2018年4月浙江省学考数学试卷及答案解析版
(完整版)2018年浙江省数学高考真题试卷(含答案解析)
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 ()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,12,S S 表示台体的高h 柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R 一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则C A=U A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+iB .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xA B C D6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·bπ3+3=0,则|a −b |的最小值是( )A B C .2D .10.已知成等比数列,且.若,则( )1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
浙江学考数学真题试卷和答案解析[wold版]新
2018年4月浙江省学考数学试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A.{}M ⊆2,1,0B.{}M ⊆3,1,0C.{}M ⊆3,2,0D.{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A.{}0>x x B.{}0≥x x C.{}0≠x x D.R 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A.(3,1)-B.)3,1(-C.)3,1(D.)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA.1B.6log 2C.3D.9log 25. 双曲线1322=-y x 的渐近线方程为 A.x y 31±= B.x y 33±= C.x y 3±= D.x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A.31B.33C.32D.367. 若锐角α满足53)2πsin(=+α,则=αsinA.52 B.53 C.43 D.548.在三棱锥ABC O -中,若D 为BC 的中点,则=ADA.1122OA OC OB +- B. 1122OA OB OC ++ C.1122OB OC OA +- D. 1122OB OC OA ++9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A.{}n n a b ⋅B.{}n n a b +C.{}1n n a b ++D.{}1n n a b +- ABC D 1A1D 1C 1B(第6题图)A. ⎭⎬⎫⎩⎨⎧<<-313x x B. ⎭⎬⎫⎩⎨⎧<<-331x x C. ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D. ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A.)2(+x f 为奇函数B. )2(+x f 为偶函数C.)2(-x f 为奇函数D. )2(-x f 为偶函数 12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A.01222=++-+y x y x B.012222=+-++y x y x C.01222=-+-+y x y x D.012222=-+-+y x y x 13. 设a 为实数,则“21aa >”是“a a 12>”的 A.充分不必要条件 B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=aA.14 B.34 C.1 D.4315. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A.乙甲乙甲,V V S S >>B. 乙甲乙甲,V V S S <>C.乙甲乙甲,V V S S ><D. 乙甲乙甲,V V S S <<22y x ABCDxy oa a a a正视图a a 侧视图俯视图 15题图①)aa a aaa 侧视图15题图②)点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A.52或53B.51或54C. 510或515D.55或55217.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A.1或3B. 2或3C. 2或4D.3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A. C AB F --B. D EF B --C. C BF A --D. D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是 ▲ . 20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.ABCDEF(第18题图)xyO ABPD(第24题图)24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(1) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(2)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),)3A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由. ABxoyt x =(第25题图)2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,;(第25题图②) 所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22ttttttf⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(tttttttg(Ⅱ)由(1)中)(tf的解析式可知,函数)(tf的单调递减区间是)45,1(,所以)45,1(),(⊆ba.另一方面,任取)45,1(,21∈tt,且21tt<,则)()(21tgtg-])2)(2(31)1)(1(211)[(21212112ttttt ttt-----+-=.由45121<<<tt知,1625121<<t t,81)1)(1(221<--<tt,1639)2)(2(321>--tt.从而<--<)1)(1(221tt)2)(2(321tt--,即0)2)(2(31)1)(1(212121>-----tttt所以0)()(21>-tgtg,得)(tg在区间)45,1(上也单调递减,证得)45,1(),(=ba.所以,存在区间)45,1(,使得函数)(tf和)(tg在该区间上均单调递减,且ab-的最大值为41.。
浙江省2018年4月数学学考真题试卷
,所表示的平面区域记为的渐近线是(答案第2页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.7.若锐角满足,则()A. B. C. D.8.在三棱锥中,若为的中点,则()A .B .C .D .9.数列是公差不为零的等差数列,下列数列中,不构成等差数列的是()A.B.C.D.10.不等式的解集是()A .B .C .2D .11.用列表法将函数表示为,则()A.为奇函数B.为偶函数C.为奇函数D.为偶函数12.如图,在直角坐标系中,坐标轴将边长为4的正方形分割成四个小正方形,若大圆为正方形的外接圆,四个小圆圆分别为四个小正方形的内切圆,则图中某个圆的方程是()第3页,总14页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .13.设为实数,则“”是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.在直角坐标系中,已知点,过的直线交轴于点,若直线的倾斜角是直线倾斜角的2倍,则()A.B.C.D.15.甲、乙几何体的三视图分别如图 图 所示,分别记它们的表面积为,体积为,则()A .,B .,C .,D .,16.如图,设为椭圆=1()的右焦点,过作轴的垂线交椭圆于点,点分别为椭圆的右顶点和上顶点,为坐标原点,若的面积是面积的倍,则该椭圆的离心率()答案第4页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.或B.或C.或D.或17.设为实数,若函数有零点,则函数零点的个数是()A.1或3B.2或3C.2或4D.3或418.如图,设矩形所在的平面与梯形所在平面交于,若,则下面二面角的平面角大小为定值的是()A. B. C. D.第Ⅱ卷主观题第Ⅱ卷的注释评卷人得分一、填空题(共4题)1.已知函数,则的最小正周期是,的最大值是.2.若平面向量满足则.3.若中,已知则的取值范围是.4.若不等式对任意恒成立,则实数的最小值是.,垂足为轴的对称点恰好在直线上的面积中,已知点,使得函数和的最大值;答案第6页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:第7页,总14页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】:【解释】:答案第8页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:【解释】:11.【答案】:【解释】:12.【答案】:【解释】:13.【答案】:【解释】:第9页,总14页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………14.【答案】:【解释】:15.【答案】:【解释】:16.【答案】:【解释】:答案第10页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………17.【答案】:【解释】:18.【答案】:【解释】:【答案】:【解释】:第11页,总14页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:答案第12页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:第13页,总14页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:答案第14页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
2018年4月浙江省普通高中学业水平模拟考试数学仿真模拟试题B(解析版加考试版)
为
A. x 3 x 3 B. x 3 x 2
C. x
【答案】 C
3x2
D. x 1 x 3
【解析】 M x 1 x 2 , N
x1
2.函数 y
的定义域为
ln x
A. 0,
C. ,1 1,
【答案】 D
,M N
B. 1, D . 0,1 1,
· 1·
,故选 C.
【解析】
3.已知
π
的终边上有一点
1, 2 ,则 sin
5.同时满足下列三个条件的函数为
①在 0 , π 上是增函数;②为 R 上的奇函数;③最小正周期为 π.
2
A . y tan x
【答案】 A
B. y cosx
x C. y tan
2
D. y sin x
【解析】选项 B, D 中所给函数都是偶函数,不符合;选项 C 中所给的函数的周期为 2π,不符合 .故
选 A.
6.设 f x
2x , x 0 ,
,则 f 2
f f x 2 ,x 0
A.2 【答案】 A
B.1
1
C.
4
1
D.
2
【解析】
7.已知直线 l : x a y 1 0 的横截距与纵截距相等,则直线 l 的倾斜角为
· 2·
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内, 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
作图时可先使用 2B
选择题部分
一、选择题 (本大题共 18 小题,每小题 3 分,共 54 分,每小题列出的四个选项中只有一个是符合 题目要求的,不选、多选、错选均不得分) 1.设全集为实数集 R ,已知集合 M x 1 x 2 , N x x2 3 ,则图中阴影部分所表示的集合
2018年4月浙江省普通高中学业水平模拟考试数学仿真模拟试题A(解析版)
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内, 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
作图时可先使用 2B
选择题部分
一、选择题 (本大题共 18 小题,每小题 3 分,共 54 分,每小题列出的四个选项中只有一个是符合
题目要求的,不选、多选、错选均不得分)
3
B.
2
· 2·
4. lg( 1 )2 100
A. 4
【答案】 A
B. 4
C. 10
D . 10
【解析】
,故选 A.
5.下列函数中,最小正周期为
π
的是
2
A . y 2018 sin x B. y sin 2018 x C. y cos2x
【答案】 D
π D . y sin(4x )
4பைடு நூலகம்
【解析】函数 y=2018sinx 的最小正周期 T=2π;函数 y=sin 2018x 的最小正周期
函
数
y=-cos2x 的最小正周期
函数 y=
6.函数 f ( x) 2x A . [ 2,2]
4 x2
的定义域为
x
C. ( , 2] [2, )
【答案】 B
的最小正周期
B . [ 2,0) (0,2] D . ( 2,0) (0,2)
,故选 D.
7.直线 y x 与直线 x y 2 0 的距离为
A.2
1.已知集合 P { 3, 2, 1,0} , Q { x N| 2 x 2} ,那么集合 P Q 中元素的个数是
A.2
B.3
C.4
D .5
【答案】 D
【解析】因为 Q { x N | 2 x 2} {0,1} ,所以 P Q { 3, 2, 1, 0,1}, 故选 D.
2018年4月浙江省高中学业水平考试数学试题答案
222018年4月浙江省学业水平考试数学试题答案、选择题(本大题共18小题,每小题3分,共54分.)、填空题 (本大题共 4小题, 每空3分,共15分.)19.二,320.-221. [I22.、33、解答题 (本大题共3小题, 共31分.)23 .解:(I)因为a^ a i 4d ,将@ = 2 ,= 6代入,解得数列 a 的公差d = 1 ;通项 a n = a 1 (n - 1)d = n 1. (n)将(I)中的通项 a n 代入b n =2an =2n1.由此可知、b n [是等比数列,其中首项 b 1 =4,公比q = 2.设点P 的坐标为P(t,t 2 -1),且t 1,则所以k 2= 2为定值.解得 t 二.2 .因为P 是第一象限内的点,所以t — 2.得点P 的坐标为PC ,2,1).联立直线PB 与AD 的方程yp+^XxT),解得点D 的坐标为D^2y =(1-J2)(x+1),21所以△ PAD 的面积S = 1 • AB24. 所以数列£n [的前n 项和S n解:(I)由题意得点 代B 的坐标分别为 b 1(1-q )=2n2_41 - qA(-1,0) , B(1,0).k 1t 2 -1t -1 二 t -1, k 2t 2-1t -1 (n)由直线 PA, AD 的位置关系知因为AD _ PB ,所以kAD - - k1 = 1 一 t .k AD k 2 = (1 - t)(t 1) - -1,44t, •一 3(2 —t),2(t -1),2.25.解:(I)当0:::t^1时,多边形门是三角形(如图①) ,边长依次为t, 3t,2t ;当1 :::t :::2时,多边形「是四边形(如图②) ,边长依次为,0 :: t- 1, 8t 228t-20^ +20,1 <^2,宀込1g(t、_』23 t g(t) - 111丨】+ — + t 3(2-t) 2(t-1) ,0 :: t< 1, -,1 :: t :2. (n)由(I )中 f (t)的解析式可知,函数f (t)的单调递减区间是5(1-),所以 4ytBoAxxx = t(第25题图②)x = t A(第25题图①)445 (a ,b )- (1,:). 45另一方面,任取t 1,t^ (1,-),且t 141 -(t2 -t 1 )[ t 1t 25 由 1 ■-匕:::t 24Q Q.3(2 -tj(2 -12)—-.从而 0 :: 2(t 1 T)(t 2 - 1) ::3(2 - tj(2 - t 2),161 1即 02(t 1 -1)(t 2 -1) 一3(2 7)(2 -t 2)5所以g(tj-g(t 2)• 0,得g(t)在区间(1-)上也单调递减.证得45、(a,b)珂1,;).45所以,存在区间(1,—),使得函数f(t)和g(t)在该区间上均单调递减,且b - a 的最大值为-.:::t2,则g(tj - g(t 2)---------------- ]. 7)(2-t 2) 1 0::: 2(t 1 -1)住2-1)辽,82(t 1 —1)(t 2 -1) 一 3(2知,1 :::也:::2516。
2018年4月浙江省学考选考稽阳联谊学校高三数学联考及参考答案解析
2018年4月稽阳联谊学校高三联考数学试题考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷密封线内填写学校、班级和姓名.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束,只需上交答题卷.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{211}P x x =-<,{0,1,2,3,4}Q =,则P Q = ()A .{2,3,4}B .(0,1)C .{0,1}D .∅2.若x y 2=是双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线,则C 的离心力为()A .3BCD .33.已知实数y x ,满足y x )21()21(<,则下列关系式中恒成立的是()A .tan tan x y>B .22ln(2)ln(2)x y +>+C .11x y <D .33x y >4.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥-≥+≤020y x y x m x (0>m )表示的平面区域为Ω,点),(y x P 为Ω内(含边界)的点,当y x +2的最大值为8时,Ω的面积为()A .12B .8C .4D .65.已知)1,0(),3(log )(2≠>+-=a a ax x x f a 满足:对任意]2,(,21ax x -∞∈,不等式0)()(2121<--x x x f x f 恒成立,则a 的取值范围是()A .(1,+)∞B.C.)+∞D .(0,1)6.已知数列{}n a 是等比数列,前n 项和为n S ,则“7352a a a +>”是“012<-n S ”的()A .充分不必要条件B .必要不充分条件C .充要条件2ab e >D .既不充分又不必要条件7.函数⎪⎩⎪⎨⎧≥<++=0,20,142)(2x e x x x x f x 的图象上关于坐标原点对称的点共有()A .0对B .1对C .2对D .3对8.甲乙两个人玩一种游戏,甲乙两人分别在两张纸片上各写一个数字,分别记为b a ,,其中b a ,必须是集合{}6,5,4,3,2,1中的元素,如果b a ,满足1≤-b a ,我们就称两人是“友好对”.现在任意找两人玩这种游戏,则他们是“友好对”的概率是()A .187B .92C .185D .949.过点)0,3(P 作直线02)(2=+++b y b a ax (b a ,不同时为零)的垂线,垂足为M ,已知点)3,2(N ,则当b a ,变化时,MN 的取值范围是()A .55,55[+-B.[5C.[5,5+D.[0,5+10.)(x f 是定义在R 上的函数,若504)2(=f ,对任意R x ∈,满足)1(2)()4(+≤-+x x f x f 及)5(6)()12(+≥-+x x f x f ,则=)2()2018(f ()A .2017B .2018C .2019D .2020非选择题部分(共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2018年4月浙江省高中学业水平考试数学试题(解析版)
2018年4月浙江省普通高校招生学考科目考试数学试题一、选择题(每小题3分,共54分)1.已知集合P={x|0≤x<1},Q={x|2≤x≤3},记M=P∪Q,则( )A. {0,1,2}⊆MB. {0,1,3}⊆MC. {0,2,3}⊆MD. {1,2,3}⊆M【答案】C2.函数f(x)=+的定义域是( )A. {x|x>0}B. {x|x≥0}C. {x|x≠0}D. R【答案】A3.将不等式组,表示的平面区域记为Ω,则属于Ω的点是( )A. (−3,1)B. (1,−3)C. (1,3)D. (3,1)【答案】D【解析】将点逐一代入,知D符合4.已知函数f(x)=log2(3+x)+log2(3−x),则f(1)=( )A. 1B. log26C. 3D. log29【答案】C5.双曲线x2−=1的渐近线方程是( )A. y=±xB. y=±xC. y=±xD. y=±3x【答案】C6.如图,在正方体ABCD−A1B1C1D1中,直线A1C与平面ABCD所成角的余弦值是( )B1C1D1A1DCBAA .B .C .D .【答案】 D【解析】直线A 1C 与平面ABCD 所成角即为1ACA ∠,求得1cos ACA ∠= 7. 若锐角α满足sin (α+)=,则sinα=( )A .B .C .D .【答案】 D【解析】由诱导公式知3cos 5α=, α是锐角,4 sin 5α∴= 8. 在三棱锥O −ABC 中,若D 为BC 的中点,则=( )A . +−B . ++C . +−D . ++【答案】 C【解析】1()2AD OD OA OB OC OA =-=+-,故选C 9. 设{a n },{b n }(n ∈N *)时公差均不为零的等差数列,下列数列中,不构成等差数列的是( )A . {a n ∙b n }B . {a n +b n }C . {a n +b n +1}D . {a n −b n +1}【答案】 A10.不等式|2x−1|−|x+1|<1的解集是( )A. {x|−3<x<}B. {x|−<x<3}C. {x|x<−3或x>}D. {x|x<−或x>3}【答案】B【解析】分111,1,22x x x<--≤≤≥三种情况打开绝对值讨论,可得11.用列表法将函数f(x)表示为则( )A. f(x+2)为奇函数B. f(x+2)为偶函数C. f(x−2)为奇函数D. f(x−2)为偶函数【解析】显然偶函数不可能,又f(1)= -1,f(3)=1,则f(-1+2)= -f(1+2),符合f(-x+2)= -f(x+2),故选A12. 如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形,若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是( ) A . x 2+y 2−x +2y +1=0 B . x 2+y 2+2x −2y +1=0C . x 2+y 2−2x +y −1=0D . x 2+y 2−2x +2y −1=0【答案】B13. 设a 为实数,则“21a a >”是“21a a>”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A 【解析】由21a a >,得1a >;由21a a>,得0a <或1a >,故选A14. 在直角坐标系xOy 中,已知点A (0,−1),B (2,0),过A 的直线交x 轴于点C (a ,0),若直线AC 的倾斜角是直线AB 倾斜角的2倍,则a =( )A .B .C . 1D .【答案】B【解析】设直线AB 的倾斜角为θ,则直线AC 的倾斜角为2θ,011 tan 202AB k θ+===- 22t a n3t a n 21t a n 4AC k θθθ∴===-,故选B15. 甲、乙两个几何体的三视图分别如图1,图2所示,分别记它们的表面积为S 甲,S 乙,体积为V 甲,V 乙,则( ) A . S 甲>S 乙,V 甲>V 乙B . S 甲>S 乙,V 甲<V 乙C . S 甲<S 乙,V 甲>V 乙D . S 甲<S 乙,V 甲<V 乙【答案】B【解析】图甲为正方体挖去一个棱长为a 的小正方体,图2为正方体挖去一个小三棱柱,显然S S V V ><甲乙甲乙,16. 如图,F 为椭圆+=1(a >b >0)的右焦点,过F 作x 轴的垂线交椭圆于点P ,点A ,B分别为椭圆的右顶点和上顶点,O 为坐标原点,若△OAB 的面积是△OPF 面积的倍,则该椭圆的离心率是( ) A . 或 B . 或C . 或D . 或【答案】D【解析】将x c =代入,得2(,)b P c a-,由已知,2251125222OABOPF b S S ab c a bc a∆∆=⇒=⋅⇒=图2图1俯视图俯视图42224221425() 2525405a a c c e e e ⇒=-⇒-+=⇒=或245e =,故选D17. 设a 为实数,若函数f (x )=2x 2−x +a 有零点,则函数y =f [f (x )]零点的个数是( )A . 1或3B . 2或3C . 2或4D . 3或4【答案】C 【解析】18. 如图,设矩形ABCD 所在平面与梯形ACEF所在平面相交C BADEF于AC,若AB=1,BC=,AF=FE=EC=1,则下列二面角的平面角大小为定值的是A. F−AB−C B. B−EF−DC. A−BF−CD. B−AF−D【答案】B【解析】二、填空题(每空3分,共15分)19. 已知函数f (x )=2sin (2x +)+1,则f (x )的最小正周期是_________________________,f (x )的最大值是_________________________【答案】;3π20. 若平面向量a ,b 满足2a +b =(1,6),a +2b =(−4,9),则a ∙b =____________________【答案】2-【解析】由2a +b =(1,6),a +2b =(−4,9),解得(2,1),(3,4), 2(3)142a b a b ==-∴⋅=⨯-+⨯=-21. 在△ABC 中,已知AB =2,AC =3,则cosC 的取值范围是_______________________【答案】3【解析】222255cos 26663a b c a a C ab a a +-+===+≥=<∴∈又cosC1,cosC22.若不等式2x2−(x−a)|x−a|−2≥0对于任意x∈R恒成立,则实数a的最小值是________________【解析】三、解答题(3小题,共31分)23.(10分)在等差数列{a n}(n∈N*)中,已知a1=2,a5=6(1)求{a n}的公差d及通项a n(2)记b n=(n∈N*),求数列{b n}的前n项和S n【解析】24.(10分)如图,已知抛物线y=x2−1与x轴相交于A,B两点,P是该抛物线上位于第一象限内的点(1)记直线P A,PB的斜率分别为k1,k2,求证:k2−k1为定值(2)过点A作AD⊥PB,垂足为D,若D关于x轴的对称点恰好在直线P A上,求△P AD的面积【解析】25.(11分)如图,在直角坐标系xOy中,已知点A(2,0),B(1,),直线x=t(0<t<2),将△OAB分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为f(t),Ω各边长的倒数和为g(t)(1)分别求函数f(t)和g(t)的解析式(2)是否存在区间(a,b),使得函数f(t)和g(t)在该区间上均单调递减?若存在,求b−a的最大值,若不存在,说明理由【解析】。
2018年4月浙江学考数学真题试卷及答案(wold解析版)
2018年4月浙江学考数学真题试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均你不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A .{}M ⊆2,1,0B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 解析:答案为C. [)[]0123M P Q ==,,,1不包含再M 中,∴{}M ⊆3,2,0,故选C . 2. 函数xx x f 1)(+=的定义域 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 解析:答案为A. 由题意得 00≠≥x x 且,即0x >,故选A.3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A .(3,1)-B .)3,1(-C .)3,1(D .)1,3(解析:答案为D. .特殊值代入检验法,由答案A 、C 两点直接代入01≥+-y x 不符合题意,由答案B 代入10x y +-≥不符合题意,故选D . 另外可以画出不等式组的可行域,直接观察得到答案D 满足.4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 2 解析:答案为C. 由2222(1)log (31)log (31)=log 4log 2=3f =++-+,故选C.5. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 解析:答案为C.因为1,a b =y =,故选C. 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .36解析:答案D. 设正方体的棱长为a ,连接AC ,则1ACA ∠为直线C A 1与 平面ABCD 所成角,在1t R A AC ∆中,1cos ACA ∠==故选D. ABCD1A1D 1C 1B(第6题图)7. 若锐角α满足53)2πsin(=+α,则=αsin A .52 B .53 C .43 D .54解析:答案为D. 因为πsin()cos 2αα+=,又因为α为锐角,而3cos 5α=,所以4sin 5α=,故选D. 8.在三棱锥ABC O -中,若D 为BC 的中点,则=A .1122OA OC OB +- B . 1122OA OB OC ++ C .1122OB OC OA +- D . 1122OB OC OA ++解析:答案为C. 1()2OD OC OB =+,AD AO OD =+1122AD AO OD OB OC OA ∴=+=+-,故选C.9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A .{}n n a b ⋅B .{}n n a b +C .{}1n n a b ++D .{}1n n a b +-解析:答案为 A. 因为{}n a ,{}n b 都为等差数列,由等差数列的性质可知, 数列{}n n a b +、{}1n n a b ++、{}1n n a b +-,而{}n n a b ⋅不是等差数列,故选A.10.不等式1112<+--x x 的解集是A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或解析:答案为B.+2112113,(1)212,()2x x x x x x x x ⎧⎪-≤-⎪⎪--+=--<<⎨⎪⎪-≥⎪⎩,()211x x -+<⎧∴⎨≤-⎩或31112x x -<⎧⎪∴⎨-<<⎪⎩或2112x x -<⎧⎪∴⎨≥⎪⎩,解不等式组得 133x -<<;另外,可用特殊值代入法,2x =-代入A, 4x =-代入C, 1x =-代入D,这3个答案都排除,4sin 5α=,故选B..11.用列表法将函数)(x f 表示为 ,则A .)2(+x f 为奇函数B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数 解析:答案为A.(1)1,(2)0,(3)1f f f =-==,(1)(3)f f ∴=-,则()f x 关于点(2,0)对称,当点(2,0)左移2个单位则为原点,所以)2(+x f 为奇函数,故选A.12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A .01222=++-+y x y xB .012222=+-++y x y xC .01222=-+-+y x y x D .012222=-+-+y x y x 解析:答案为B. 因为4个圆的圆心坐标分别为:()1,1,()1,1-,()1,1--,()1,1-,半径1r =,只有答案B 满足,故选B.13. 设a 为实数,则“21a a >”是“a a 12>”的A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件 解析:答案为A.由21a a >知0a >,所以21a a >⇒a a 12>成立,即充分条件成立,当a a 12>,0a <时,a a 12>⇒21aa >不成立,必要条件不成立,故选A. 14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=a A .14B .34C .1D .43解析:答案为B. 设直线AB 的倾斜角为α,则直线AB 的倾斜角为2α,则1tan 2AB K α==, 2122tan 42tan 211tan 314ACK ααα⨯====--,即143c =,则34c =,故选B. 15. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则 16.15题图①)侧视图15题图②)A .乙甲乙甲,V V S S >>B . 乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<解析:答案为B. 因为图①是一个边长为2a 的正方体截去一个边长为a 的小正方体,()()23233=6224,27S a a V aa a ⨯==-=甲甲;图②是一个边长为2a 的正方体截去一个边长为a 的小正方体的12,()()232223335115=6224,27222S a a a V a a a a ⨯-<=-=>乙乙,故选B.16.如图,设F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A .52或53 B .51或54 C . 510或515 D .55或552解析:答案为D. 由题意得:52OAB OPF S S ∆∆=,所以151222OA OB OF PF ⋅=⨯⋅,即2151222b a b c a⋅=⨯⋅,得 42425+25=0e e ∴-, 解得:24=5e或21=5e ,e ∴或e = D. 17.设a 为实数,若函数a x x xf +-=22)(有零点,则函数)]([x f f y =零点的个数是 A .1或3 B . 2或3 C . 2或4 D .3或4 解析:答案为C.2()2f x x x a =-+,1420a ∴∆=-⨯≥,18a ∴≤① 当18a =时,2211[()](2284y f f x f x x f x ⎡⎤⎛⎫==-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=222221111122222044844x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫---+=--=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦2112044x ⎛⎫--= ⎪⎝⎭,方程21148x ⎛⎫-= ⎪⎝⎭有两解,即有2个零点.② 当18a <时,()2222[()](2)2(2)2y f f x f x x a x x a x x a a ==-+=-+--++ ()2222(2)2x x a x x =-+--,令22x x t -=,则()()2222()24120f t t a t t a t a =+-=+-+=关于t 的方程,()22418281a a a ∴∆=--⨯=+,又18a <, 所以,关于t 的函数有两个零点,则方程220x x t --=有四个解,因此, 函数)]([x f f y =有4个零点.综上①②所述,函数)]([x f f y =有2个或4个零点. 故选C. 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B --解析:答案为B. 当平面ACEF ABCD ⊥底面矩形时,过点F 作FO AC ⊥交AC 于O , 连,接BF ,,BO AC AC AC ⊥,即EF FO ⊥,所以EF FOB ⊥平面,OFB ∠是二面角B EF A --的平面角,在t R FOB ∆中,FO OB ==,4OFB π∠=∴,又矩形的对称性,平面BEF 与平面ACEF 所成二面角的平面角,平面DEF 与平面ACEF 所成二面角的平面角相等,都为4π,所以二面角D EF B --的平面角为2π. 当梯形ACEF 所在平面旋转时,平面BEF 与梯形ACEF ,平面DEF 与梯形ACEF ,所成的两个二面角的平面角始终为定值2π,故选B.二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()2sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是▲ .解析: 最小正周期22T ππ==,()=2+1=3f x 最大. ABCDE F (第18题图)20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .解析:由 ()21,62(4,9)a b a b ⎧+=⎪⎨+=-⎪⎩,解得:()()2,1-3,4a b ==, ()23+14=2a b ∴⋅=⨯-⨯-.21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .解析:由余弦定理得:22222945cos 2236AC BC AB a a C AC BC a a+-+-+===⋅⨯15116663a a ⎛⎫=+≥⨯=⨯=⎪⎝⎭. 而cos 1C ≤,cos 1C ≤≤. 22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ . 解析:分类讨论法(1)当0x a -≥时,即x a ≥,则()22220x x a ---≥即22220x ax a +--≥,x R ∈恒成立,则222448880a a a ∆=++=+≤.a ∴不存在.(2)当0x a -<时,即x a <,则()22220x x a +--≥,()22220x x a +--≥∴,即223220x ax a -+-≥,x R ∈恒成立,则()2244320a a ∆=-⨯-≤, 23a ≥∴,即a ∴或a ≤∴所以,实数a三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ) 求{}n a 的公差d 及通项n a ;(Ⅱ) 记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.xyO ABPD(第24题图)24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(Ⅰ) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(Ⅱ)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy中,已知点(2,0),)A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由.(第25题图)2018年4月浙江学考数学参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n .(2)将(1)中的通项n a 代入 122+==n a n n b .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D .所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,; 当21<<t 时,多边形Ω是四边形(如图②),边长依次为2),1(2),2(3,--t t t(第25题图②) 所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22ttttttf⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(tttttttg(Ⅱ)由(1)中)(tf的解析式可知,函数)(tf的单调递减区间是)45,1(,所以)45,1(),(⊆ba.另一方面,任取45,1(,21∈tt,且21tt<,则)()(21tgtg-])2)(2(31)1)(1(211)[(21212112ttttt ttt-----+-=.由45121<<<tt知,1625121<<t t,81)1)(1(221<--<tt,1639)2)(2(321>--tt.从而<--<)1)(1(221tt)2)(2(321tt--,即0)2)(2(31)1)(1(212121>-----tttt所以0)()(21>-tgtg,得)(tg在区间)45,1(上也单调递减,证得45,1(),(=ba.所以,存在区间)45,1(,使得函数)(tf和)(tg在该区间上均单调递减,且ab-的最大值为41.。
2018年4月浙江省普通高校招生学考数学试卷
平面向量数量积的性质及其运算律
向量加减混合运算及其几何意义
【解析】
根据向量的坐标运算和向量的数量积即可求出.
【解答】
解:∵平面向量 , 满足 , ,
∴ ,
∴ , ,
∴ .
故答案为: .
【答案】
【考点】
三角函数的最值
基本不等式在最值问题中的应用
余弦定理
【解析】
由已知利用余弦定理,基本不等式及余弦函数的性质即可得解.
【解析】
根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.
【解答】
解:若“ ”,则 ,则“ ”成立,
若 ,当 时不等式 也成立,但此时 不成立,
即“ ”是“ ”的充分不必要条件.
故选 .
14.
【答案】
B
【考点】
二倍角的正切公式
斜率的计算公式
直线的倾斜角
【解析】
设直线 的倾斜角 是直线 倾斜角 的 倍,即有 ,运用两点的斜率公式和二倍角公式,解方程可得 的值.
正方体棱长为 ,则 , ,
, .
∴ , .
故选 .
16.
【答案】
D
【考点】
椭圆中的平面几何问题
椭圆的离心率
【解析】
由 ,可得 .
由 , , ,解得 即可得 或 .
【解答】
解:设 ,则 ,可得 .
, ,
∵ 的面积是 面积的 倍,
∴ ,
,
,
∴ ,
∴
或 .
故选 .
17.
【答案】
C
【考点】
根的存在性及根的个数判断
【解析】
先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年4月浙江学考数学试卷及答案解析满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A .{}M ⊆2,1,0B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 解析:答案为C. [)[]0123M P Q ==,,,1不包含再M 中,∴{}M ⊆3,2,0,故选C .2. 函数xx x f 1)(+=的定义域 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 解析:答案为A. 由题意得 00≠≥x x 且,即0x >,故选A. 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A .(3,1)-B .)3,1(-C .)3,1(D .)1,3(解析:答案为D. .特殊值代入检验法,由答案A 、C 两点直接代入01≥+-y x 不符合题意,由答案B 代入10x y +-≥不符合题意,故选D . 另外可以画出不等式组的可行域,直接观察得到答案D 满足.4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 2 解析:答案为C. 由2222(1)log (31)log (31)=log 4log 2=3f =++-+,故选C.5. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 解析:答案为C. 因为1,3a b ==,所以渐近线方程为3y x =±,故选C.6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .36解析:答案D. 设正方体的棱长为a ,连接AC ,则1A CA ∠为直线C A 1与(第6题图)平面ABCD 所成角,在1t R A AC ∆中,1cos ACA ∠==故选D. 7. 若锐角α满足53)2πsin(=+α,则=αsin A .52 B .53 C .43 D .54解析:答案为D. 因为πsin()cos 2αα+=,又因为α为锐角,而3cos 5α=,所以4sin 5α=,故选D. 8.在三棱锥ABC O -中,若D 为BC 的中点,则=ADA .1122OA OC OB +- B . 1122OA OB OC ++ C .1122OB OC OA +- D . 1122OB OC OA ++解析:答案为C. 1()2OD OC OB =+,AD AO OD =+1122AD AO OD OB OC OA ∴=+=+-,故选C.9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A .{}n n a b ⋅B .{}n n a b +C .{}1n n a b ++D .{}1n n a b +-解析:答案为A. 因为{}n a ,{}n b 都为等差数列,由等差数列的性质可知, 数列{}n n a b +、{}1n n a b ++、{}1n n a b +-,而{}n n a b ⋅不是等差数列,故选A.10.不等式1112<+--x x 的解集是A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或解析:答案为B.+2112113,(1)212,()2x x x x x x x x ⎧⎪-≤-⎪⎪--+=--<<⎨⎪⎪-≥⎪⎩,()211x x -+<⎧∴⎨≤-⎩或31112x x -<⎧⎪∴⎨-<<⎪⎩或2112x x -<⎧⎪∴⎨≥⎪⎩,解不等式组得 133x -<<;另外,可用特殊值代入法,2x =-代入A,4x =-代入C, 1x =-代入D,这3个答案都排除,4sin 5α=,故选B..11.用列表法将函数)(x f 表示为 ,则A .)2(+x f 为奇函数B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数 解析:答案为A.(1)1,(2)0,(3)1f f f =-==,(1)(3)f f ∴=-,则()f x 关于点(2,0)对称,当点(2,0)左移2个单位则为原点,所以)2(+x f 为奇函数,故选A.12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A .01222=++-+y x y x B .012222=+-++y x y x C .01222=-+-+y x y x D .012222=-+-+y x y x 解析:答案为B. 因为4个圆的圆心坐标分别为:()1,1,()1,1-,()1,1--,()1,1-,半径1r =,只有答案B 满足,故选B.13. 设a 为实数,则“21aa >”是“a a 12>”的 A .充分不必要条件 B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件 解析:答案为A.由21a a >知0a >,所以21aa >⇒ a a 12>成立,即充分条件成立,当a a 12>,0a <时,a a 12>⇒21aa >不成立,必要条件不成立,故选A. 14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=a A .14B .34C .1D .43解析:答案为B. 设直线AB 的倾斜角为α,则直线AB 的倾斜角为2α,则1tan 2AB K α==, 2122tan 42tan 211tan 314ACK ααα⨯====--,即143c =,则34c =,故选B.(第12题图)15. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A .乙甲乙甲,V V S S >>B . 乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<解析:答案为B. 因为图①是一个边长为2a 的正方体截去一个边长为a 的小正方体,()()23233=6224,27S a a V a a a ⨯==-=甲甲;图②是一个边长为2a 的正方体截去一个边长为a 的小正方体的12,()()232223335115=62224,27222S a a a a V a a a a ⨯-+<=-=>乙乙,故选B.16.如图,设F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A .52或53B .51或54C . 510或515D .55或552解析:答案为D. 由题意得:52OAB OPF S S ∆∆=,所以151222OA OB OF PF ⋅=⨯⋅,即2151222b a b c a ⋅=⨯⋅,得 42425+25=0e e ∴-, 解得:24=5e 或21=5e , 25=5e ∴或55e =,故选D. 17.设a 为实数,若函数a x x xf +-=22)(有零点,则函数)]([x f f y =零点的个数是 A .1或3 B . 2或3 C . 2或4 D .3或4解析:答案为C.2()2f x x x a =-+,1420a ∴∆=-⨯≥,18a ∴≤① 当18a =时,2211[()](2)284y f f x f x x f x ⎡⎤⎛⎫==-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦正视图侧视图俯视图 (第15题图①)正视图侧视图俯视图 (第15题图②)=222221111122222044844x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫---+=--=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦2112044x ⎛⎫--= ⎪⎝⎭,方程21148x ⎛⎫-= ⎪⎝⎭有两解,即有2个零点.② 当18a <时,()2222[()](2)2(2)2y f f x f x x a x x a x x a a ==-+=-+--++ ()2222(2)2x x a x x =-+--,令22x x t -=,则()()2222()24120f t t a t t a t a =+-=+-+=关于t 的方程,()22418281a a a ∴∆=--⨯=+,又18a <, 所以,关于t 的函数有两个零点,则方程220x x t --=有四个解,因此,函数)]([x f f y =有4个零点.综上①②所述,函数)]([x f f y =有2个或4个零点. 故选C. 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B --解析:答案为B. 当平面ACEF ABCD ⊥底面矩形时,过点F 作FO AC ⊥交AC 于O , 连,接BF ,,BO AC AC AC ⊥,即EF FO ⊥,所以EF FOB ⊥平面,OFB ∠是二面角B EF A --的平面角,在t R FOB ∆中,32FO OB ==,4OFB π∠=∴,又矩形的对称性, 平面BEF 与平面ACEF 所成二面角的平面角,平面DEF 与平面ACEF 所成二面角的平面角相等,都为4π,所以二面角D EF B --的平面角为2π. 当梯形ACEF 所在平面旋转时,平面BEF 与梯形ACEF ,平面DEF 与梯形ACEF ,所成的两个二面角的平面角始终为定值2π,故选B.二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()2sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是▲ .解析: 最小正周期22T ππ==,()=2+1=3f x 最大.(第18题图)20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .解析:由 ()21,62(4,9)a b a b ⎧+=⎪⎨+=-⎪⎩,解得:()()2,1-3,4a b ==, ()23+14=2a b ∴⋅=⨯-⨯-.21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .解析:由余弦定理得:22222945cos 2236AC BC AB a a C AC BC a a+-+-+===⋅⨯15116663a a ⎛⎫=+≥⨯=⨯=⎪⎝⎭. 而cos 1C ≤,cos 1C ≤≤. 22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ . 解析:分类讨论法(1)当0x a -≥时,即x a ≥,则()22220x x a ---≥即22220x ax a +--≥,x R ∈恒成立,则222448880a a a ∆=++=+≤.a ∴不存在.(2)当0x a -<时,即x a <,则()22220x x a +--≥,()22220x x a +--≥∴,即223220x ax a -+-≥,x R ∈恒成立,则()2244320a a ∆=-⨯-≤, 23a ≥∴,即a ≥∴a ≤∴所以,实数a三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.解析:(Ⅰ)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (Ⅱ)将(Ⅰ)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .(第24题图)所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(Ⅰ) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(Ⅱ)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.解析:(Ⅰ)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B . 设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(Ⅱ)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S . 25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),(1,)3A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(Ⅰ) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由.解析:(Ⅰ)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,;当21<<t 时,多边形Ω是四边形(如图②),边长依次为2),1(2),2(3,--t t t(第25题图)(第25题图①)(第25题图②)所以, ⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(t t t t t tt g (Ⅱ)由(Ⅰ)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减,证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,; 当21<<t 时,多边形Ω是四边形(如图②),边长依次为2),1(2),2(3,--t t t(第25题图①)(第25题图②)所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(t t t t t tt g(Ⅱ)由(1)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减,证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.。