第11章稳恒磁场(4-6)(大学物理)
第11章恒稳磁场(全部)
![第11章恒稳磁场(全部)](https://img.taocdn.com/s3/m/94efb6148bd63186bcebbcf9.png)
x
dB
Bx
dB sin θ
0
0I 22 R
sin θdθ
0I
0
2R
15
例3:一宽为 a 无限长载流平面,通有 电流 I , 求距平面左侧为 b 与电流共 面的 P 点磁感应强度 B 的大小。
解:以 P 点为坐标原点,向右为坐标正向;
分割电流元为无限多宽为 dx的无限长 载流直导线;
电流元电流 dI I dx a
P 点磁感应强度。
解:
分割电流元
dB
0 4
Idl sin θ r2
l actg( ) actg
dl a csc2 θdθ
r a csc
dB
0 4
Ia
csc2θ sin θdθ a2 csc2 θ
l 2
Idl
lr
o
I
1
a
dB
Px
0I sin θdθ
4 a
B
dB 2 1
0I 4a
第十章
磁场强度
1
1820年4月,丹麦物理学家奥 斯特(H.C.Oersted,1777- 1851)发现了小磁针在通电导 线周围受到磁力作用而发生偏 转。
实验发现: 磁铁对载流导线、载流导线之间或 载流线圈之间也有相互作用。
2
结论:
磁现象与电荷的运动有着密切的关系。运动
电荷既能产生磁效应,也能受磁力的作用。
实验结果:
(1)在磁场中同一场点,Fmax/q0v 为一恒量; (2)在磁场中不同场点,Fmax/q0v 的量值不同。
定义磁感应强度 B的大小:
B Fmax 国际单位制单位: q0v 特斯拉(T)
磁感应强度B的方向: 小磁针在场点处时N极的指向。
《大学物理》稳恒磁场
![《大学物理》稳恒磁场](https://img.taocdn.com/s3/m/b9063c54b0717fd5370cdceb.png)
第四节 安培环路定理
Bdl L
0 (I1 I2 )
(0 I1
I
)
2
I1
I2 I3
I1
L
I1
问(1)B 是否与回路 L 外电流有关?
(2)若
LB d l 0 ,是否回路 L 上各处
B
0
?
是否回路 L 内无电流穿过?
43
第四节 安培环路定理
安培环路定理的应用
例题 无限长载流圆柱体的磁场
33
第三节 磁通量 磁场的高斯定理
例题 如图载流长直导线的电流为 I, 试求通过矩形面积的磁通量.
B
I
l
d1 d2
o
x
解
B 0I
2π x
dΦm
BdS
0I
2πx
ldx
Φm
B dS 0Il
S
2π
d2 dx x d1
Φm
0 Il
2π
ln
d2 d1
34
第三节 磁通量 磁场的高斯定理 磁场的高斯定理
d
I
B1
r1
dl1
B2 dl2
r2
l
B1
0I ,
2 π r1
B2
0 I
2 π r2
B1
dl1
B2
dl2
0 I
2π
d
B1 dl1 B2 dl2 0
l B d l 0
40
第四节 安培环路定理
多电流情况
I1
I2
I3
l
B B1 B2 B3
Bdl
l
0(I2 I3)
推广:
➢ 安培环路定理
第13章
大学物理 稳恒磁场
![大学物理 稳恒磁场](https://img.taocdn.com/s3/m/af886a87f242336c1fb95e91.png)
第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
第十一章稳恒电流的磁场(一)作业解答
![第十一章稳恒电流的磁场(一)作业解答](https://img.taocdn.com/s3/m/8ba575f0ad51f01dc281f1e8.png)
一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
大学物理第十一章
![大学物理第十一章](https://img.taocdn.com/s3/m/8829edf5c8d376eeaeaa3121.png)
r
+ q>0
•
v
q q 00
r v
矢量式:
0 qv r B 3 4 r
E
q r 3 4 0 r 1
运动电荷除激发磁场外,同时还在其周围空间激发 电场。
q
v B
r
P
E
0 qv r B 3 4 r
E
对整个曲面,磁通量:
S
B dS
单位:韦伯(Wb)
3 静磁场的高斯定理
由磁感应线的闭合性可知,对任意闭合曲面, 进入的磁感应线条数与穿出的磁感应线条数相同, 因此,通过任何闭合曲面的磁通量为零。
B dS 0
S
Q E dS 0 S
0 qnvS d l sin dB 4 r2
设电流元内共有dN个以速度v运动的带电粒子:
d N nS d l
每个带电量为q的粒子以速度v通过电流元所在位置时, 在P点产生的磁感应强度大小为:
0 qv sin dB B dN 4 r2
其方向根据右手螺旋 、 组成的 法则,B 垂直v r 平面。q为正, 为 v r 的 B 方向;q为负, 与v r 的 B 方向相反。
q r 3 4 0 r 1
B 0 0v E
运动电荷所激发的电场和磁场是紧密联系的。
0 Idl r B dB 3 4 r
3 说明
•该定律是在实验的基础上总结出来的,不能由实验直接证明,
但是由该定律出发得出的一些结果,却能很好地与实验符合。
0 I dl r B L r 3 4
第11章-恒定磁场
![第11章-恒定磁场](https://img.taocdn.com/s3/m/626c1a17b80d6c85ec3a87c24028915f804d84f5.png)
3、当带电粒子在磁场中 垂直于此特定方向运动时 受力最大.
Fmax 大小与 q, v 无关
qv
13
11-3
磁场
磁感强度
磁感强度 B的定义:
➢ 方向:若带电粒子在磁场中某点向某方向运动
不受力,且该方向与小磁针在该点指向一致,此特
定方向定义为该点的 B 的方向.
➢ 大小:B F / qv
Fmax
➢ 运动电F荷在q磁v 场B中 受力
Idl er r2
真空磁导率 0 4π 107 N A2
P * r
Idl
任意载流导线在点 P 处的磁感强度
磁感强度叠加原理
B
dB
0I dl er
4π r2
15
11-4 毕奥—萨伐尔定律
dB 0 Idl er 毕奥—萨伐尔定律
4π r2
例 判断下列各点磁感强度的方向和大小.
1
1、5 点 :dB 0
30
11-5 磁通量 磁场的高斯定理
二 磁通量 磁场的高斯定理
磁感线密度:磁场中某点处垂直于 B矢量的单位 面积上通过的磁感线数目 N / S
磁场中某点处的磁感线密度等于该点 B矢量的大小
B N S
S B
31
11-5 磁通量 磁场的高斯定理
enB B
磁通量:通过某一曲面的 磁感线数为通过此曲面的 磁通量.
方向有关。
➢ 实验结论
1、带电粒子在磁场中某 点P 沿某一特定方向(或 其反方向)运动时不受力, 此特定方向与小磁针指向 一致.
y
F 0
v +* v
P
o
z
x
12
11-3 磁场 磁感强度
2、带电粒子在磁场中沿
第十一章 电磁学 恒定磁场 Ma 2016
![第十一章 电磁学 恒定磁场 Ma 2016](https://img.taocdn.com/s3/m/4f956cf719e8b8f67c1cb935.png)
0 qnS d lv er dB 4 r2
d B 0 qv er B d N 4 r 2 方向根据右手螺旋法则, B 垂直 v 、 正, B 为 v r 的方向;q为负, B 与
q
+
r B
v
q-
q为 r组成的平面。 v r 相反。
μ0 I B (cos θ1 cos θ 2 ) 4πr0
0 π
2
I
无限长载流长直导线的磁场
θ1 θ2
μ0 I B 2πr0
注意用右手螺旋关系判断方向。 半无限长载流长直导线的磁场
1
r0
P
θ1 θ2
2 π
μ0 I B 4πr0
I
r0
P
大学物理 电磁学
2、载流圆线圈轴线上的磁场 真空中,半径为R的载流导线,通有电流I,称圆电流。求其 轴线上一点 P的磁感强度的方向和大小
1、5 点 : dB 0
7
6 5
Idl
R
×
× 3
3、7点 : dB
0 Idl 4 π R2
4
2、4、6、8 点 :
dB
0 Idl
4π R
2
sin 45
0
大学物理 电磁学
3. 毕—萨定律应用举例
dB 的方向均
沿x 轴负方向
(1) 载流长直导线的磁场
z
dz
解
2
dB
大学物理 电磁学
磁现象与电现象有没有联系?
静电场 ?
静止的电荷 运动的电荷
1820年奥斯特:发现电流的磁效应
N
大学物理稳恒电流 电流密度
![大学物理稳恒电流 电流密度](https://img.taocdn.com/s3/m/7ef0a63bcbaedd3383c4bb4cf7ec4afe04a1b181.png)
大小:单位时间通过导体某一横截面的电量。 方向:正电荷运动的方向。
I dq dt
单位:A
二、电流密度
电流强度对电流的描述比较粗糙:
对于横截面不相等的导体, I 不能反映不同截面处及同 一截面不同位置处电流流动的情况。
电流密度矢量—描写空间各点电流大小和方向的 物理量。
方向:该点正电荷定向运动的方向。
第11章 真空中的稳恒磁场
1、静止电荷周围存在电场,电场对处于其中的电荷施加 电场力。 2、当电荷运动时,它周围不仅有电场,还有磁场。 3、磁场对运动电荷施加作用力,对静止电荷毫无影响。
学习提示:
稳恒磁场与静电场的性质完全不同,但在研究方法 上有许多类似之处,学习过程中注意与静电场进行对 比。
§11-1 稳恒电流 电流密度 一、电流强度
大小:通过垂直于该点正电荷运动方向的单位面积
上的电流强度。
dS
n
j
j
dI dS
dI
dS cos
单位:A/㎡
三、电流密度和电流强度的关系 (1)通过面元dS的电流强度
dI jds cos
(2)通过电流场中任一面积S的电流强度
四、稳恒电流
定义:电流强度I等于常量,这种
电流叫做稳恒电流。
特点:通过导线中任意两个横截面
1.电流(现象)
电流—带电粒子的定向运动。 载流子—电子、质子、离子、空穴。 电流形成条件(导体内): (1)导体内有可以自由运动的电荷; (2)导体内要维持一个电场。 (导体内有电荷运动说明导体内肯定有电场,这和静电 平衡时导体内场强为零情况不同。)
2.电流强度
电流的大小强弱,通过 电流强度来度量
的电流强度相等
I1 I2
大学物理——第11章-恒定电流的磁场
![大学物理——第11章-恒定电流的磁场](https://img.taocdn.com/s3/m/61bd1f27a5e9856a56126087.png)
单 位:特斯拉(T) 1 T = 1 N· -1· -1 A m 1 特斯拉 ( T ) = 104 高斯( G )
3
★ 洛仑兹力 运动的带电粒子,在磁场中受到的作用力称为洛仑兹力。
Fm q B
的方向一致; 粒子带正电,F 的指向与矢积 B m 粒子带负电,Fm的指向与矢积 B的方向相反。
L
dB
具体表达式
?
5
★ 毕-萨定律
要解决的问题是:已知任一电流分布 其磁感强度的计算
方法:将电流分割成许多电流元 Idl
毕-萨定律:每个电流元在场点的磁感强度为:
0 Idl r ˆ dB 4 πr 2
大 小: dB
0 Idl sin
4 πr
2
方 向:与 dl r 一致 ˆ
整段电流产生的磁场:
r 相对磁导率
L
B dB
8
试判断下列各点磁感强度的方向和大小?
8
7
6
R
1
1、5 点 :
dB 0
0 Idl
4π R 2
Idl
2
3、7 点 : dB 2、4、6、8 点 :
3 4
5
dB
0 Idl
4π R
sin 450 2
9
★ 直线电流的磁场
29
★ 磁聚焦 洛仑兹力
Fm q B (洛仑兹力不做功)
与 B不垂直
//
// cosθ
sin θ
m 2π m R T qB qB
2πm 螺距 d // T cos qB
第11章 稳恒磁场
![第11章 稳恒磁场](https://img.taocdn.com/s3/m/679cc911a2161479171128a0.png)
z
D
无限长载流长直导线的磁场 无限长载流长直导线的磁场. 载流长直导线的磁场
θ2
v B
B=
4 π r0
(cosθ 1 − cosθ 2 )
B=
I
o
µ0 I
2 π r0
θ1 → 0 θ2 → π
x
C
θ1
P y
无限长载流长直导线的磁场
B=
µ0I
2πr
I B
I
X
B
电流与磁感应 电流与磁感应强度成右螺旋关系 半无限长载流长直导线的磁场
=
I
2π R
v B
o
l
R
v v ∫ B ⋅ dl =
l
∫ 2πR
µ0 I
v dl
dl
v v µ0 I ∫l B ⋅ d l = 2 π R ∫l d l v v 设闭合回路 l 为圆形 ∫l B ⋅ dl = µ0 I 回路( 成右螺旋) 回路( l 与 I 成右螺旋)
I
o
v B
R
若回路绕向为顺时针时, 若回路绕向为顺时针时,则
z
带电粒子在磁场中沿其他方向运动时 F 垂直于 v 与特定直线所组成的平面 与特定直线所组成的平面. 当带电粒子在磁场中垂直于此特定直线运动 时受力最大. 时受力最大
F = Fmax = F⊥
Fmax ∝ qv
Fmax q , v 无关 qv 大小与
磁感应 的定义: 磁感应强度 B 的定义:当 正电荷垂直于 特定直线运动 时,受力 Fmax 将 Fmax ×v 方向 的方向. 定义为该点的 B 的方向
I I I
I S S N I N
磁通量 磁场的高斯定理
v ∆S B
大学物理第二部分电磁场与电磁学之第11章 电磁感应
![大学物理第二部分电磁场与电磁学之第11章 电磁感应](https://img.taocdn.com/s3/m/b25673630b1c59eef8c7b479.png)
vB
v
11-2 动生电动势和感生电动势
方法二 作辅助线,形成闭合回路CDEF
m B dS
S
ab
a
i
0 Ix a b ln 2 a d m
dt
0 I xdr 2r
I
方向
DC
v
X
C
D
0 I a b dx ( ln ) 2 a dt 0 Iv a b ln 2 a
11-2 动生电动势和感生电动势
动生电动势的公式 非静电力 Fm e( v B ) Fm vB 定义 E k 为非静电场强 E k e 由电动势定义 i Ek dl
运动导线ab产生的动生电动势为
i
a Ek dl ( v B ) dl
L
11-2 动生电动势和感生电动势
平动
计 算 动 生 电 动 势 分 类 均匀磁场 转动 非均匀磁场
方 法
i
i
b
d m dt
a
(v B) dl
11-2 动生电动势和感生电动势
均匀磁场
例 已知: v , B , , L 求: 解: d ( v B ) dl
a
f
感应电流
产生
阻碍
导线运动
v
感应电流
b
产生 阻碍
磁通量变化
11-1 电磁感应的基本定律
判断感应电流的方向:
1、判明穿过闭合回路内原磁场 的方向; 2、根据原磁通量的变化 , 按照楞次定律的要求确定感 应电流的磁场的方向; 3、按右手法则由感应电流磁场的 方向来确定感应电流的方向。
大学物理电磁学 第11章 恒定磁场
![大学物理电磁学 第11章 恒定磁场](https://img.taocdn.com/s3/m/80f3b7e3b52acfc788ebc912.png)
四、毕-萨定律的应用
dB
0 4
Idl r r2
方法:
(1)将电流分解为无数个电流元
(2)由电流元求dB (据毕—萨定律)
(3)对dB积分求B = dB 矢量积分须化作分量积分去做
Bx dBx , By dBy , Bz dBz
例题1 直线电流在P点的磁场
2
解:
任取电流元 I dl
所有磁现象可归纳为:
运动电荷
运动电荷
载流导体
磁场
载流导体
磁体
磁体
磁场的宏观性质:对运动电荷(或电流)有力的 作用,磁场有能量
二、磁感应强度
B 1、磁场的描述:磁感应强度
方向: 磁针静止时,N极指向即B的正方向
S
N
2、B的大小:
以磁场对载流导线的作用为例
电流元所受到的磁场力
dF Idl sin
l
r
B
3)说明磁场为非保守场称为涡旋场
静电场是保守场、无旋场
二、简证(用特例说明安培环路定理的正确性)
(1)闭合路径L环绕电流
L在垂直于导线的平面内
B 0I 2 r
L
I d
o
B
r
dl
磁感线
(2)闭合路径L不包围电流
B dl1 dl2 L
P
·
I
d
o
dl2
dl1
L2
L1
磁感线
·
Q
三、运用安培环路定理求磁场 安培环路定理适用于任何形状恒定电流的载流体
P·
Idl r
B
dB
0 4
Idl r r2
B
dB
0 4
Idl r r2
大学物理 恒定磁场
![大学物理 恒定磁场](https://img.taocdn.com/s3/m/ef203a542b160b4e767fcf9c.png)
11-1 恒定电流电流密度磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。
在11世纪,我国已制造出航海用的指南。
在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而对磁与电两种现象的研究彼此独立,毫无关联。
1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。
奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。
此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。
这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。
每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。
一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。
1820年是人们对电磁现象的研究取得重大成果的一年。
人们发现,电荷的运动是一切磁现象的根源。
一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。
电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。
11-1 恒定电流电流密度如前所述,电荷的运动是一切磁现象的根源。
电荷的定向运动形成电流,称为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。
常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为dtdq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。
第十一章稳恒磁场
![第十一章稳恒磁场](https://img.taocdn.com/s3/m/d72c94c05727a5e9846a6165.png)
式的中 单K位为有比关例。系数,其值与介质的种dB类和选用
14
在国际单位制中, μ0称为真空磁导率,
K
0
0
4
/ 4P
10r7 Tθ
mId lA
I
1
故有:
dB的方向用右手螺旋法则确定:
右手弯曲的四指由Idl的方
向沿小于180°的θ角转向 r的方向,则伸直拇指的指 向就是dB 的方向。
5
一、磁感应强度
为了描述磁场中各点的磁场强弱和方向,引入磁 感应强度。用B表示,
定义
B Fm q0v
单位:特斯拉(T)。
比值B是一个与运动电荷的性质无关、仅与该点 磁场的性质有关的常量。
B为矢量,其方向用右手螺旋法则确定:
6
特斯拉
右手螺旋法则:
将右手拇指与其余四指垂直,先将四指的指向与 7 Fm方向相同,再使其向的v方向弯曲,这时拇指
大多数生物大分子是抗磁质,少数是顺磁质,极少呈铁磁质
43
三、超导体及其磁学特性
1、超导体 超导现象:当物质的温度下降到某一定值时, 该物质的电阻完全消失的现象称为超导现象。 超导性:物质失去电阻的性质叫超导性。 超导体:具有超导性的物质叫超导体。 超导体失去电阻的温度称为临界温度Tc, 可能成为超导体的物质是:①位于元素周期表 中部的金属元素(除一价金属、铁磁质、和抗 磁质)②许多化合物或合金。
磁感应线的特点:
I
I
通电螺线管的磁感应线
磁感应线是闭合的曲线,密集的地方磁场较
强,稀疏的地方磁场较弱。
9
1、磁通量
通过某曲面磁感应线的总数 称为通过该曲面的磁通量。
用Φ表示。
通过面积元dS的磁通量为:
大学物理 第十一章 电流与磁场
![大学物理 第十一章 电流与磁场](https://img.taocdn.com/s3/m/a85d44f6284ac850ad0242f4.png)
A
E
B
Ek
凡电源内部都有非静电力,
U
非静电力使正电荷由负极经电源内部到达正极。
A
UB
引入:非静电场强
Ek
=
单位正电荷所受的非静电力。
Ek E
Fk qEk
2 电动势ε
A非
L qEk
dl
内
qEk
dl
qEk 外
dl
内 qEk
dl
★ 结论:当电荷在闭合电路中运动一周时,只有非静电力做功
右手法则,dB (
Idl
r
)
(11-29)
2. 载流导线的磁场
B
l
0 4
Idl r0
r2
(矢量积分) (11-30)
方向判断练习
• dB
r
Idl
dB
r
Idl
r
Idl
dB
dB
r
Idl
•
二、毕 - 沙 定律 的应用(重点 计算B的方法之一)
1. 一段直电流的磁场
I
讲义 P.324 例 11-1
一 磁现象 磁场 — 运动电荷周围存在的一种物质。
1. 运动电荷 电流
磁场;
2. 磁场可脱离产生它的“源”独立存在于空间;
3. 磁力通过磁场传递,作用于运动电荷或载流导线;
4. 磁场可对载流导线做功,所以具有能量。
演示磁场电流相互作用
I
SN
二、磁感应强度 B
1. 实验结果
z
F
B
F q, v, B, sin
五、欧姆定律 (Ohm’s law)
R是与U 和I 无关的常量。
I U R
第十一章恒定电流的磁场作业磁介质磁介质中的安培环路定理小结
![第十一章恒定电流的磁场作业磁介质磁介质中的安培环路定理小结](https://img.taocdn.com/s3/m/cbe9fd8f240c844769eaeeec.png)
作业11.1、11.211.4、11.8、11.9、11.15、11.1787磁介质90顺磁质B B >(铝、氧、锰等)弱磁质B B >>铁磁质(铁、钴、镍等)强磁性物质B B <抗磁质(铜、铋、氢等)弱磁质抗磁质顺磁质SI SI B L宏观上构成沿介质表面的等效环形电流, 称为表面束缚电流或磁化电流。
B AI 0I cbad.l113五、磁场对载流导线和运动电荷的作用(1)磁场对载流导线的作用力—安培力微分形式积分形式B l I F ⨯=d d Bl I F l⨯=⎰d 其中,是载流导线上的电流元,是所在处的磁感应强度。
l Id l I d B(2)均匀磁场对平面载流线圈的作用合力=∑F 磁力矩B p M m ⨯=式中,是载流线圈的磁矩,,其中N 是线圈匝数,I 是线圈中的电流,S 是线圈的面积,且S 的方向与电流环绕方向满足右螺旋法则。
m p S NI p m=114(3)磁力的功⎰=m1m2m d ΦΦΦI A mm1m2)(ΦI ΦΦI ∆=-=磁力的功等于电流强度I 乘以通过回路磁通量的增量∆Φm 。
(4)磁场对运动电荷的作用Bq F⨯=v 洛仑兹力:116六、磁介质(1)磁介质的分类抗磁质1<r μ顺磁质1>r μ铁磁质1>>r μ(2)磁介质的磁化在外磁场中固有磁矩沿外磁场的取向或感应磁矩的产生使磁介质的表面(或内部)出现束缚电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
a R2 I
O
R1
解:由于空心部分的存在,磁场的柱对称性被破坏 , 因而
此题解法需用补偿法,使电流恢复对轴线的对称性。
(应保持原有的电流密度不变.)
由前面的结果
0Ir
B
2R2
0I 2r
rR rR
J
J
J
I
其电流电流密度: J R12 R22
1)大圆柱轴线上的磁感应强度B0 大圆柱电流在轴线O上产生的磁场为零
B
0nI 0
内 外
B
a
b
d
cI
3. 环形载流螺线管的磁场分布
已知:I 、N、R1、R2
N——导线总匝数 因为场具有轴对称
磁力线分布如图
作积分回路如图
方向
右手螺旋
.. . . .. .
. .
. .. . . . . . .
R1R2 r
... .. . . .
. ... . ......
I
计算环流
B dl Bdl 2 rB 利用安培环路定理求 B
B dl 0NI
B
0 NI 2r
内
0 外
当 R1、R2 R2 R1
N
n
2R1
B 0nI
.. . . .. .
. .
. .. . . . . . .
R1R2 r
... .. . . .
. ... . ......
B
O
R1 R2
B
0I 2r
I
rI
(3) r R1, B 0
电
电荷均匀分布 电流均匀分布
场 、 磁
长直线 E 2 0r
场 中 典 型
长 直
内
圆
柱外
面
E0
E 2 0r
B 0I 2r
B0
B 0I 2r
结 论 的
长 直
内
圆
r E 2 0 R2
比 较
柱 体
外
E
2 0r
B
0 Ir 2R 2
B 0I 2r
2. 长直载流螺线管的磁场分布
即
B0
0 J a2a 2 R12
0 Ia3 2 R12 (R12
R22 )
同学们自己做
一无限长圆柱形 铜导体,半径为R,通 有均匀分布的电流 I .今取一矩形平面 S (长:1m,宽:2R),如图 阴影部分所示.求通过 该矩形平面的磁通量. (05年)
I
S 1m
2R
提示:因为内外磁场不连续,要分开计算.
已知:
I、n(单位长度导线匝数)
R
分析对称性 管内磁力线平行于管轴
L
管外靠近管壁处磁场为零
...............
B
I
计算环流
B dl
b a
Bdl
cos
0
c
b
Bdl
cos
2
cd
Bdl cos
da
Bdl
cos
2
B ab
利用安培环路定理求
B
B dl 0nabI . . . . . . . . . . . . . . .
1)先求B内和B外 2)求 m1和 m2 3)求 m m1 m2
§11.5 -6 磁力 、磁力矩
前面内容回顾: 1、用安培环路定理求解磁感应强度的条件是什么?
(除要求电流分布具有某种对称外,还必须要求是闭合的稳恒电流产生的磁场, 对于不闭合的稳恒电流产生的磁场安培环路定理是不成立的。)(即稳恒电 流的回路必须闭合或伸展到)
如果实验上找到了磁单极子,那么磁场的高 斯定律以至整个电磁理论都将作重大修改。
例1 两平行载流直导线
求 1) 两线中点
2) 过图中矩形的磁通量
l
解:1) 求 I1、I2在A点的磁场
方向
2)求磁通量:如图取微元
l
方向
例题2 :如图,螺绕环截面为矩形 导线总匝数 外半径与内半径之比 高
设环内磁感应强度为
高斯定理的微分形式
磁场是个无源场(即磁场是不发散的)。
磁单极子(叫单独的磁极)
磁场中的高斯定理和电场的高斯定律相比, 可知磁通量反映自然界中没有与电荷相对应的“磁 荷”(或叫单独的磁极)存在。但是狄拉克1931年 在理论上指出,允许有磁单极子的存在.然而迄今为 止,人们还没有发现可以确定磁单极子存在的实验 证据。
0 Ii
L内
B A
B
B dl B dl B dl B dl B dl
L
AB
BC
CD
DA
0 Ii
L内
B lAB 0 B lCD 0 0 n lAB I
B 0 nI 2 板上下两侧为均匀磁场
讨论:如果有两块无限大载流导体薄板平行放置。 通有相反方向的电流。磁场如何分布?
求:通过截面的磁通量
解:
1. 求均匀磁场中 半球面的磁通量
课 2. 在均匀磁场
堂 中,过YOZ平面内
练 习
面积为S的磁通量。
三、磁场的安培环路定理
I
静电场 磁场
?
E
dl
0
B dl
l
r
B
1、圆形积分回路
B
dl
0 I 2 r
dl
0 I 2 r
dl
0I 2 r 2 r
B dl 0I
m1
S B内 dS
R x
0 Ir 2R2
ldx
0 Il 4R2
(R2
x2)
m2
S B外 dS
R x 0 I ldx 0 Il ln R x
R 2r
2 R
要
求
m
最
大
,
必
有d m
dx
0
即 有 :d dx
0 Il 4R2
(R2
x2 )
0 Il 2
ln
x
R R
0
x2 Rx R2 0 x R ( 5 1) 0
l
2rB 0 I
R
B 0I 2r
讨论:长直载流圆柱面?已知:I、R
B dl Bdl 2 rB
I
0
rR
0 I
rR
R
0
B
0I 2r
0I B
r R 2R
rR
OR
r
练习:同轴的两筒状导线通有等值反向的电流I,
求 B的分布。
(1) r R2 , B 0
R2
R1
(2)
R1
r
R2 ,
2
例2、一根外半径为R1的无限长圆柱形导体管 , 管内空 心部分的半径为R2 , 空心部分的轴与圆柱的轴相平行 但不重合, 两轴间距离为a(a>R2) , 现有电流I沿导体管 流动 , 电流均匀分布在管的横截面上 , 方向与管轴平
行.
求: 1)圆柱轴线上的磁感应 强度的大小.
2)空心部分轴线上的磁感应 强度的大小.
11-5 带电粒子在电场和磁场中的运动
一、带电粒子在磁场中的运动
1、洛仑兹力 磁场对运动电荷施以的磁场力.
.
设均匀磁场磁感强度为
B
(洛仑兹:荷兰物理学家)
带电粒子质量为m 电量为q ,速度为v,其受力
Fm
q
B
——洛仑兹关系式
大小为:
F
B
方向: 满足右手定则。
由于Fm ,所以洛仑兹 力对施力点电荷永不作功
r
4. 无限大载流导体薄板的磁场分布
一导体,由“无限多”根平行排列的细导线组成, 每根导线都“无限长”且均通以电流 I 。设单位 长度上的导线数目为n ,求证:这无限长的电流 片各处的磁感应强度:
B
1 2
0nI
证明: 分析磁场分布: dBb
a
b
dBa
dB
I
dB
作安培环路ABCDA
CB
D
B dl L
J
I
R12 R22
所以,大圆柱轴线上的磁感应强度B0 就是小圆柱电流在 轴线O上产生的磁感应强度。
即
B0
0 JR22 2a
0 IR22 2a( R12 R22 )
2)小圆柱轴线上磁感应强度 B0 小圆柱电流在自身轴线上产生磁场为零
O
I a R2
O R1
所以,小圆柱轴线上磁感应强度就是大圆柱电流在O‘出 产生的磁感应强度。
r11
dl1
r2
I • d
L
B1
0I 2 r1
B2
0I 2 r2
B1
dl1
0 I 2 r1
cos1dl1
B2
dl2
0 I 2 r2
cos 2dl2
dl1 cos1 r1d dl2 cos2 r2d
B1 dl1 B2
对整个回路
dl2
B
0
dl
0
5、若回路所在平面不垂直导线
0
B dl 0 Ii
说明: 电流取正时与环路成右旋关系
I1 I2
I4
I3
如图
B dl 0 Ii
l
0(I2 I3)
注意:
由环路内电流决定
(1)
B dl 0 Ii 0 ( I2 I3 )
由环路内外电流产生
环路所包围的电流
I1 I2
I4
I3
l
不变
? ? B dl 0 Ii 0( I2 I3 )
本次课问题思考:
1、磁力线与电力线有什么区别? 2、磁通量怎么定义?磁场中的高斯定理和安培环路定
理说明了稳恒磁场具有什么性质?
3、在什么条件下才能用安培环路定理求解磁感应强度?