工程流体力学(3) PPT课件

合集下载

中职教育-《工程流体力学》课件:第3章 流体运动学(5).ppt

中职教育-《工程流体力学》课件:第3章  流体运动学(5).ppt

速度势 d udx vdy U0dx U0x
流函数 d vdx udy U0dy U0 y
y
φ=C
y
U0
o 图图33..2244 均 均流 流
Ψ=C' x
ox
U0 α
图图33..2255 一一般 般形形式式的的均流均流
工程流体力学
以上结果可推广到一般情况。
设均流速度与x轴成 角,如图3.25。
2
求:(1)该渠道的速度分布;
(2)t=0时,r=2m处流体的速度和加速度。
工程流体力学
【解】 (1)该渠道流量壁面交角1弧度时为
Q 1 t 1 2
则当交角为2π弧度时的流量为
m

1 2
t
1
源的速度势
o
1rad
m 2π
ln
r
1 2
t
1 ln
r
r=2m
流场的速度场
3.18 水渠的流动
vr
若以直角坐标表示
图图3.32.72 7汇汇
工程流体力学
(x, y) m ln x2 y2
2π (x, y) m arctg y
2π x
在实际的油田中,对于均匀等厚的地层,在稳 定情况下,油流向生产井可看作是汇。
【例3.13】如图3.28,有一扩大的水渠,两壁面交
角为1弧度,在两壁面相交处有一小缝,通过该缝 流出的体积流量 Q 1 t 1 (m3/s)。
dr
m 2π
ln
r
rθ o
φ=C x
流函数
d
r
dr
d
图3.26 源
3.26 源
v
dr
vr rd
m rd

工程流体力学课件3

工程流体力学课件3

四、过流断面,流量, 断面平均流速
与流束中所有流线垂直的横截面称为过流断面 (过水断面)。 元流的过流断面面积为 dA, 总流的为 A。 单位时间内通过元流或总流过流 断面的流体量称为流量。 QV m3/s ,L/s Qm kg/s
曲 面 平 面
若流体量以体积来度量:体积流量 若流体量以质量来度量:质量流量
重、难点
1.连续性方程、伯努利方程和动量方程。 2.应用三大方程联立求解工程实际问题。
第一节 描述流体运动的两种方法
• 静止流体(不论
p
• 运动理想流体
P= - pn
理想或实际流体) p
P= - pn
p :动压强 p :静压强
定义
流体的动压强
1 p ( p xx p yy p zz ) 3
G cos gdAdh cos gdAdz
对n-n, Fn 0
z
0
0
( p dp)dA pdA gdAdz 0
整理并积分,得
p z C g
z1 z2
p1

C1 C2
p2

z1
p1

z2
p2

• 非均匀流
是 否 接 近 均 匀 流 ?
流场 —— 充满运动流体的空间称为流场
描述流体运动的方法 拉格朗日法:跟踪 着眼于流体质点,跟 踪质点并描述其运动历程 欧拉法:布哨 着眼于空间点,研究质点 流经空间各固定点的运动特性

一、拉格朗日法:研究对象为流场中的各流体质 点,也即研究流场中每个流体质点的运动参数随 时间 t 的变化规律。
z
注:流体质点不能穿越流面两侧或流管 面内外流动。

第三节流体力学优秀课件

第三节流体力学优秀课件

总压 静压 动压
设(待测流体密度) (压强计工作量密度):
U形皮托管
总压与静压之差:
pApB()gh
pA
pB
1 2
v2
v 2gh( )
4. 升力 取两根很薄的流管,分别紧贴机翼的上下两侧。
不计高度差:
12v02p012v22p2, 12v02p012v32p3
p3p2
1
2
v22v32
§1.3.4 实际流体的运动规律 P 21
一、粘滞流体的能量方程 流体流动时相邻两层之间会产生沿切向的阻
碍相对滑动的力,称为内摩擦力(或粘滞力)
当有粘性的流体流过固体 表面时,靠近固体表面的一层 流体附着在固体表面上不动, 而流层之间由于粘滞力而层层 牵制,造成各层流速不同。
气体的粘度随温度升高而增 大,液体的粘度随温度升高而减 小。
各条流线不会相交
流管: 流体内由流线所围成的细管
二、定常流动和不定常流动 不定常流动: 流场中各点的流速是该点的位置和时间的函数:
vv(x,y,z,t) 流线的形状随时间而变
流线与流体单个质元的运动轨迹并不重合
定常流动:
流场不随时间而变化: vv(x,y,z)
流场中任一固定点的流速、压强和密度等都 不随时间变化
§1.3.1 流体运动的描述
一、流场、流线和流管
流体的流动性
各部分质元的运动情况都不同
• 欧拉法: 处理流体的运动问题时,考察流体所在的空
间中各点,研究流体的各质元在流经这些点时 所具有的速度、密度和压强等,以及这些量随 时间的变化关系。
流体速度场(流场): 在流体运动过程的每一瞬时,流体在所占据 的空间每一点都具有一定的流速。- 矢量场 流线(流场中一系列假想的曲线) 每一瞬时流线上任一点的切线方向,和流经该点 的流体质元的速度方向一致。

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

工程流体力学(3)PPT课件

工程流体力学(3)PPT课件

授课:XXX
14
工程上可将问题简化:
2021/3/9
授课:XXX
15
将翼展z方向看成无限长,三维问题简化
成二维处理。
2021/3/9
授课:XXX
16
§2 流线和流管
一、迹线
定义:流体质点运动的轨迹线。
2021/3/9
授课:XXX
17
二、流线
定义:
是表示某一瞬时流体各点流动趋势
的曲线,曲线上任一点的切线方向与该 点的流速方向重合。
1.边界随流团一起运动,其形状、大小随 时间变化。
2.边界上无质量交换, 即无流入也无流出。
系统
V
3.在系统边界上,受到 外界作用在系统边界上 的力。
系统边界
2021/3/9
授课:XXX
4
二、欧拉法 以流体质点流经流场中各空间点的
运动即以流场作为描述对象,研究流动 的方法。
它不直接追究质点的运动过程, 而是以充满运动液体质点的空间——流 场为对象。研究各时刻质点在流场中的 变化规律。
质点
du u u x u y u z dt t x t y t z t
导数:
2021/3/9
u t
u u v x 授课:XXX
u y
wu z
ax
8
同理
axd du t u tu u xv u yw u z
ayd dv t v tu v xv y vw v z
azd dw t w tu w xv w yw w z
dNNuNvNwN dt t x y z
N可是矢量也可是标量。
N ——当地变化率(局部变化率)
t
uNvNwN ——迁移变化率

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

流体动力学基础(工程流体力学).ppt课件

流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程

工程流体力学3

工程流体力学3
由此得流线的微分表达式: dx dy dz
u( x, y, z, t) v( x, y, z, t ) w( x, y, z, t)
上式可写成两个微分方程的方程组。令t为参数, 对x,y,z积分上式,便可得到两个曲面方程,这两个曲 面的交线就是流线。
四、流线的几个性质
(1)定常流动,流线不随时间变化,即流体质点必沿一确 定的流线运动,流线与迹线重合。 (2)非定常流动,流线随时间变化,即流场内任意一点的 流线在不同时刻将取不同形状,而任意一流体质点的迹 线总是确定的,故流线和迹线就不再始终重合。 (3)在同一点上某一瞬时只能有一个流动方向,因此只能 给出一条流线,所以流线一般不相交,只有在流场内速 度为零或为无穷大的那些点,流线可能相交。速度为零
A
Rh
水力半径与一般圆截面的
半径是完全不同的概念。
Rh r
例:半径为r的圆管内充满流体,Rh
所以:
Rh r
r2 2 r
r 2
6.当量直径 De: 4倍的有效截面积与湿周之比。
4A
De Rh
一般的流动都是三维空间内的流动,
例: v v( x, y, z) ,称为三维流动。 若流动参数是两个坐标的函数,则称为二维流动,若 流动参量是一个坐标的函数,则称为一维流动。 例:在一带锥度的圆管内的粘性流体的流动,流体质 点的速度与圆周角θ无关,流 体质点的速度是半径r和轴线距 离x的函数,即:u=f(r,x)。 这就是一个二维流动的问题.若
(2)流经流管中任意截面的流量为:Q
AV
cos(V
,
n)dA
2.平均流速
流经有效截面的体积流量除以有效截面面积所得的
商就是平均流速,即
V Q A
4.湿周χ : 在流体的有效截面上,流体同固体边界接触 部分的周长称为湿周,用χ表示,见图。

工程流体力学-课件全集

工程流体力学-课件全集
19世纪末,边界层理论,紊流理论,可压缩流体力学。
四、流体力学的分支:
工程流体力学、稀薄气体力学、磁流体力学、非牛顿流体 力学、生物流体力学、物理-化学流体力学。
五、流体力学的任务 解决科学研究和工农业生产中遇到的有关流体流动的问
题。 涉及的技术部门:航空、水利、机械、动力、航海、冶
金、建筑、环境。 例如:动力工程中流体的能量转换 机械工程中润滑液压传动气力传输 船舶的行波阻力(水,风的阻力) 高温液态金属在炉内或铸模内的流动 市政工程中的通风通水 高层建筑受风的作用(风载计算) 铁路,公路隧道中心压力波的传播(空气阻力) 汽车的外形与阻力的关系(流线型) 燃烧中的空气动力学特征 血液在人体内的流动 污染物在大气中的扩散
表示单位质量流体占有的体积
流体的密度与温度和压强有关,温度或压强变化时都会引
起密度的变化。
.
dρ P dP T dT
四.等温压缩系数,体积压缩系数
密度的相对变化律.
d 1
1
P dP T dT KdP TdT
K-等温压缩系数:表示在温度不变的情况下,增加单位压强所引起的 密度变化率.也称 K ---体积压缩系数:表示压强增加时,体积相对 减小,密度增加.
一:流体力学的定义
研究流体在外力作用下平衡和运动规律的一门学科,是力学的一个分支.
二:
物体
固体 : 在静止状态时能抵抗一定数量的拉力,压力和剪切力。
流体(包括液体和气体) : 不能抵抗抗力和剪切力.流体在剪切力的 作用下将发生连续不断的变形运动,直至剪切力消失为止。
流体的这种性质称为易流动性。
三:流体力学的发展
1653年,帕斯卡原理:静止液体的压强可以均匀的传遍整个流场.

工程流体力学知识点总结ppt课件

工程流体力学知识点总结ppt课件
Dp p u p v p w p t t x y z
u v w
t t x y z
第二节 几个基本概念
1. 定常流动、非定常流动(steady and unsteady flow)
若H不变, 则有/t=0(运动 参数不随时间变化)即流动 恒定, 或流动定常;
流体静力学
对于不可压缩流体 const ,对上式在流体连续区域
内进行积分,可得:
z p C g
该式为重力场中不可压缩流体的静压强基本方程式。
积分常数C可以由平衡液体自由表面边界条件确定:
z z0 , p p0
z0

p0 g

C
2019年10月30日7时35分
所以
z

p g
格朗日变数
质点物理量: 流体质点的位置坐标:
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度和加速度 u=x/t
v=y/t
ax= 2x/t2 ay= 2y/t2
w=z/t az= 2z/t2
2019年10月30日7时35分
二、 Euler法(欧拉流法体)运(重动点学)基础
基本思想:考察空间每一点上的物理量及其变化。着眼于 运动流体所充满的空间。 独立变量:空间点坐标 (x, y, z)
v v(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
速度场
u=u(x,y,z,t) v=v(x,y,z,t) w=w(x,y,z,t)
E
注意: E >2时,使用该公式。当没有约束条件时为7.13。
恩氏粘度是无量纲数。
4、液体的粘度将随压力和温度的变化发生相应的变化。

大学课程《工程流体力学》PPT课件:第三章

大学课程《工程流体力学》PPT课件:第三章

§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z

Ⅱ’

y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2

工程流体力学 第3章 流体运动基本概念和基本方程PPT课件

工程流体力学 第3章 流体运动基本概念和基本方程PPT课件
η表示单位质量流体所具有的该种物理量。 N dV
V
t时刻流体系统所具有的某种物理量N对时间的变化率为
d dN td dtVd V lt i0m (V' d )V t tt(Vd )V t
V :系统在t时刻的体积;
VVIIVIII
V’ :系统在t+δt时刻的体积。 完整编辑ppt
VVIIIII
25
工程流体力学
第三章 流体动力学基础
(Fundamental of Fluid Dynamics)
流体力学基本方程

动伯
续动量 努能
性量矩 利量
方方方 方方
程程程 程程
完整编辑ppt
1
第一节 流体运动的描述方法
一 Euler法(欧拉法 ) 基本思想:考察空间每一点上的物理量及其变化。
独立变量:空间点坐标 (x, y, z) 和时间参数 t
1 和 2 分别表示两个截面上的平均流速,并将截面取为有效截面:
11A122A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流 量等于常数。
对于不可压缩流体: A A 1 1 完整2编辑2ppt
29
第七节 动量方程 动量矩方程
——用于工程实际中求解流体与固体之间的作用力和力矩
d (v) dt t
随当 迁 体地 移 导导 导 数数 数
压强的质点导数
dppvp
dt t
密度的质点导数
dv
dt t
完整编辑ppt
5
二 Lagrange法(拉格朗日法)
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化规律。 独立变量:(a,b,c,t)——区分流体质点的标志

工程流体力学第三版课件

工程流体力学第三版课件
12
日本名古屋矢田川桥抗风性能数值模拟
压强分布 速度分布
13
涡轮机叶片流线和总压分布数值模拟。 (日本:国家空间实验室)
14
第二章 流体及其物理性质
第一节 流体的定义及特征
第二节 流体作为连续介质假设

第三节 作用在流体上的力


第四节 流体的密度

第五节 流体的压缩性和膨胀性
第六节 流体的粘性
17
第二节 连续介质假设
一、连续介质假设的提出
微观:流体是由大量做无规则运动的分子组成的,分 子之间存在空隙,但在标准状况下,1cm3液体中含有 3.3×1022个左右的分子,相邻分子间的距离约为 3.1×10-8cm。1cm3气体中含有2.7×1019个左右的 分子,相邻分子间的距离约为3.2×10-7cm
宏观:考虑宏观特性,在流动空间和时间上所采用的一 切特征尺度和特征时间都比分子距离和分子碰撞时间大 的多。
18
连续介质假设:把流体视为没有间隙地充满它所占据的整 个空间的一种连续介质,且其所有的物理量都是空间坐标 和时间的连续函数的一种假设模型:u =u(t,x,y,z)。
流体质点:也称流体微团,是指尺度大小同一切流动空 间相比微不足道又含有大量分子,具有一定质量的流体 微元。
观看动画
19
2.连续介质假设的意义
排除了分子运动的复杂性。 表征流体性质和运动特性的物理量和力学
量为时间和空间的连续函数,可用数学中连续 函数这一有力手段来分析和解决流体力学问题。
练习题
20
第三节 作用在流体上的力
一、表面力: 外界通过接触传递的力,用应力来表示。
pnn
lim Fn A0 A

《流体力学》PPT课件

《流体力学》PPT课件

h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体


二氧化碳
一氧化碳


密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务

第二节 流体的主要物理性质

第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档