算,222dv z y x I ++=⎰⎰⎰Ω其中Ω是.2222z z y x ≤++ 五(9分)用格林公式计算,)2(2ydx x dy x xy I L --=⎰其中L 为闭区域41:22≤+≤y x D 的正向边界曲线。

高等数学A(二)2022-2022(A)试卷及解答

高等数学A(二)2022-2022(A)试卷及解答

高等数学A(二)2022-2022(A)试卷及解答--------------------------------------------------------------------------------------上海海事大学试卷2022—2022学年第二学期期末考试《高等数学A(二)》(A卷)(本次考试不能使用计算器)班级学号姓名总分题目得分阅卷人一二12345678910四一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分3小题,每小题4分,共12分)某y1、函数f(某,y)某2y20装订(某,y)(0,0)(某,y)(0,0)在点(0,0)处()线------------------------------------------------------------------------------------(A)连续且可导;(B)不连续且不可导;(C)连续但不可导;(D)可导但不连续.2、函数z某2y在点(3,5)沿各方向的方向导数的最大值为()(A)3;(B)0;(C)5;(D)23、设Ω是由3某2+y2=z,z=1-某2所围的有界闭区域,且f(某,y,z)在Ω上连续,则f(某,y,z)dv()dy1某23某2y2(A)2d某(C)12014某20f(某,y,z)dz(B)dz01某某dyzy23zy23f(某,y,z)d某111y2dy21y22d某1某23某2y2f(某,y,z)dz(D)d某121214某214某2dy3某2y21某2f(某,y,z)dz第1页共8页二、填空题(将正确答案填在横线上)(本大题分3小题,每小题4分,共12分)1、设函数zz(某,y)由方程zez某y所确定,则dz2、微分方程yye某的通解为0,某2,已知S(某)是f(某)的以2为周期的3、设f(某)某,某022正弦级数展开式的和函数,则S9=4三计算题(必须有解题过程)(本大题分10小题,共70分)1、(本小题7分)z2z设zarcin(某0),求,22某某y某yy2、(本小题7分)计算二重积分ID1in2(某y)d某dy,D:0某2,0y23、(本小题7分)判别下列级数的敛散性,并说明绝对收敛还是条件收敛。

本科大学数学试题及答案

本科大学数学试题及答案

本科大学数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是无理数?A. 0.1010010001…(0和1无限循环)B. √2C. 1/3D. 0.33333(3无限循环)答案:B2. 函数f(x)=x^2+2x+1的最小值是多少?A. -1B. 0C. 1D. 2答案:A3. 以下哪个命题是真命题?A. 所有偶数都可以表示为两个奇数之和B. 存在一个无理数,它小于所有有理数C. 所有自然数都是整数D. 所有整数都是有理数答案:C4. 集合{1, 2, 3}和{3, 4, 5}的交集是什么?A. {1, 2}B. {3, 4, 5}C. {1, 2, 3, 4, 5}D. {3}答案:D二、填空题(每题5分,共20分)1. 如果函数f(x)在x=2处可导,且f'(2)=3,则lim(x→2) [f(x)-f(2)]/(x-2) = _______。

答案:32. 一个等差数列的前三项为2, 5, 8,那么它的第五项是 _______。

答案:113. 圆的面积公式是 _______。

答案:πr^24. 如果一个矩阵A是3x3的,且|A|=6,则矩阵A的行列式值是_______。

答案:6三、解答题(每题15分,共30分)1. 证明:如果一个数列{a_n}是单调递增且有界的,则它必定收敛。

答案:略2. 解方程:x^2 - 5x + 6 = 0。

答案:x = 2 或 x = 3四、应用题(每题15分,共15分)1. 一个工厂生产的产品数量在一年内按照等比数列增长,如果初始数量是100件,增长率是10%,求一年后的产品数量。

答案:一年后的产品数量为100 * (1 + 0.1)^1 = 110件。

大学数学考试题库及答案

大学数学考试题库及答案

大学数学考试题库及答案一、单项选择题(每题2分,共20分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A2. 极限lim(x→0) (x^2 + 3x)/(x^2 + 2x + 1)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数y = sin(x)的周期为:A. πB. 2πC. π/2D. 4π答案:B4. 以下哪个是偶函数:A. y = x^3B. y = x^2C. y = sin(x)D. y = cos(x)答案:D5. 矩阵A = [1 2; 3 4]的行列式为:A. -2B. 2C. -5D. 5答案:B6. 以下哪个是线性方程组:A. x + y = 1B. x^2 + y^2 = 1C. x^3 + y^3 = 1D. x + y^2 = 1答案:A7. 函数y = e^x的导数为:A. e^(-x)B. e^xC. -e^xD. ln(e^x)答案:B8. 以下哪个是二阶导数:A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B9. 以下哪个是定积分:A. ∫f(x)dxB. ∫[a,b]f(x)dxC. ∫[f(x)]dxD. ∫x^2dx答案:B10. 以下哪个是无穷级数:A. Σ(n=1 to ∞) 1/n^2B. Σ(n=1 to N) 1/n^2C. Π(n=1 to ∞) 1/n^2D. Π(n=1 to N) 1/n^2答案:A二、填空题(每题3分,共30分)1. 函数f(x) = 2x - 3的反函数为______。

答案:f^(-1)(x) = (x + 3)/22. 函数y = ln(x)的定义域为______。

答案:(0, +∞)3. 函数y = cos(x)的值域为______。

答案:[-1, 1]4. 函数y = x^3的拐点为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数学试卷A及答案 Prepared on 24 November 2020
《大学数学》试卷
一. 选择题(每小题3分) 1.下列求极限的问题中,能用洛必达法则的是( ) A x x x x sin 1sin lim 20→ B )arctan 2(lim x x x -+∞→π C x x x x x sin sin lim +-∞→ D x x x x e e e -∞→+lim
2.=-→1ln lim 1x x x ( ) A 1 B -1 C 2 D -2 3.=-+-+-∞→4223lim 2323x x x x x x ( ) A -1 B 0 C 21 D 2 4.若在区间(a,b )内,函数f(x)的一阶导数,0)('>x f 二阶导数0)(''<x f ,则函数f(x)在此区间内( ) A 单调减少,曲线为凸 B 单调增加,曲线为凸 C 单调减少,曲线为凹 D 单调增加,曲线为凹 5.函数y=f(x)在点0x x =处取得极大值,则必有( ) A 0)('0=x f B 0)(''0<x f C 0)('0=x f 且0)(''0<x f D 0)('0=x f 或不存在 6.函数)1ln(2x y +=的单调减少区间是( ) A ),(+∞-∞ B ),0(+∞ C )0,(-∞ D 以上都不对
7.曲线x xe y -=的拐点坐标是( ) 学号
班级





线
A (1,1-e )
B (2,2-e )
C (2,22-e )
D (3,3-e )
8.下列等式中,成立的是( )
A ⎰=)()(x f dx x f d
B dx x f dx x f d ⎰=)()(
C C x f dx x f dx d +=⎰)()(
D ⎰
=dx x f dx x f dx d )()( 9.在区间(a,b)内的任一点x ,如果总有f ’(x)=g ’(x)成立,则下列各式中必定成立的是( )
(x)=g(x) (x)=g(x)+1 C.f(x)=g(x)+C D.'))(()')((⎰⎰=dx x g dx x f
10.已知C x dx x f +=⎰2cos )(,则f(x)=( )
A sin2x
B -sin2x
C cos2x
D -cos2x
11. ⎰=dx xe x ( )
A C xe x +
B
C e xe x x +- C C e xe x x ++
D C e x + 12.⎰=xdx tan ( )
A.-ln|sinx|+C
B. ln|sinx|+C
C. –ln|cosx|+C |cosx|+C
13.=+-⎰dx x x )1(6
02( ) A 50 B 60 C 70 D 80
14.dx x x
⎰+2021=( ) A 12- B 12+ C 15- D 15+
15.行列式4
032053
21=( )
A 16
B -16
C 28
D -28
二、判断题(每小题3分)
1.可导函数的驻点即为函数的极值点 ( )
2.函数f(x)二阶可导,且f ’’(x 0)=0,则点(x 0,f(x 0))为曲线y=f(x)的拐点 ( )
3.如果行列式有两列元素完全相同,则此行列式为零 ( )
4.n 阶行列式都可化为上三角行列式 ( )
5.每一个函数f(x)都有原函数 ( )
三、解答题(每题10分)
1.求极限(1)x
x x ln 1lim 21-→ (非定向班做) (2)x
arc x x cot )11ln(lim ++∞→ (定向班做) 2.(1)求函数11243)(234+--=x x x x f 在[-3,3]上的最大值,最小值。

(非定向班做)
(2)求曲线的y=f(x)=x 3-3x 2-5x+6的凹、凸区间及拐点。

(定向班做)
3.求不定积分:
(1)⎰+-dx x x )32(2 (非定向班做)
(2)dx x x ⎰+-2
6912 (定向班做)
4.(1)计算行列式的值:32142
1431
4324
321 (非定向班做)
(2)λ和μ为何值时,齐次方程组
⎪⎩⎪⎨⎧=++=++=++02003321
321321x x x x x x x x x μμλ有非零解 (定向班做)
大学数学答案:
一、选择题:1—5.B A C D D 6—10. C C B C A 11—15. B C
B C D
二、判断题:××√√×
三、1.(1)2;(2)1;
2.(1)最大值244,最小值-31;
(2)),1(+∞ )1,(-∞ )1,1(-
3.(1)C x x x ++-33
23
; (2)C x +-)13arctan(3
1; 4.(1) 168;
(2)λ=31,μ=0。

相关文档
最新文档