小学三年级数学——鸡兔同笼问题

合集下载

三年级奥数鸡兔同笼+竖式数字迷+巧算周长+巧求面积+移多补少

三年级奥数鸡兔同笼+竖式数字迷+巧算周长+巧求面积+移多补少
• 4、有甲乙两堆萝卜。如果从甲堆拿出9个放到 乙堆,甲堆比乙堆还多2个,原来甲堆比乙堆多 几个萝卜?
排队问题
• 【例1】操场上有一排小朋友,从左起报数 小林报8,从右起报数小林也是报8,这一 排一共有多少个小朋友?
• 【试一试】
• 1、有一队小朋友,从左往右数小强是第7 个,从右往左数是第6个,你知道这一队小 朋友一共多少人吗?
例5、有甲乙两筐西瓜,从甲筐 取出4个放到乙筐后,甲筐还比 乙筐多3个西瓜。原来两筐相差 多少个西瓜?
例6、有个两层的铅笔盒,共放 了12枝铅笔,从上层拿出2枝放 到下层,两层的铅笔就同样多了。 原来下层有多少枝铅笔?
例7、红盒子里有52个玻璃球, 蓝盒子里有34个玻璃球,每次从 多的盒子里拿3个玻璃球到少的 盒子里,拿几次才能使两个盒子 里的玻璃球个数相等?
对第一组有38人,做对第二组的有42人, 两组题全做对的有多少名同学?
• 【※例6】二(7)班同学排成6列做操,每
列人数同样多。小明站在第一列,从前面 数、从后面数他都是第5个。二(7)班一 共有多少个同学在做操?
• 【※试一试】
• 1、二(3)班同学排成8列做操,每列人数同 样多。小红站在第一列,从前面数、从后面数 她都是第4个。二(3)班一共有多少个同学在 做操?
❖ 例10在一张纸上画出由四个边长为3厘米的正方形拼凑或组 合成的图形(重叠的线段只算画一次)。显然,这个图形有多 种多样的画法,下列各图是其中的一部分画法。在所有的这 些画法中,
❖ (1)哪种画法画出的线段总长最长?有多长?
❖ (2)哪种画法画出的线段总长最短?有多长?
❖ 练习:求下列图形周长。
• 【试一试】
• 1、张阿姨白天每两小时喝一杯水,从上午 9时到下午3时,她共喝了几杯水?

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案鸡兔同笼问题是一个古典的算术问题,它包括第一鸡兔同笼问题和第二鸡兔同笼问题。

第一鸡兔同笼问题是已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题;第二鸡兔同笼问题是已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题。

解答这类问题一般采用假设法,可以先假设都是鸡或都是兔,然后进行置换,使问题得到解决。

对于第一鸡兔同笼问题,假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。

对于第二鸡兔同笼问题,假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。

举个例子,假设一笼里有长毛兔子和芦花鸡,数数头有35,脚数共有94.我们可以先假设35只全为兔,然后求出鸡数和兔数;也可以先假设35只全为鸡,然后求出鸡数和兔数。

这样就可以得出答案,即有鸡23只,有兔12只。

另一个例子是,有2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?这个问题可以转化为“鸡兔同笼”问题。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)。

最后一个例子是第二鸡兔同笼问题,鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?我们可以假设全都是鸡或都是兔,然后求出鸡数和兔数。

根据计算,鸡有60只,兔有40只。

答案:有6辆车和270人。

年龄问题是指两人的年龄差不变,但是两人年龄之间的倍数关系随着年龄的增长在发生变化。

解题时要紧紧抓住“年龄差不变”这个特点,可以利用“差倍问题”的解题思路和方法。

例如,爸爸今年35岁,XXX今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?根据年龄差不变,可以得出35÷5=7(倍),明年爸爸的年龄是(35+1)÷(5+1)=6(倍)。

小学数学“鸡兔同笼”问题解题技巧

小学数学“鸡兔同笼”问题解题技巧

小学数学“鸡兔同笼”问题解题技巧基本题型已知鸡兔的总只数和总腿数。

求鸡和兔各多少只。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。

解题规律:方法1、假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数);方法2、假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例1:有鸡兔共20只,脚44只,鸡兔各几只?解:方法1、假设全是鸡( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。

兔的只数(总腿数-总只数× 2)÷(每只兔的脚数-每只鸡的脚数)20-2=18(只)。

鸡的只数方法2、假设全是兔( 20 ×4-44) ÷( 4 - 2 )=18(只)。

鸡的只数(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例 2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:方法1、假设都是小船大船:(6×15+22)÷(6+10)=7(只); 小船:15-7=8(只)方法2、假设都是大船小船:(10×15-22)÷(6+10)=8(只) 大船:15-8=7(只) 20-18=2 (只)。

兔的只数常见题型1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,方法1:(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法2:(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

方法3:列方程解答根据鸡兔脚数的差数,找出鸡与兔的只数关系例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解法1:兔数:(2×30+60)÷(2+4)=20(只); 鸡数:30-20=10(只)解法2:鸡数:(4×30+60)÷(2+4)=10(只)兔数:30-10=20(只)解法3:根据“兔脚比鸡脚多60只也就是“鸡脚比兔脚少60只,那么鸡的只数比兔的2倍少(60÷2=)30(只)解:设兔有X只,那么鸡有2X-60÷2(只)即:2X-30(只)2X-60÷2+X=303X-30=303X=60X=20 30-20=10(只)(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。

三年级奥数知识点:鸡兔同笼问题

三年级奥数知识点:鸡兔同笼问题

三年级奥数知识点:鸡兔同笼问题“鸡兔同笼”问题,也叫简换问题,同学们听说过吗?这是一类著名的数学问题,是指鸡与兔同在一个笼中,已知鸡与兔的总头数以及鸡与兔的总足数,求鸡和兔各是多少只的应用题。

这种类型题是古代趣题,在现实生活和生产中应用广泛,有着十分重要的使用价值。

如:“鸡兔同笼,共有45个头,146只脚。

笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

解答时,一般采用假设法,即假定全部的只数都是鸡或者是兔,算出假定情况下的足数和实际上的足数和、足数差,然后推算出鸡和兔的只数。

计算时的主要数量关系是:1.如果假定全部是兔,则鸡的只数=(每只兔的足数×总头数-总足数)÷(每一只鸡与兔足数的差)简单理解就是:鸡的只数=(4 ×总头数-总足数)÷2兔的只数=总头数-鸡的只数2.如果假定全部是鸡,则兔的只数=(总足数-每只鸡的足数×总头数)÷(每一只鸡与兔足数的差)简单写就是兔的只数=(总足数-2 ×总头数)÷2鸡的只数=总头数-兔的只数《奔跑吧,兄弟》第二季第二期中的密室逃脱彻底考验了7位兄弟的智商。

陈赫受困于“鸡兔同笼”问题,无计可施,先一步越狱的包贝尔决定施以援手,但其另类解法招致陈天才的嗤之以鼻,不过事实证明该解法效果显著,陈赫最终获救,可见绝顶果然聪明,小贝着实不凡。

回顾原题,其表述是:鸡兔同笼共35头,94只脚,问鸡有几只,兔有几只?包贝尔所谓的“所有动物抬起两只脚”,抬起了70只脚,地上剩下94-70=24,对应的是兔子剩下的脚,24÷2=12就是兔子的数量。

其实就是假设法,即假设笼子里全是鸡,则应有35×2=70只脚,实际有94只脚,故兔子有(94-70)÷2=12只,鸡有35-12=23只。

典型例题1鸡兔同笼,共有45个头,146只脚。

小学数学应用题之鸡兔同笼问题

小学数学应用题之鸡兔同笼问题

小学数学应用题之鸡兔同笼问题【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

三年级 鸡兔同笼问题

三年级 鸡兔同笼问题

三年级鸡兔同笼问题解“鸡兔同笼问题”的基本公式是:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数1、鸡兔同笼,共有45个头,146只脚。

笼中鸡兔各有多少只?2、盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。

盒中大钢珠、小钢珠各有多少个?3、一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。

这个集邮爱好者买这两种邮票各多少张?4、学校买来3个排球和2个足球,共花去111元。

每个足球比每个排球贵3元。

每个排球和每个足球各多少元?5、买2支钢笔的价钱等于买8支圆珠笔的价钱。

如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?6、红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?7、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?8、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?9、自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?10、有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?11、甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?12、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?13、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?14、鸡与兔共有200只,鸡的脚比兔的脚少56个,问鸡与兔各多少只?15、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?16、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?17、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛.小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?18、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?19、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张?20动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?21、六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?22、崔文符进山打猎,平均5枪打死两只兔子,9枪打死6只野鸡.他共放了2 5枪,获得猎物14只,两种动物各打死了几只?。

小学鸡兔同笼系列经典例题讲解

小学鸡兔同笼系列经典例题讲解

小学鸡兔同笼系列经典例题讲解例题1、鸡兔一共有110只腿,鸡是兔的3倍,求鸡兔各有多少只?方法一:方程法解:设兔有x只,则鸡有3x只(一般设数量少的为x)题目中的关系式:鸡腿+兔腿=1102 ×3x+4 ×x=11010x=110x=11即兔有11只,鸡有11×3=33只方法二:打包法则一个笼子里有1×4+3×2=10只腿(此处是将一只兔和三只鸡打包),现有110只腿,故110÷10=11个笼子。

所以:鸡:11×3=33(只)兔:11×1=11(只)例题2、鸡兔同笼,头共有35个,腿共有94条,求鸡兔各有多少?方法一:方程法解:设鸡有x只,则兔有(35-x)只题中数量关系式:鸡腿+兔腿=942x+4(35-x)=942x+140-4x=94140-2x=942x=140-94X=23即鸡有23只,则兔有35-23=12只方法二:假设法假设鸡兔都是两条腿,则35只共有35×2=70条腿实际少算了94-70=24条腿,少算的为兔腿,一只兔少算4-2=2条腿则兔为24÷2=12只,则鸡:35-12=23只例题3、鸡兔同笼,鸡和兔共有40个头,鸡腿比兔腿多两条,求各有多少?方法一:方程法(此处不再细讲)方法二:换算法一只鸡有2条腿,2只鸡4条腿等于1只兔的腿,故2只鸡=1只兔等同于以下图片关系故多出的两条腿是一只鸡,40-1=39只,现将39只分成3份,则一份为39÷3=13,则兔有13只,兔有40-13=27只例题4、有一群鸡兔,腿的总数比头的总数的2倍多18只,求兔有多少只?解:设鸡有x只,兔有y只题中关系式:鸡腿+兔腿=头×2+182x+4y=2(x+y)+182x+2y+2y=2x+2y+182y=18y=9故兔有9只例题5、鸡兔同笼,鸡头比兔头多10只,鸡脚比兔脚多10只,求各有多少?方法一:方程法(此处不再细讲)方法二:换算法2只鸡4只脚等于1只兔的脚,故2只鸡=1只兔鸡脚=兔脚+102份兔+10 1份兔(此处红色部分的脚是一样多的)多出的10只脚即为10÷2=5只鸡题中鸡比兔多10只,故剩下的脚一样多的鸡和兔,鸡比兔多10-5=5只,鸡脚=兔脚,则鸡是兔的两倍,故2份兔-1份兔=5兔为5只,则鸡为5×2+5=15只例题6、蜘蛛有8条腿,蜻蜓6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小鸟16只共有110条腿和14对翅膀,求各有多少?遇到这种多种事物的,先找到有相同点的,然后排出不同的事物。

三年级数学思维训练——鸡兔同笼问题

三年级数学思维训练——鸡兔同笼问题

鸡兔同笼问题精典例题例1:鸡兔同笼,共有46个头,128只脚。

笼中鸡兔各有多少只?思路点拨如果 46只全是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

模仿练习一个饲养组养鸡、兔共80只,共有脚220只。

那么,饲养组养鸡和兔各多少只?例2:刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?思路点拨①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9 (条)小船当成一条大船。

模仿练习张老师带了51名同学去湖里公园划船,共租了10条船.每条大船坐7人,每条小船坐4人,问大船、小船各租几条?例3:红星小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?思路点拨我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?模仿练习阳光小学三年级有3个班共200人,二班比一班多5人,三班比二班少10人,三个班各有多少人?例4:有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?思路点拨此题属于鸡兔同笼转换型题。

三年级奥数鸡兔同笼应用题【三篇】

三年级奥数鸡兔同笼应用题【三篇】

【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。

以下是©⽆忧考⽹为⼤家整理的《三年级奥数鸡兔同笼应⽤题【三篇】》供您查阅。

【第⼀篇】⼩学六年级举⾏数学竞赛,共20道试题.做对⼀题得5分,没有做⼀题或做错⼀题都要倒扣3分.刘钢得了60分,问他做对了⼏道题?解答:假设刘钢20道题全对,可得分5×20=100(分),但他实际上只得60分,少了100-60=40(分),因此他做错了⼀些题.由于做对⼀道题得5分,做错⼀道题倒扣3分,所以做错⼀道题⽐做对⼀道题要少5+3=8(分).40分中含有多少个8,就是刘钢做错多少道题.所以,刘钢做错题为 40÷8=5(道),做对题为 20-5=15(道).【第⼆篇】鸡、兔共60只,鸡脚⽐兔脚多60只。

问:鸡、兔各多少只?解答:假设60只都是鸡,没有兔,那么就有鸡脚120只,⽽兔的脚数为零。

这样鸡脚⽐兔脚多120只,⽽实际上只多60只,这说明假设的鸡脚⽐兔脚多的数⽐实际上多120-60=60(只)。

现在以兔换鸡,每换⼀只,鸡脚减少2只,兔脚增加4只,即鸡脚⽐兔脚多的脚数中就会减少4+2=6(只),⽽60÷6=10,因此有兔⼦10只,鸡60-10=50(只)。

【第三篇】有两次⾃然测验,第⼀次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第⼆次15道题,答对1题8分,答错或不答1题倒扣2分,⼩明两次测验共答对30道题,但第⼀次测验得分⽐第⼆次测验得分多10分,问⼩明两次测验各得多少分?解答:如果⼩明第⼀次测验24题全对,得5×24=120(分).那么第⼆次只做对30-24=6(题)得分是8×6-2×(15-6)=30(分).两次相差120-30=90(分).⽐题⽬中条件相差10分,多了80分.说明假设的第⼀次答对题数多了,要减少.第⼀次答对减少⼀题,少得5+1=6(分),⽽第⼆次答对增加⼀题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此,第⼀次答对题数要⽐假设(全对)减少5题,也就是第⼀次答对19题,第⼆次答对30-19=11(题).第⼀次得分5×19-1×(24- 9)=90.第⼆次得分8×11-2×(15-11)=80.。

小学数学鸡兔同笼问题练习及答案

小学数学鸡兔同笼问题练习及答案

鸡兔同笼问题练习及答案1、一个大笼子里关了一些鸡和兔子。

数它们的头,一共有36个;数它们的腿,共有100条。

则鸡和兔各有几只?【分析与解】由题设可知道,若都是鸡,腿只有36×2=72条。

比实际少100-72=28条腿。

少算的是因为把四条腿的兔子当做了2条腿的鸡子,这样一只兔子少算2条腿,28÷2=14只兔子刚好少28条腿。

即兔子有14只,鸡有36-14=22只。

2、王老师用40元钱买来20枚邮票,全是1元和5元的。

求这两种邮票各买了几枚?【分析与解】有题设可知道,若都买的是1元的邮票,则只花1×20=20元,少出了40-20=20元,这是因为把5元的当1元的算了,一枚就少算4元,20÷4=5枚就刚好少算20元。

即5元的邮票有5枚,一元的有20-5=15枚。

3、兔妈妈上山采蘑菇,晴天,每天能采30个,雨天每天能采12个。

它从4月10号开始,到4月29号,中间没有休息,一共采了510个蘑菇。

那么晴天雨天各几天?【分析与解】由题设可知,它一共采了29-10+1=20天。

若都是雨天采的,则采12×20=240个。

比实际少510-240=270个,这是因为把晴天也当雨天算了,一个晴天少算30-12=18个,270÷18=15天晴天刚好少算270个。

故晴天有15天,雨天有20-15=5天。

4、肖老师带51名学生去公园里划船。

他们一共租了11条船,其中有大船和小船。

每条大船坐6人,小船坐4人。

每条都坐满了人。

他们租了几条大船几条小船?【分析与解】由题设可知,若租的都是小船,则只能坐11×4=44人,还有51+1-44=8人没坐。

这说明把大船当小船算了,一条大船少算了6-4=2人,8人刚好是8÷4条船。

即大船有4条,小船为11-4=7条。

5、一辆汽车参加拉力赛,9天行了5000公里。

已知它晴天每天行688公里,雨天平均每天行390公里。

三年级鸡兔同笼题10道

三年级鸡兔同笼题10道

三年级鸡兔同笼题10道一、鸡兔同笼题目1 - 10。

1. 鸡兔同笼,共有头30个,脚84只,求鸡和兔各有多少只?- 解析:假设全是鸡,那么脚的总数是2×30 = 60只,比实际的84只少了84 - 60=24只。

每把一只兔当成鸡就少算4 - 2 = 2只脚,所以兔的数量是24÷2 = 12只,鸡的数量就是30 - 12 = 18只。

2. 一个笼子里有鸡和兔共25只,它们的脚共有70只。

问鸡和兔各有多少只?- 解析:假设都是鸡,脚的总数为2×25 = 50只,少了70 - 50 = 20只脚。

因为每只兔比鸡多4 - 2 = 2只脚,所以兔有20÷2 = 10只,鸡有25 - 10 = 15只。

3. 鸡兔同笼,头共45个,脚共126只,鸡和兔各几只?- 解析:假设全是鸡,脚有2×45 = 90只,比实际少126 - 90 = 36只。

每只兔少算4 - 2 = 2只脚,兔的数量是36÷2 = 18只,鸡是45 - 18 = 27只。

4. 笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚。

鸡和兔各有几只?- 解析:假设全为鸡,脚数为2×35 = 70只,少了94 - 70 = 24只。

兔比鸡多4 - 2 = 2只脚,兔有24÷2 = 12只,鸡有35 - 12 = 23只。

5. 鸡兔同笼,共有20个头,56只脚,鸡和兔各多少只?- 解析:假设全是鸡,脚数为2×20 = 40只,少了56 - 40 = 16只。

每只兔少算4 - 2 = 2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。

6. 有鸡兔同笼,头18个,脚50只,鸡和兔各有多少只?- 解析:假设都是鸡,脚有2×18 = 36只,少了50 - 36 = 14只。

每只兔比鸡多4 - 2 = 2只脚,兔有14÷2 = 7只,鸡有18 - 7 = 11只。

三年级奥数知识点:鸡兔同笼问题

三年级奥数知识点:鸡兔同笼问题

三年级奥数知识点:鸡兔同笼问题“鸡兔同笼”问题,也叫简换问题,同学们听说过吗?这是一类著名的数学问题,是指鸡与兔同在一个笼中,已知鸡与兔的总头数以及鸡与兔的总足数,求鸡和兔各是多少只的应用题。

这种类型题是古代趣题,在现实生活和生产中应用广泛,有着十分重要的使用价值。

如:“鸡兔同笼,共有45个头,146只脚。

笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

解答时,一般采用假设法,即假定全部的只数都是鸡或者是兔,算出假定情况下的足数和实际上的足数和、足数差,然后推算出鸡和兔的只数。

计算时的主要数量关系是:1.如果假定全部是兔,则鸡的只数=(每只兔的足数×总头数-总足数)÷(每一只鸡与兔足数的差)简单理解就是:鸡的只数=(4 ×总头数-总足数)÷2兔的只数=总头数-鸡的只数2.如果假定全部是鸡,则兔的只数=(总足数-每只鸡的足数×总头数)÷(每一只鸡与兔足数的差)简单写就是兔的只数=(总足数-2 ×总头数)÷2鸡的只数=总头数-兔的只数《奔跑吧,兄弟》第二季第二期中的密室逃脱彻底考验了7位兄弟的智商。

陈赫受困于“鸡兔同笼”问题,无计可施,先一步越狱的包贝尔决定施以援手,但其另类解法招致陈天才的嗤之以鼻,不过事实证明该解法效果显著,陈赫最终获救,可见绝顶果然聪明,小贝着实不凡。

回顾原题,其表述是:鸡兔同笼共35头,94只脚,问鸡有几只,兔有几只?包贝尔所谓的“所有动物抬起两只脚”,抬起了70只脚,地上剩下94-70=24,对应的是兔子剩下的脚,24÷2=12就是兔子的数量。

其实就是假设法,即假设笼子里全是鸡,则应有35×2=70只脚,实际有94只脚,故兔子有(94-70)÷2=12只,鸡有35-12=23只。

典型例题1鸡兔同笼,共有45个头,146只脚。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。

三年级奥数鸡兔同笼问题

三年级奥数鸡兔同笼问题

三年级奥数鸡兔同笼问题一、例题精讲知识点一:解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

例1.小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?知识点二:分组法例2.鸡兔同笼,鸡和兔一样多,共有脚30只,鸡、兔各几只?例3.鸡兔同笼,鸡比兔多26只,共有脚274只,问鸡、兔各几只?例4.鸡、兔共90只,鸡脚和兔脚一样多。

问:鸡、兔各多少只?例5.鸡兔一共100 只,鸡脚是兔脚的2 倍,求鸡兔各多少只?二、课堂小测6.100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?7.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

问:象棋与跳棋各有多少副?8.振兴小学六年级举行数学竞赛,共有20道试题。

做对一题得5分,没做或做错一题都要扣3分。

小建得了60分,那么他做对了几道题?9.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。

问:这几天中共有几个雨天?10.小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。

已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?11. 75 个和尚吃75 个包子,2 个大人吃3 个,3 个小孩吃2 个,求大人小孩各多少?12.六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?13.龟、鹤共有100个头,鹤腿比龟腿多20只。

问:龟、鹤各几只?三、拓展提高14.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。

问:鸡、兔各几只?三年级奥数鸡兔同笼问题一、例题精讲知识点一:解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

小学数学鸡兔同笼问题常见类型及方法大全

小学数学鸡兔同笼问题常见类型及方法大全

鸡兔同笼问题常见类型及解题方法大全类型一:基本类型,已知总头数和总脚数,求鸡、兔各多少例1、有鸡、兔共20只,它们共有脚68只,鸡、兔各是多少只?方法一:列表法——简单,但麻烦,适合数量较小时使用所以:鸡有6只,兔子有14只。

总结:1.列表法比较适合数字较小的鸡兔同笼问题;2.尝试时鸡兔只数可先从中间开始,若脚的数量比已知多,就减少兔子数量,反之增加兔子数量;3.脚的数量和已知中脚的数量一致时,对应的鸡兔数量即为所求。

练习:鸡兔同笼,共10只头,32只脚,鸡兔各几只?(用列表法)方法二:口哨法——简单,快速假设鸡和兔会听口哨,每吹一次口哨,鸡和兔都抬起一只脚,吹两次口稍后,鸡的脚都抬起来了,剩下的都是兔子的脚,每只兔子剩两只脚,所以除以2就可以得到兔子的数量;列式:兔子:(68-20-20)÷2=14(只)鸡:20-14=6(只)练习:鸡兔同笼,共15只头,40只脚,鸡兔各几只?(用口哨法)方法三:砍腿法——类似口哨法假设里面的动物都砍去2条腿,那剩下的腿都是兔子的了,每只兔子剩2只腿,所以除以2就算出了兔子数量。

列式:兔子:(68-20×2)÷2=14(只)鸡:20-14=6(只)练习:鸡兔同笼,共16只头,44只脚,鸡兔各几只?(用砍腿法)方法四:假设法——重要,必须掌握假设20只都是鸡:先得出的是兔的数量则共有脚:20×2=40(只)比已知少:68-40=28(只)——为什么会少28只脚?要想明白。

兔的只数:28÷2=14(只)(因为每把1只兔子看成鸡少算了两只脚)鸡的只数:20-14=6(只)假设20只都是兔:先得出的是鸡的数量则共有脚:20×4=80(只)比已知多:80-68=12(只)——为什么会多28只脚?要想明白。

鸡的只数:12÷2=6(只)(因为每把1只鸡看成兔子多算了2只脚)兔的只数:20-6=14(只)方法五:方程法解:设兔子有x只,则鸡有20-x只,列方程:4x+2×(20-x)=68解方程:4x+40-2x=682x+40=682x=28x=1420-14=6(只)答:兔子有14只,鸡有6只。

三年级数学专题讲义第十三讲 鸡兔同笼问题

三年级数学专题讲义第十三讲 鸡兔同笼问题

第十三讲鸡兔同笼问题“鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路.方法:①假设法(即可以从头的角度假设也可以从脚的角度假设)②画线段图③画实物简图④注意恰当分组〖经典例题〗例1、一只鸡有一个头2只脚,一只兔有一个头4只脚.如果一个笼子里关着的鸡和兔共有10个头和26只脚,你知道笼子里有几只鸡、有几只兔吗?分析:假设10只全是鸡.一共有21020-=条腿,⨯=条腿,比实际少了26206每把一只鸡换成一只兔子,腿的总数增加422-=条,要增加6条腿就应该把-=只鸡.623÷=只鸡换成兔子.则有3只兔,有1037例2、一次口算比赛,规定:不能不答,答对一题得8分,答错一题扣5分.小华答了18道题,得92分,小华在此比赛中答错了多少道题?分析:此题是一个实际问题,我们先找到“鸡”和“兔子”,我们假设答对题为“兔子”,答错题为“鸡”。

则“兔子”有8只脚,“鸡”有“扣5”只脚。

假设18道题全部做对了,即18只都是“兔子”,则小华应得188144⨯=分,比实际多了1449252-=分,我们每把一道对的题换成错的,那么分数应减少-=道题。

÷=道题,所以做对18414+=分,要减少52分就要错:521348513〖方法总结〗此类问题属于鸡兔同笼类的基本问题---已知“头和、腿和”解决此类问题所用到的方法为假设法,运用假设法需要注意以下几点:1.如果假设全是兔子,那么先求出来的是鸡的只数;2.如果假设全是鸡,那么先求出来的是兔子的只数.3.如果遇到实际问题,关键是找到“鸡”和“兔子”分别代表什么,他们的脚有几只。

例2属于“不得分倒扣分”、“不得运费倒赔损失费”问题,解决此类问题我们仍然可以采用假设法,但是运用此法是一定要注意,这里面“倒扣”这一词的含义,灵活运用。

〖巩固练习〗练习1.一辆自行车有2个轮子,一辆三轮车有3个轮子.车棚里放着自行车和三轮车共10辆,数数车轮共有26个.问自行车有多少辆,三轮车多少辆?练习2.有2分和5分硬币共28枚,总值为1元零7分,问2分硬币有多少枚?练习3.松鼠采松子,晴天每天采20个,雨天每天采12个,共采了112个,平均每天采14个.问有多少天是雨天?练习4.一辆卡车运粮食,每次可运粮食5吨.晴天每天可运9次,雨天每天只能运5次,它一连10天共运粮食370吨,问这几天中有几天是雨天,几天是晴天?练习5.在一次数学考试中规定:做对一道题得5分,做错一道题倒扣3分,不能不答.小红做了10道题共得了34分,请问他做对了多少道题?练习6.张明、李强两人进行射击比赛,规定每中一发得20分,脱靶一发扣12分,两人各打了10发,共得208分,其中张明比李强多64分.那么张明射中多少发,李强射中多少发?〖经典例题〗例3、鸡兔同笼,共24只,兔子腿总数比鸡腿多54条,求鸡、兔各几只?分析1:用假设法.⨯=条,根据假设假设24只全是兔子,则兔子腿总数比鸡腿总数多了24496做出来的差比实际的差多了965442-=条.每把一只兔子换成一只鸡,兔子腿总÷=只兔子数减少4,鸡腿总数增加2,之间的差距就减小6,那么应该将4267换成鸡,则有7只鸡,17只兔子.方法2:画图,根据图列算式.注意分组的思想.(24141)(12)3--÷+=组,所以有兔子31417+=只,有鸡2317⨯+=只. 例4、鸡兔同笼,鸡比兔子多30只,兔子和鸡的腿数总和为90,求鸡、兔各几只?分析1:假设法。

小学三年级数学——鸡兔同笼问题

小学三年级数学——鸡兔同笼问题

鸡兔同笼问题2
1.鸡兔共笼,兔比鸡多4只,共有脚68只,鸡.兔各若干只?
2.面值是2元.5元的人平易近币共12张,合计45元,面值是2元.5元的人平易近币各有若干张?
3.鸡兔共笼,兔比鸡多5只,共有脚46只,鸡.兔各若干只?
4.鸡兔共笼,兔比鸡多2只,共有脚56只,鸡.兔各若干只?
5.鸡兔共13只,共有脚30只,鸡兔各有若干只?
6.鸡兔共笼,兔比鸡多4只,共有脚76只,鸡.兔各若干只?
7.某黉舍举办数学京赛,每做对一题得9分,做错一题倒扣3分,共有12题,王刚得了84分,王刚做错了几题?
8.某小学举办英语京赛,每做对一题得10分,做错一题倒扣4分,共有15题,王刚得了108分,王刚做错了几题?
9.某次数学京赛共20道题,每做对一题得5分,每做错或不做一题倒扣1分,刘亮得了64分,刘亮做错了几题?
10.运输衬衫40箱,划定每箱运费10元,若损掉一箱,不单不给运费,并要补偿100元,运后运费为180元,损掉了几箱?
11.搬运50只玻璃瓶,划定安然运到一只可得搬运费3元,但打碎一只,不但不给搬运费,还要赔5元,假如运完后共得运费110元,那么,搬运中打碎了若干只?
12.某玻璃杯厂要为商场输送100个玻璃杯,两边约定每个运费为1元,假如打碎一个,这个不单不给运费 ,并且要补偿3元,成果运到目标地后结算时,玻璃杯厂共得运费92元,求打碎了几个玻璃杯?
13.运输花瓶100个,划定每个运费为4元若打碎1个花瓶,则要补偿 10
元,这列后共得运费344元,有几个花瓶打碎了?
14.买甲.乙两种戏票,甲种票每种4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元,两种票各买了几张?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题2
1、鸡兔共笼,兔比鸡多4只,共有脚68只,鸡、兔各多少只?
2、面值是2元、5元的人民币共12张,合计45元,面值是2元、5元的人民币各有多少张?
3、鸡兔共笼,兔比鸡多5只,共有脚46只,鸡、兔各多少只?
4、鸡兔共笼,兔比鸡多2只,共有脚56只,鸡、兔各多少只?
5、鸡兔共13只,共有脚30只,鸡兔各有多少只?
6、鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只?
7、某学校举行数学京赛,每做对一题得9分,做错一题倒扣3分,共有12题,王刚得了84分,王刚做错了几题?
8、某小学举行英语京赛,每做对一题得10分,做错一题倒扣4分,共有15题,王刚得了108分,王刚做错了几题?
9、某次数学京赛共20道题,每做对一题得5分,每做错或不做一题倒扣1分,刘亮得了64分,刘亮做错了几题?
10、运输衬衫40箱,规定每箱运费10元,若损失一箱,不但不给运费,并要赔偿100元,运后运费为180元,损失了几箱?
11、搬运50只玻璃瓶,规定安全运到一只可得搬运费3元,但打碎一只,不仅不给搬运费,还要赔5元,如果运完后共得运费110元,那么,搬运中打碎了多少只?
12、某玻璃杯厂要为商场运送100个玻璃杯,双方商定每个运费为1元,如果打碎一个,
这个不但不给运费,而且要赔偿3元,结果运到目的地后结算时,玻璃杯厂共得运费92元,求打碎了几个玻璃杯?
13、运输花瓶100个,规定每个运费为4元若打碎1个花瓶,则要赔偿10元,这列后共得运费344元,有几个花瓶打碎了?
14、买甲、乙两种戏票,甲种票每种4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元,两种票各买了几张?。

相关文档
最新文档